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Abstract

Social media represents a rich environment to collect huge amounts of data
containing useful information about people’s behaviors and interactions. In
particular, such information has been widely exploited for analyzing the mobility
of people, as geotagged social media posts allow to extract accurate patterns on
movements of people. This paper presents AUDESOME (A Utomatic Detection of
user trajEctories from SOcial MEdia), an automatic method for discovering user
mobility patterns from social media posts. In particular, the method includes
two new unsupervised algorithms: (i) a text mining algorithm, which analyzes
social media posts to automatically extract the main keywords identifying
the Places-of-Interest (Pol) in a given area; and (i) a geospatial clustering
algorithm, which detects the Regions-of-Interest (Rols) by using both geotagged
posts and extracted keywords. We experimentally evaluated the performance of
AUDESOME taking into account the following aspects: identification of keywords,
detection of Rols, and extraction of user trajectories. The experiments, performed
on a real dataset containing about 3 million of geotagged items published in
Flickr, demonstrate that AUDESOME achieves better results than existing
techniques.

Keywords: Trajectory mining, Rol mining, Social media analysis, Geospatial
clustering, Keyword extraction

1. Introduction

The huge volume of data generated by users on social media, such as Facebook,
Twitter and Flickr, can be exploited to extract useful information concerning
people’s behaviors and interactions (Talia et al., 2015)). For example, such data
has been used to analyze the collective sentiments of people, understand the
behavior of groups of users during global events, or monitor public opinion
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close to important events. In addition, social media posts are widely exploited
for analyzing the mobility of people. In fact, such posts are often tagged
with geographical coordinates or other information that allow to discover users’
positions and trajectory patterns (Zheng} 2015a)).

This paper presents AUDESOME (A Utomatic Detection of user trajEctories
from SOcial MEdia), an automatic method aimed at discovering user mobility
patterns from posts shared on social media. The method takes as input a set
of geotagged posts published by social media users (e.g., a set of Flickr photos
or tweets) and performs the following operations: (i) keyword extraction, which
automatically extracts the keywords identifying the Places-of-Interest (Pols)
that are located in a given area; (i7) Rol detection, which detects the Regions-
of-Interest (Rols) in the area, starting from the extracted keywords (for each
Pol) and geotagged posts; and (ii) trajectory mining, which discovers frequent
mobility patterns in user trajectories across Rols. Since the goal is to create an
automatic method, we defined two unsupervised algorithms for both keyword
extraction and Rol detection through text mining and geospatial clustering
techniques.

We experimentally evaluated the performance of AUDESOME taking into
account the following aspects: identification of keywords, detection of Rols and
extraction of user trajectories. The experiments, performed on a real dataset
containing 3.1 million of geotagged items published in Flickr in the areas of
Rome and Paris, demonstrate that AUDESOME achieves better results than
existing techniques. For example, on the Rome’s dataset our technique achieved
very good Fj scores: 0.8/ for the keyword extraction process, 0.79 for the Rol
detection, and 0.85 for the trajectory mining. Our method has been compared
to the most relevant techniques used in the literature, by achieving a significant
improvement of the F; score in each step of our method. We also evaluated
the execution time on a private cloud infrastructure, using an Apache Spark
cluster equipped with 64 CPU cores and 100 GB of memory. In such a context,
the total execution time decreases from 10 minutes using 8 cores to 2.5 minutes
using 64 cores. For the purpose of using the code of our method and allowing
the reproducibility of the experiments, an open-source version of AUDESOME
is available at https://github.com/SCAlabUnical/AUDESOME.

This paper extends the work presented in Belcastro et al. (2020) in the
following main aspects:

(i) The data analysis workflow has been redesigned as a three-step method
that returns, as a final result, no longer the Rols, but the trajectories of
users.

(ii) Two accurate text mining and clustering algorithms have been proposed for
the keyword extraction and Rol detection operations, which are executed
in an unsupervised and almost automatic way. Furthermore, the detailed
description and the pseudo-code of such algorithms have been added.

(iii) A way to evaluate the performance of each operation that composes our
method (keyword extraction, Rol detection, trajectory mining) has been
discussed, proposing an uniform definition of the used metrics (precision,
recall, Fy) for the different operations and explaining how they can be
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calculated.
(iv) For all the phases of our method, an extensive comparison with the main
algorithms existing in the literature has been carried out.

The main novel contributions of AUDESOME with respect to the other
techniques can be outlined as follows. We propose a custom implementation
of DBSCAN (adapted for Rol mining) and a new heuristic for automatically
estimating its parameters, which lead to more accurate results than other
existing techniques. Also for keyword extraction, our algorithm is able to find
the most representative keywords for the different areas of interest. Most existing
techniques rank keywords for each area and establish a fixed threshold (e.g., top-
10) to choose the most representative ones. Instead, our algorithm dynamically
chooses a variable number of keywords for each area by taking into account
both the importance of a keyword in that area and its frequency. Overall, the
combination of such novel algorithms leads to better results in extracting user
trajectories than existing techniques.

The structure of the paper is as follows. Section [2| introduces the main
concepts and problem statements. Section [3] discusses related work. Section [4]
describes the method proposed in this paper. Section [o| presents the case studies
and performance evaluation. Finally, Section [6] concludes the paper.

2. Problem definition

Before discussing the proposed method in detail, it is important to clarify
the meaning of some terms that are used throughout the paper, such as Point-
of-Interest, Region-of-Interest, and trajectory.

A Point-of-Interest or Place-of-Interest (Pol) is a location that someone
finds useful or interesting, such as tourist attractions or business locations. A
Region-of-Interest (Rol) represents the geographical boundaries of the Pol’s
area (de Graafl et al.| 2013)), but it is also be defined as “a spatial extent in
geographical space where at least a certain number of user trajectories pass
through” (Giannotti et al., [2007)). A trajectory is a sequence of spatial regions
(Rols) followed by a user. Consequently, a frequent trajectory is a sequence of
spatial regions that emerge as frequently visited by users.

In most cases, data used for extracting trajectories comes from GPS sen-
sors/devices, which provide, at regular intervals, the coordinates of locations
where the devices are located. As an example, Yuan et al.|[Yuan et al.| (2011al)
analyzed a large dataset containing real-world GPS trajectories generated by
30,000 taxis in Beijing. Although not originally intended for this purpose, also
data from social media can be used for extracting trajectories. In fact, social me-
dia items (or posts) are often geotagged, which means they contain geographical
coordinates or other information that allow to discover the user’s position when
a post was created. Specifically, a social media item ¢ includes the following
fields:

e text, containing a textual description of g.



tags, containing is a set of keywords associated with g.

coordinates, consisting of latitude and longitude of the place from where g
was created.

userld, identifying the user who created g.

timestamp, indicating date and time when g was created.

{"id":"2703840000",

"owner":{ "id":"11235813@N27",
"username":"John Doe",
"pro":true, ... }

"title":"Colosseum, Rome",

"description”:"One of the greatest
works of Roman architecture.",
"dateTaken":"2021-14-27T723:25:01",
"datePosted":"2021-14-27T723:30:36",
"geoData":{"longitude":12.492373,

"latitude":41.890251,

"accuracy":16},
"tags":["colosseum"”, "rome",

"italy", "nikon"],
"originalFormat":"jpg",
"hasPeople":false,
"comments":27, "views":270384,

(a) Photo and description. (b) JSON metadata.
Figure 1: An example of a Flickr post and its metadata.

For example, Figure [1| shows a Flickr post and the metadata that can be
extracted from it. As shown, the post contains some specific metadata of the
photo, such as the date on which it was taken and posted, the coordinates of
the place where it has been taken, the format, a flag indicating if the user is a
professional photographer, and so on. The metadata associated with the user’s
posts can be used to discover his/her movements, but also to obtain useful
information for identifying the places visited. Thus, analyzing and aggregating
the posts of groups of people, it is possible to find the most visited places and
most frequent routes. In addition, textual information contained in such posts
allows to discover the names and/or keywords used to refer to a place, the
reasons for the visit, the opinion of the users on a place.

AUDESOME is designed to process geotagged social media posts by exploiting
the metadata they contain to extract user trajectories. The input of our method
is a large set of geotagged items gathered from a social media platform (e.g.,
Flickr and Twitter). AUDESOME is a three-step method for analyzing the
metadata of social media posts in order to extract: the keywords that identify
the most visited places (Pols), the areas of such places (Rols), and the most



frequent user trajectories crossing them (frequent trajectories). More details are
provided in Section [4]

3. Related work

Geographical coordinates and other information used for identifying user
positions are often analyzed to discover frequent patterns in user trajectories. In
this context, a sequential pattern is a sequence of places (Pols) visited by users
in a similar time interval (Zheng), 2015b). The analysis of frequent sequential
patterns in user trajectories is highly valuable in many scenarios, such as: tourism
agencies and municipalities can discover the most visited tourist attractions
and routes (Cesario et al.l 2016]); transport operators can discover the places
and routes where it is more likely to serve passengers (Yuan et al.l [2011b) and
crowded areas where more transport facilities need to be allocated (Altomare
et al., 2017)).

Since AUDESOME is a three-step method for analyzing social media posts,
a review of the state-of-the-art in the fields of keyword extraction, Rol mining
and trajectory mining is presented in the next sections. Moreover, the main
differences with the most related works are discussed.

3.1. Trajectory mining

Giannotti et al.| (2007) addressed the problem of trajectory pattern mining
under many aspects, providing formal definitions, as well as proposing approaches
and algorithms for the different phases of the analysis. In particular, the authors
presented a new form of space-time pattern, called T-pattern, which represents
the set of trajectories that visit the same sequences of places with similar travel
times. This pattern formalizes the idea of aggregating user trajectories, not only
in terms of sequences of places visited, but also in terms of travel times between
them. Specifically, the user trajectories in input are transformed from sequences
of points into sequences of Rols by labeling data during a pre-processing step.
Bermingham & Lee| (2019)) proposed a framework, namely STOSEM, which
exploits a Hidden Markov Model (HMM) to convert GPS trajectories into
sequences of real-world places from OpenStreetMap. In particular, the framework
aims at addressing ambiguity issues that happen when a user position intersects
multiple places.

Differently from frequent pattern mining, which applies on trajectories in a
similar time interval, the repetitive pattern mining applies on trajectories that
are repeated at regular time intervals (e.g., day or season). Discovering periodic
patterns is really complex, since the moving object does not visit exactly the
same location and the period does not exactly have the same value in different
occurrences (Mazimpaka & Timpf,|2016]). In such a context,|Cao et al.|(2007)) used
a predefined period for discovering frequent regions through clustering. Then,
frequent regions have been aggregated for discovering periodic patterns in spatio-
temporal sequences. Many real data, such as GPS trajectories, are hierarchically
structured, but also irregularly sampled (e.g., due to weather conditions or



device malfunctions, interrupted GPS service) and without a spatial semantic
meaning. To address these issues, |[Zhang et al.| (2019) proposed an hierarchical
clustering method for discovering periodic patterns from irregularly sampled
spatio-temporal trajectories. [Cavojsky et al|(2020) evaluated the Needleman-
Wunsch algorithm to address several issues in comparing trajectories due to
errors and gaps in GPS data. [Pan et al.| (2016)) proposed a multidimensional
trajectory clustering strategy for discovering regular behaviors by considering
characteristics such as position, velocity and course.

Other works focused on mining periodic patterns from social media data.
Halder et al.| (2017) proposed SPPMiner, a graph-based mining algorithm for
extracting periodic patterns from large volumes of social media posts, which has
been used for identifying recurring interactions between users in dynamic social
networks, but not for extracting frequent trajectories. Also |Cesario et al.| (2017)
proposed SMA4TD (Social Media Analysis for Trajectory Discovery), a method-
ology aimed at discovering behavior rules, correlations and periodic mobility
patterns of visitors attending large-scale events, through the analysis of a large
number of social media posts. Such a technique has been exploited to analyze
Instagram posts for discovering mobility patterns inside the exhibition area,
correlations among visits to pavilions and the main flows of origin/destination
of visitors (Cesario et al., 2016)).

Zhijun et allYin et al.| (2011 proposed a method for ranking trajectories
extracted from geotagged posts published on Flickr, without focusing on mining
frequent trajectory patterns. In particular, the authors proposed an algorithm
that defines places by clustering post coordinates and extracts trajectories using
the PrefixSpan (Pei et al., [2004) algorithm.

3.2. Rol detection

Existing techniques for finding Rols are based on three main approaches:
predefined shapes, density-based clustering and grid-based aggregation.

In the first approach, predefined shapes (e.g., circles, rectangles, etc.) are used
to define and represent Rols. For example, [Kisilevich et al.| (2010a) define Rols
as circles of fixed radius centered on a set of Pols whose center coordinates are
known. |Cesario et al.| (2015) used rectangles to define Rols representing stadiums
for a trajectory mining study. |de Graaff et al.| (2013) used Voronoi tessellations
to define Rols starting from a set of geographical coordinates representing Pols.

In the density-based clustering approach, Rols are obtained by aggregating a
set of geographical points or locations. For instance, |Altomare et al.| (2017) used
DBSCAN for detecting regions that are more densely visited based on data from
GPS-equipped taxis. [Kisilevich et al.[(2010b]) used a variant of DBSCAN, named
P-DBSCAN, to cluster photos taking into account the neighborhood density
(i.e., the number of distinct photo owners in the neighborhood) and exploiting
the notion of adaptive density for fast convergence towards high density regions.
Belcastro et al.| (2020) proposed a parallel clustering approach, namely ParCA,
to identify Rols from spatial dataset. ParCA exploits a parallel execution of
DBSCAN on subsets of data to generate sub-clusters on each processing node
and then merge overlapping sub-clusters to form global clusters.



The grid-based aggregation approach discretizes the area under analysis in a
regular grid and extracts Rols by aggregating the grid cells. For example, Lee
et al.|(2014) argued that rectangular expansion produces Rols that may contain
uninteresting low-density cells. For this reason, they proposed a hybrid grid-
based algorithm, called Slope Rol, to mine arbitrary Rol shapes from trajectory
data. [Shi et al.| (2014)) mapped geotagged data into grid cells, and then grouped
the cells taking into account spatial proximity and social relationship between
places. [Spyrou et al.| (2017) proposed an algorithm that divides a geographical
area into cells and then exploits an iterative merging procedure for finding Rols.

Density- and grid-based algorithms depend on the setting of multiple pa-
rameters (e.g., eps and minNumPoints for DBSCAN, cellSize and minSupport
for Slope Rol). For this reason, it is not easy to find parameters that produce
accurate Rols over different locations with a variety of shapes and data points
distributions. To overcome the problem of adjusting the parameters, some auto-
matic clustering techniques have been proposed, such as DSets-DBSCAN (Hou
et al.l 2016)) and TURNx (Foss & Zalane, 2002)). Although they demonstrate
to work well in certain circumstances, in other cases they lead to poor results
because clusters are rarely well-separable in an explicable manner.

Other approaches differ from those mentioned earlier. G-Rol (Belcastro et al.|
2018) exploits the indications contained in geotagged social media items (e.g.
tweets, posts, photos or videos with geospatial information) to discover the Rol of
a Pol with a high accuracy. Starting from a set of predefined keywords identifying
a Pol, G-Rol iteratively calculates the associated Rol using a density-based
criterion.

3.3. Keyword extraction

Rol mining approaches need a method to assign a meaning to each Rol found.
There are different ways to perform this task. |Yin et al.| (2011)) assigned a name
to each cluster by taking the most frequent keywords in the geotagged items.
Ferrari et al.| (2011]) automatically associated with each Rol the zip code of the
data points in the cluster center. |Jarv et al.| (2018) used a hierarchical clustering
algorithm, named HDBSCAN, for producing a dendrogram of clusters. Each
place is represented as a natural hierarchy of other regions (e.g., a museum
may belong to a particular district). Then, using both a Pol database from
Foursquare and metadata contained in geotagged items, the authors assigned a
semantic mean to each region.

Most used techniques for extracting representative keywords are based on
TF-IDF (Ramos et al., [2003), an information retrieval algorithm for finding
the most relevant keywords and topics in clusters or subsets of data (Ahern
et al.l 2007} [Zhu et al., |2019). Some researchers exploited TF-IDF to assign a
semantic meaning to Rols obtained through clustering of geotagged social media
posts ((Spyrou et all [2017; Hu et al) 2015)). Specifically, TF-IDF has been
used for ranking keywords/tags contained in each cluster, so as to find the most
representative ones (e.g., choosing the top-N).



8.4. Main differences with with the most related works

AUDESOME is a three-step method for analyzing the metadata of social
media posts in order to extract: the keywords that identify the most visited
places (Pols), the areas of such places (Rols) and most frequent user trajectories
crossing them (frequent trajectories).

It is worth noting that our work does not propose a new trajectory mining
algorithm, but defines a full automatic method for extracting trajectories from
social media data, which combines algorithms of keyword extraction, Rol detec-
tion, and trajectory mining. Thus, AUDESOME does not place any constraints
on the trajectory mining algorithm to be used. In our experiments, once user
trajectories across Rols have been calculated, we used a parallel implementation
of PrefixSpan (Pei et al., 2004) for extracting the most frequent ones.

From the above literature review, some works use similar approaches, but
with some important differences:

e SMAATD (Cesario et al., [2017) does not deal with keyword extraction, as
the Rols (e.g., areas of the 2014 FIFA World Cup stadiums) are manually
defined before analyzing the movement of users. Differently, we propose a
clustering algorithm with automatic parameter estimation that is able to
automatically identify Rols with arbitrary shapes.

e SPPMiner (Halder et al., [2017)) is a graph-based mining algorithm for
extracting periodic patterns from large volumes of social media posts,
which has been used for identifying recurring interactions between users
in dynamic social networks. However, as stated by the authors, it needs
further development for supporting the extraction of trajectories.

e Slope Rol (Lee et al.l |2014) discretizes the area under analysis in a regular
grid and extracts Rols by aggregating the grid cells using a heuristic based
on density variation. This approach has the problem of finding parameters
that produce accurate Rols over different locations with a variety of shapes
and data points distributions. It does not propose any algorithm for
assigning a meaning to Rols or for extracting trajectories.

e [Spyrou et al.[(2017) presented a Rol mining algorithm that splits the area
under analysis into squared cells of equal size and, for each cell, finds the
top-10 representative keywords using TF-IDF. The Rols are obtained by
aggregating adjacent cells using the Jaccard similarity measure [Stork et al.
(2001) calculated between the keyword sets of each cell. This technique is
not able to dynamically determine a cut value for the keywords ranked by
TF-IDF, nor to detect the presence of multiple Rols within the same cell.
AUDESOME aggregates posts using sets of keywords and, therefore, it is
able to define Rols that can fall within one or more cells, i.e., the extraction
of Rols is totally decoupled from the concept of cell (see Section .

¢ G-Rol (Belcastro et al., [2018) proposes a clustering algorithm with a
top/down approach for the extraction of Rols, but it does not deal with



the extraction of keywords, which are provided manually. This limits the
applicability of G-Rol, since it requires to know a priori the Pols and their
related keywords. Instead, AUDESOME is able to automatically extract
the most relevant keywords from data by exploiting an ad-hoc text-mining
algorithm. Moreover, AUDESOME uses a custom-version of DBSCAN,
which natively turns out to be very robust in handling data with noise
and more accurate in detecting Rols with different shapes and densities.
From the computational point of view, the time complexity of G-Rol is
O(n3logn), while our implementation has a lower complexity of O(n?).

e ParCA (Belcastro et al.,|2020) exploits a TF-IDF-based approach to extract
the most relevant keywords from cells, but does not provide any pseudo-
code, description or performance evaluation of the algorithm. Concerning
the Rol detection process, ParCA calculates the Rols through a parallel
implementation of DBSCAN, where the eps parameter is calculated by
considering a fixed percentage of noise in data, as suggested in [Ester et al.
(1996)). This approach is not very effective (Schubert et al., 2017)), since it
is not able to adapt to Rols with different shapes, densities and percentage
of noise.

Summarizing, the main novel contributions of AUDESOME with respect to
the other techniques can be outlined as follows. AUDESOME proposes a custom
implementation of DBSCAN (adapted for Rol mining) and a new heuristic that
allows to automatically estimate its parameters. Compared to existing techniques
used for estimating the parameters of DBSCAN, i.e., fixed noise percentage,
L-Curve and DSets-DBSCAN (Hou et al., |2016)), our heuristic permits to obtain
more accurate Rols than other existing techniques (e.g., G-Rol, ParCA, and Slope
Rol). In fact, the heuristic proposed in AUDESOME dynamically calculates the
threshold point (i.e, the point that separates the noise points from those assigned
to some clusters) for each Rol, so as to calculate effective clustering parameters
for each Rol. Also for keyword extraction, our algorithm it is able to find the
most representative keywords for the different areas of the interest. Existing
techniques based on TF-IDF rank all the keywords and establish a fixed threshold
(e.g., top-10) to choose the most representative ones. Instead, our algorithm is
able to dynamically choose this threshold by exploiting both the number and
frequency of the keywords found. Also in this case, experiments demonstrated
that our approach is able to obtain better results than existing techniques (e.g.,
top-N TF-IDF). Overall, the combination of such novel algorithms leads to better
results in extracting user trajectories than existing techniques.

4. Proposed method
The proposed method performs the following three macro steps (see Figure:

o Keyword extraction: a text mining algorithm is exploited to identify the
main keywords that are used in a certain area. Such keywords, which



identify the Pols that are located in the area, are used to group social
media posts according to the place they refer to.

e Rol detection: a clustering algorithm is used to extract Rols starting
from social media posts that have been grouped by keywords. Specifically,
the social media posts referring to a Pol are transformed into a series of
geographical points (we only keep the coordinates). Such points are then
appropriately clustered to define Rols.

o Trajectory mining: starting from the Rols defined at the previous step,
the social media posts are analyzed to extract the trajectories of each user,
and thus to obtain the mobility patterns of users.

@) 1

Keyword Keywords
extraction
O A
o 2
I ¥ —>
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Social media
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detection Rols
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mining Trajectories

Figure 2: Workflow of AUDESOME.

Overall, the analysis process produces the following intermediate/final out-
puts: (¢) the sets of keywords that are used to refer the Pols in the area under
analysis; (i¢) the Rols calculated for the different Pols, which can also be easily
displayed on a map; (7i¢) the most frequent trajectories followed by users.

Figure [3] shows an example of outputs produced by AUDESOME in an area
of Rome. In particular, starting from the geotagged social media posts generated
by four users (U1, ..., U4), the method identifies five Places-of-Interest and the
related keywords (e.g., { Colosseum, Colosseo, Coliseo, Colaseum, Coloseu, ...)
for the Colosseum). From such places, the associated Rols are generated to
understand whether a user has visited or not a certain Pol. For each user, we
can extract his/her movements across places, grouping social media posts by
user id and sorting them by date and time. As an example, Figure [3] shows
the trajectory of user Ul: Colosseum — Roman Forum — Circus Mazimus —
Tiber Island. Through the analysis of the trajectories of different users we can
discover the most frequent behaviors and trajectories.

In the next two subsections we will describe in detail the novel algorithms
that we have proposed for extracting keywords and defining Rols. For each of
them, a formal description and practical examples are provided. Table [I| reports
the meaning of the main symbols used to define the pseudo-code of these two
algorithms. Concerning trajectory mining, the user’s trajectories are transformed
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Figure 3: An example of the outputs produced by AUDESOME.

from sequences of coordinates into sequences of Rols. For this reason, the quality
of the Rols influences the quality of the trajectories obtained.

Table 1: Meaning of the symbols used in AUDESOME.

Symbol  Meaning

G Set of (geotagged items)

C Set of (square cells) representing a subdivision of the area under analysis

o Map(cell, map of (term, occurrences)): for each cell it stores the occurrences
of terms belonging that cell

I Map of (term, set of (cells)): for each term, it stores the square cells that
contain that term

g Map of (cell, map of (term, score)): for each cell, it stores the score of the terms
belonging to that cell

K Sets of (keywords)

P Map of (Pol, set of (geotagged items)): it stores the geotagged items that have
been associated with each Pol

CL Set of (clusters), where each cluster is composed of a set of geographical points

R Map of (Pol, Rol): for each Pol a Region-of-Interest

D Array of (distances)

4.1. Keyword extraction

This algorithm is used to automatically extract the keywords that identify
the main Pols located in a given area. Overall, the algorithm can be divided in
three parts: (i) the area under analysis is divided into cells and, for each cell, the
main keywords (and their occurrence) are extracted by analyzing the geotagged
posts whose coordinates fall into that cell; (i4) an heuristic based on the L-curve
(Hansen! [1992) algorithm is exploited to separate high and low-representative
keywords automatically; and (7i7) the Levenshtein metric (Levenshtein) [1966) is
used to group the most representative keywords based on similarity.

11



Figure [4] shows an example of how the keyword extraction algorithm works.
For each cell, the algorithm extracts the keywords contained in the geotagged
posts falling into that cell, and calculates their frequency. Then, such keywords
are sorted by frequency. A high frequency does not necessarily denote high
quality representative keywords, but it is a useful starting point. As an example,
in Figure the keywords “italy” and “rome” have higher frequency than
“colosseum” and “romanforum”, although the latter are more representative of
the Pols contained in those cells. Noisy keywords, such as “italy” or “rome”, are
then removed (see Figure so as to maintain only the most representative
keywords for each cell. Then, in Figure the remaining keywords are grouped
according to their textual similarity, such as “{colosseo, coliseum}”.

rome, 2452
italy, 732,
campidoglio, 503

piazzavenezia, 283 (_:ampidogli(_),
lcapitolinemuseum, 191 piazzavenezia,
lagalleriadeimarmi, 85 capitolinemuseum

bustideifilosofi, 85

rome, 8632
italy, 2747

italy, 1682
rome, 1462

foro, 1056 colosseo, 2639 foro col9sseo
\azio, 144 coliseum, 1604 fororomano coliseum
romanforum, 133 ruins, 543 romanforum archofcostantine
fororomano, 88 archofcostantine, 99
(a) Keyword discovering. (b) Keywords extraction.

campidoglio,
piazzavenezia
capitolinemuseum

{foro,fororomano} !{colosseo,coliseum}!
romanforum archofcostantine

(c) Keywords grouping.
Figure 4: An example of how the keyword extraction algorithm works.

Algorithm [I] shows the pseudo-code for automatically extracting keywords.
The input is composed of a set of geotagged items G and a set of cells C' that
represents a subdivision of the area under analysis in cells. The output is a set
of keywords K that have been found in G. As the first step (lines 1-2), two
maps are initialized: O, which stores the occurrences of the terms that have been
found in a cell, and L, which stores the list of cells that contain a specific term.

For each geotagged items g; € G, the algorithm iterates by performing the
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following operations (lines 3-7):
- using the coordinates of g;, it gets the cell ¢; where g; falls into (line 4);

- for each term ¢; contained in the textual information of g; (i.e., title,
description and tags), it increases the term occurrence in Ol¢;] and adds
the cell ¢; to L[t;] (lines 5-7). In particular, during this phase, textual
information is preprocessed so as to remove duplicates, normalize all the
terms by transforming them in lowercase, and remove stop words using
preset lists.

A method based on a discrete L-curve (Hansen 1992) is exploited for dis-
tinguishing between high and low-occurrence keywords in O (line 8). Using the
findThresholdL Curve method, the items in O are sorted in descending order
by number of occurrences, so as to create a bi-dimensional curve composed
of an ordered set of Cartesian points XY = {(0, Occy), (1, Occy), ..., (n, Ocey) }
A generic element p; € XY represents a term t; and is graphed as a point
(i,0cc;), where i and Oce; indicate the index and number of occurrences of ¢;,
respectively. Since for two consecutive points p; and p; 1 it is always true that
Occ; > Occ;iq1, the curve turns out to be an L-curve. From this curve, the elbow
point E = (e, Occ,) is calculated. The ordinate of E (i.e., Occ,) is the threshold
thy used for separating high and low-occurrence terms. A term t¢; = (i, Occ;)
is considered as a high-occurrence if Occ; > thy, otherwise as low-occurrence
(i.e., Occ; < thy). Then, all the terms whose occurrences are lower than thy are
filtered out (line 9).

A new map S is initialized for storing the score assigned to each term that
has been discovered in the set of cells (line 10). For calculating such a score,
the algorithm iterates over O, which is a set of pairs F; = (term, occurrences)
containing the occurrences of each term. In particular, the following operations
are performed (lines 11-15):

- Calculate the score of each term ¢; in the cell ¢; by using TF-IDF (line 13).
Specifically, this score is calculated by considering the occurrences of the
term (o;), the sum of the occurrences of all terms in ¢;, and the number of
cells in which the term is present L[t;].

- A method based on a discrete L-curve is then exploited for distinguishing
between high- and low-score terms in the cell ¢; (lines 14-15). Specifically,
a local threshold for the cell thy is calculated for all the terms in ¢; (line

14) and all the terms whose score is lower than thy are removed in S[¢;]
(line 15).

Then, a new set K is initialized for storing the most representative terms (i.e.,
keywords) in the area under analysis (line 16). For each cell of S, the algorithm
iterates on each pair S; = (term, score) to find the keywords and their synonyms
(lines 17-20). In particular, all similar keywords are grouped into a set k; (e.g.,
colosseum, coliseum and coliseo) that is added to K.
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ALGORITHM 1: Keyword extraction.

Input :Set of (geotagged items) G, set of (square cells) C
Output: Sets of (keywords) K

O+ 0; /* Map of <cell, map of <term, occurrences>> */
L+ 0; /* Map of <term, set of <cells>> */
for g; € G do

¢; + f£indCell(C, g;.coordinates); /* Cell c¢; where g; falls into */
for t; € terms(g;) do

Olci][tj]++;  /* Increase the occurrences of the term t; for c¢; */
Lit;] < L[tj] U eis /* Add the cell ¢; to Llt;] */
thy <findThresholdLCurve(O); /* Calculate the threshold thi */
deleteLowThl1Terms (O, th1) ; /* Delete low occurrence terms from O */
S« 0; /* Map of <cell, map of <term, score>> */

for <c¢;, F; >€ O do

for <t;,0; >€ F; do
Slei][t;] < score(oj, sum(O[ci]), |L[E;]],5); /* Calculate the score
of t; in ¢; */

thy +findThresholdLCurve(S[c]); /* Calculate the threshold ths */
B deleteLowTh2Terms (S[c;], tha) ; /* Delete terms with low scores */
K+ 0; /* Sets of <keywords> */

for <¢;,S; >€ S do
for < tj,s; >€ Si; do

k;j <—< t;j, synonyms(t;,O) >; /* Group t; and its synonyms */
K+ KU{k;}; /* Add the keyword k; to K */
return K

Once the keyword sets in K (i.e., the output of the algorithm) have been
generated, they are used to associate social media posts to the set they refer to.
In particular, given a set of keywords K; € K, a geotagged item g; is assigned
to K; if it contains at least one keyword of K;. It should be noticed that each
set of keywords represents a Pol. As the next step, a map P is used to store the
geotagged items associated with each Pol. This map is given as input to the Rol
detection algorithm.

4.2. Rol detection

The Rol detection algorithm aims at defining Regions-of-Interest from the
geotagged items assigned to the different Pols. As discussed, geotagged items can
be transformed into geographical coordinates (i.e., pairs of (latitude, longitude))
that can be aggregated through clustering. Specifically, a customized version of
DBSCAN (Ester et all 1996]) has been used, so as to make it suitable for Rol
mining and able to set its input parameters in an almost automatic way.

Algorithm [2| shows the pseudo-code for detecting Rols. The input is a map
P, which contains the set of geotagged items associated with each Pol, and a
threshold value th € (0,1). The output is a map R used to store a Region-
of-Interest for each Pol. At the beginning, R is initialized (line 1) and the
DBSCAN parameter minPts is set to 5, as usual when working two dimensional
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data (Schubert et al. [2017) (more details in Section [4.2.1)). The algorithm
iterates (lines 3-8) on each Pol p; in P by performing the following operations:

- Extract the set of coordinates C'C; from the geotagged items G; asso-
ciated with p; (line 4). CC; is obtained by extracting the coordinates
(latitude/longitude) from each geotagged item in G;.

- Estimate eps; by using the set of coordinates C'C;. Specifically, eps; is
estimated by using the method calculateEps, which receives as parameters
CC;, minPts, and th (line 5). Choosing a good eps value allows to correctly
separate noise points from those that can be assigned to some clusters.

- Execute DBSCAN on CC; by using minPts and eps;, generating a set
of clusters C'L (line 6). Among them the cluster containing the highest
number of points ¢pq. is selected (line 7).

- Calculate the Region-of-Interest associated with p; as the convex polygon
that contains all the points of the cluster ¢4, (line 8).

In the next section, we explain how the eps parameter is estimated.

ALGORITHM 2: Rol detection.
Input :Map of (PoI, set of (geotagged items)) P, threshold th € (0,1)
Output: Map of (PoI, RoI) R

R+ 0; /* Map of <PoI, RoI> */
minPts < 5; /* minPts is fixed to 5 */
for < p;,G; > P do
CC; < getCoordinates(G;) ; /* Coordinates of G; */
eps; < calculateEps(CC;, minPts,th); /* Calculate eps */
CL < DBSCAN(CC;, minPts, eps;); /* Set of (clusters) */
Cmae +max(CL); /* Get the cluster with the highest number of
points */
R[pi] +—convexHull(¢maz); /* Generate a RoI for p; */
return R

4.2.1. Heuristic for choosing DBSCAN parameters

The following parameters must be set to run the DBSCAN algorithm: eps,
the radius of the neighborhood of a point; and minPts, the minimum number of
points in a neighborhood that are required to form a cluster. As defined in |Ester
et al.| (1996)), such parameters can be calculated using the following procedure:

1. Compute the k-nearest-neighbor distances (k-dist) of all the points and
sort them in descending order. As proposed by |Ester et al| (1996), the
value of k can be set to 4 for bi-dimensional data, while minPts can be
set to k + 1 (Schubert et al.| [2017) thus equal to 5.

2. Choose a threshold point (also called “cut-oft” point) on the k-distance
plot to isolate the noise points. Specifically, if a point has a k-distance
value higher than that of the threshold point, it is considered noise and
thus discarded; otherwise, it is assigned to some clusters.
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To calculate the threshold point, [Ester et al.| (1996) proposed to plot the
k-distance and find the first “elbow” (or “valley”). Such an elbow represents the
threshold point, and its k-distance value is used as eps value.

Figure shows an example of a k-distance plot (with k=4) where the
threshold point (eps) and percentage of noise points (noisePerc) are highlighted.
As shown, setting a threshold point is equivalent to defining the noise percentage
and vice versa. It should be noted that choosing an accurate noise percentage
not only permits to discard noise points, but also to define more accurate Rols.
For example, Figure shows how choosing the noise percentage affects the
definition of the Rol of the Colosseum. With a low noise percentage (e.g., 5% for
the yellow polygon) we obtain a too large Rol, with medium noise percentage
(e.g., 20% for the purple polygon) a quite accurate Rol, with high noise percentage
(e.g., 30% for the black polygon) a too small Rol.

4-dist

Points

(a) Example of sorted k- (b) Colosseum’s Rols for differ-
distance plot (k=4). ent values of noisePerc.

Figure 5: How the percentage of noise (noisePerc) affects the definition of Rols (from 5% for
the yellow polygon to 30% for the black polygon).

As clearly explained in a recent survey on DBSCAN (Schubert et al.| 2017)),
it is not always easy to identify the threshold point, as it is often not clearly
visible in the k-distance plot. Our algorithm analyzes the k-distance plot trying
to estimate a good threshold point through an iterative process. In particular,
it discards the noise points (i.e., those with higher k-distance values) until the
k-distance plot calculated on the remaining points no longer shows an evident
elbow point.

Figure [6] shows the k-distance plot in three different iteration phases. Fig-
ure shows the initial k-distance plot, i.e., a L-curve with an evident elbow.
As the points with the highest k-distance value are discarded, the curve flattens
more and more. In Figure despite having eliminated several noise points,
the curve still shows an evident elbow. Finally, in Figure the curve has
flattened enough to stop the iteration process. Specifically, to understand when
the curve is flat enough we use a threshold value th. If all the points are above
the line y = 1 — th — z, the iteration is stopped (more details below).

Algorithm [3] shows the pseudo-code used to estimate the eps parameter. The
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Figure 6: Procedure for choosing a threshold point.

input is composed of a set of geographical points P, a minimum number of points
minPts, and a threshold value th € (0,1). The output is the estimated value of
eps.

At the beginning, the sorted k-distance is calculated on P and stored in an
array D (lines 1-5). Given two adjacent points D[i] = (i;d;) and D[i + 1] =
(i + 1;d;41), the distance d; is strictly greater than d;11, because the distances
are sorted in descending order. Then, the index of the cut-off point cut is set to
zero (line 6) and the variable n is set to the number of points (line 7).

The cut-off point is found through an iterative process. Given the index cut
of the current cut-off point D[cut] = (cut, d.yt), the algorithms verifies if all the
points in [D[cut], D[n]] are placed above the threshold line y = 1 — th — z (i.e.,
within a threshold distance th from the line y = 1 — ). To understand this, on
each point D[i] € [D[cut], D[n]], the following operations are performed (lines
10-15):

- Normalize DJi].x with respect to [D]cut].x, D[n].x] (line 11);
- Normalize DJi].y with respect to [D[cut].y, D[n].y] (line 12);

- If the normalized point (Zyorm,Ynorm) iS below the threshold line y =
1—th—z (line 13), it means that the plot has an elbow. Thus, the variable
isFlat is set to false and the inner iteration is stopped (lines 13-15).

If the inner iteration is never broken, i.e., all the points in {Dl[cut], ..., D[n|}
are above the line y = 1 — th — z (i.e., isFlat is true), the algorithm returns the
distance of the cut-off point D|cut] as eps value (lines 16-17). Otherwise, the
algorithm evaluates the next cut-off point (lines 18-19).

The complexity of AUDESOME in detecting Rols is O(n?). In fact, esti-
mating the eps parameter has a complexity of O(n?), while the execution of
DBSCAN can be reduced to O(nlogn) by using indexed data structures. Since
the two phases are performed in sequence, the final complexity results to be

O(n?).
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ALGORITHM 3: Eps estimation.

Input : Set of (coordinates) P, minimum numbers of points minPts,
threshold th € (0,1)
Output: Eps € (0, ).

D« 0; /* Array of (distances) */
for (p;eP)

kdist <+ K Distance(ps;, P,minPts); /* Compute KNN distances for p; */

DJi] + kdist; /* Set value of p; in distances set */
Sort(D); /* Sort all k-distances by descending values */
cut < 0; /* Index of the cut-off point */
n « |P|; /* Number of points */
while cut <n do

isFlat < true ; /* Variable to understand if the k-dist plot is

flat */

for (i=cut+1; i<n—1; i++ )

Znorm = (DI[i].x — Dlcut].xz)/(D[n].x — D[cut].x); /* Compute

normalized x distance */
Ynorm = (D]i].y — D[n].y)/(D]cut].y — D[n].y); /* Compute normalized
y distance */

if Ynorm <1 —th — Tnorm then
isFlat < false; /* k-dist plot is not flat */
break; /* Break cycle */
if isFlat then
| return Dlcut]; /* Return D[cut] as eps value */
else
L cut++; /* Update index of cut-off point */

5. Performance Evaluation

We experimentally evaluated the performance and scalability of AUDESOME
using more than 3 million of geotagged items, published in Flickr from January
2006 to May 2020 in the cities of Rome and Paris. Specifically, we evaluated the
following steps that are part of the AUDESOME’s workflow: (i) extraction of
keywords; (i) detection of Rols; and (4i7) mining of frequent trajectories. In
each step, we carried out a comparison with the main existing techniques in the
literature.

5.1. Accuracy

The performance of the AUDESOME’s workflow has been evaluated by using
the precision and recall metrics. To rank the results, we combined precision
and recall using the F; score (i.e., the harmonic mean between precision and
recall). In the following, we provide a description of how such metrics have been
calculated for each step.

5.1.1. Keyword Eztraction
We evaluated the performance of AUDESOME in extracting keywords, com-
paring it with the TF-IDF algorithm (Ramos et al., |2003). The area under
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analysis is divided into a set of square cells C of the same size. In particular,
after several preliminary experiments, for our case studies we have chosen a cell
size of 200 square meters, which is the same value used by |Spyrou et al.| (2017).

Let K, eqi(c) be the real keywords used to refer the Pols located in a cell
¢ € C, which can be collected using APIs provided by public services such as
Foursquareﬂ or GeoNamesﬂ Let also Kfound(c) be the keywords found in ¢ by
a keyword extraction algorithm. The precision Preck and recall Reck of the
keyword extraction process are then defined as:

1 |Kreal(c) N Kfound(0)|
Precg = — (1)
|C| ZCGC |Kfound(c)|
1 |Kreal(c) N Kfound(c)|
Reckg = — 2
K |C]| ZCEC | Krear(c)] ®

We measured the performance of AUDESOME in extracting the keywords
that are most representative of the Pols contained in each cell’s area. Then, we
compared such results with those obtained by using different configurations of
TF-IDF. It should be noticed that TF-IDF is not able to automatically calculate
the number of keywords to be returned, which requires to be manually defined
(e.g., return the top N frequent keywords in a cell). Differently, AUDESOME
implements an heuristic, based on L-Curve, that allows to automatically estimate
the number of keywords to be returned for each cell. For better assessing results,
we compared AUDESOME with different configurations of TF-IDF (i.e., top
2, top 5, and top 10 frequent keywords for each cell). Also for AUDESOME,
we evaluated the effectiveness of the heuristic used to estimate the number of
keywords, comparing it with others based on a fixed cut (i.e., top 2, top 5, and
top 10 frequent keywords in each cell).

Table 2: Comparison of keyword extraction algorithms.

Algorithm Rome Paris

Precxk  Recx Fig Precxk  Recx Fig
TF-IDF Top-2 0.87 0.87 0.81 0.63 0.61 0.62
TF-IDF Top-5 0.48 0.48 0.52 0.30 0.60 0.40
TF-IDF Top-10 0.24 0.57 0.34 0.28 0.70 0.40
AUDESOME Top2 0.97 0.70 0.81 0.65 0.57 0.61
AUDESOME Top5 0.35 0.64 0.45 0.21 0.67 0.32
AUDESOME Topl0 0.34 0.76 0.47 0.27 0.58 0.37
AUDESOME 0.95 0.75 0.84 0.80 0.56 0.66

Table [2| shows the results obtained. In particular, TF-IDF requires a strong
cut on the number of keywords to be considered for achieving good results. In
fact, considering the top 2 frequent keywords per cell, TF-IDF reaches a F} score

Thttps://foursquare.com/
2https://www.geonames.org/
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of 0.81 in Rome and 0.62 in Paris, while choosing an higher number of keywords
per cell (top-5 or top-10), the performance of TF-IDF considerably decreases.
Differently, AUDESOME achieved a high quality results using both the approach
based on an automatic keyword cut (F; score 0.84 in Rome and 0.66 in Paris)
and that based on a fixed cut (e.g., F; score 0.81 in Rome and 0.61 in Paris
with the top 2 approach). Compared to the other techniques, our method leads
to an overall improvement of the Fj score up to 0.26, which is calculated as
the difference between the F; score obtained by AUDESOME and the worst
one of the other techniques (i.e., TF-IDF Top-10). These results show that our
algorithm, being able to automatically select a variable number of keywords for
each cell, allows to obtain better results than the other techniques.

5.1.2. Rol detection

We compared the performance of AUDESOME in detecting Rols with four
existing techniques: DBSCAN (Zheng et al., 2012), DSets-DBSCAN (Hou et al.|
2016), Slope (Lee et al.,2014), and G-Rol (Belcastro et al |2018)). In particular,
we used P, two sets of 24 popular Pols in Rome and Paris, whose real Rols are
known (they can be obtained from online services like OpenStreetMapED and
characterized by different shapes and sizes.

Let Ryeqi(p) be the real Rol of a generic Pol p € P, Ryound(p) be the Rol of
p found by a Rol detection algorithm, and A(r) the area of a generic Rol r. We
define the precision Precgy and recall Recg of the Rol detection process as:

recr — L A(Rreal (p) N Rfound(p))
Preen = 151 Lper ~— AlRyoumaly) ®)
_ i A(Rrear(p) N Rfound(p))
Recr = (1 2 pep — A(Rret(p) @

Also in this case, the results are ranked by using the F; score. As an example,
Figure [7] shows the real Rol (green polygon) and that found by a clustering
algorithm (red polygon) for the Colosseum. As shown, the Rol found only
partially matches the real one, which influences the values of precision and recall.

Figure 7: A comparison between real and found Rol for the Colosseum.

Shttps://www.openstreetmap.org
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In the following, we describe how the different techniques involved in the
comparison have been configured:

e For DBSCAN, a noise threshold has been used so that all the points with
a k-distance value higher than it are considered noise. Specifically, we
evaluated two configurations: (i) a fixed noise percentage (i.e., 20%), as
used in |Belcastro et al.| (2020); and (4¢) a noise percentage estimated by
using the L-Curve approach described in Section [1.2.1]

e DSets-DBSCAN is able to generate clusters of arbitrary shapes without
having to set any parameter input.

e Slope requires two parameters: the cell size and minimum support. After
several preliminary tests to find parameter values that perform effectively
in all the scenarios, the square cell side has been set to 55 meters and the
minimum cell support to 150.

e G-Rol requires as input parameter a threshold (i.e., a distance value
between 0 and 1), which has been set to 0.27.

o AUDESOME requires a threshold parameter, which has been set to 0.27.

It should be noted that only G-Rol and AUDESOME have been designed
to return a single cluster (Rol), while the other techniques can find more than
one cluster. When more clusters are found, the cluster containing the higher
number of points is chosen. Then, the Region-of-Interest is calculated as the
convex polygon that contains all the points of the chosen cluster.

Tableillustrates the performance (average values of precision, recall, and Fy
score) of the different techniques, calculated on all the Pols considered in Rome
and Paris. DBSCAN achieves acceptable results with the fixed noise threshold
(Fy score of 0.67), while using the L-Curve does not obtain accurate results (F;
from 0.11 to 0.26). Also DSets-DBSCAN does not bring accurate results, with a
Fy score ranging from 0.44 to 0.49. In fact, it produces a very high precision with
a low recall, which means that the Rols identified by the technique are too small
compared to the real ones. Slope obtains slightly better results, with a mean F}
score of about 0.60. G-Rol obtained good results in both Rome and Paris, with a
mean Fj score of 0.79 and 0.73 respectively. Finally, AUDESOME outperformed
all the other techniques by obtaining a Fj score of 0.79 in Rome and 0.75 in
Paris. Thus, our method achieved an overall improvement of the F; score up to
0.64 (i.e., in comparison to DBSCAN with L-Curve). These results clearly show
that our algorithm is able to define Rols with different shapes and sizes with
great precision, obtaining better results than that of existing techniques.

5.1.3. Trajectory mining

We have experimentally evaluated the performance of AUDESOME in the ex-
traction of user trajectories. In particular, the user’s trajectories are transformed
from sequences of coordinates into sequences of Rols. For this reason, the quality
of the Rols influences the quality of the trajectories obtained. In our evaluation,
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Table 3: Comparison of Rol detection algorithms.

Algorithm Rome Paris

Precp  Recp Fir Precp  Recp Figr
DBSCAN (fixed noise perc.) 0.72 0.63 0.67 0.69 0.66 0.67

DBSCAN with L-Curve 0.15 1.00 0.26 0.06 1.00 0.11
DSets-DBSCAN 0.93 0.29 0.44 0.90 0.34 0.49
Slope 0.69 0.56 0.62 0.59 0.62 0.60
G-Rol 0.78 0.82 0.79 0.81 0.66 0.73
AUDESOME 0.75 0.84 0.79 0.72 0.79 0.75

we compared the results obtained using the real Rols with those obtained through
the use of Rol detection algorithms. Specifically, the performance evaluation has
been carried out on all the trajectories generated by users.

Let S = {s1,$2,...} be a set of sequences of geographical points, where
s; = ((lat1,Ing1), (lata, Ings), ...) describes the movements of a user in a certain
time interval (e.g., in one day). Given a set of Rols R, each sequence s, € S
can be converted into a sequence of Rols t; = (r1, 72, ...). In particular, a point
p; = (lat;,Ing;) is assigned to a Rol r; if p; falls into the area of ;. Otherwise,
if p; does not fall into the area of any Rol, it is not assigned to any Rol.

Then, given a sequence s € S, let T¢q;(s) be the trajectory obtained with the
real Rols, and Tfmmd(s) the trajectory obtained with the Rols extracted by a
Rol detection algorithm. The precision Precy and recall Recy of the trajectory
mining process are then defined as:

1 ‘Treal(s) N Tfound($)|
Precr = — (5)
|S| ZSGS |Tfound(8)|
1 ‘Treal(s) N Tfound(5)|
Recr = —; 6
g S| ZSGS |Tear(s)| 0

The intersection Treqi($) N Tound(s) represents the Pols that the two trajec-
tories have in common.

Figure [§] shows an example of how both precision and recall are calculated.
Given a set of real Rols (circles in blue) and a set of computed Rols (circles in red)
for the Pols {A, B,C, D}, the figure illustrates three sequences {s1, s2, s3} that
describe the movements of different users across such Rols. In particular, s; is
converted into the trajectory A — B — D only using the real Rols and in A — B
using the found Rols. The sequence s5 is converted into A — B — C' — D using
the real Rols and A — B — D using the found Rols. Finally, the sequence s3
is converted into A — B using the real Rols and A — B — C using the found
RolIs. Then, in this example, the precision is 0.89 and the recall is 0.80.

Table [4| reports the performance of the different techniques during the tra-
jectory mining step. The results confirm that AUDESOME outperformed the
other techniques by reaching a mean Fj score of 0.85 in Rome and 0.87 in Paris.
For this step, our method turns out to be the most accurate one in finding
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Figure 8: Example of trajectories that have been obtained using real and calculated Rols.

trajectories, achieving an overall improvement of the Fj score up to 0.52 (i.e., in
comparison to DBSCAN with L-Curve).

Table 4: Comparison of trajectory mining algorithms.

Algorithm Rome Paris

Precr  Recr Fip Precy  Recr  Fir
Traj. + DBSCAN 0.81 0.83 0.82 0.81 0.82 0.82
Traj. + DBSCAN with L-Curve  0.59 0.61 0.60 0.35 0.35 0.35
Traj. + DSets-DBSCAN 0.49 0.43 0.46 0.71 0.67 0.69
Traj. + Slope 0.69 0.67 0.68 0.78 0.76 0.77
Traj. + G-Rol 0.82 0.84 0.83 0.85 0.84 0.84
Traj. + AUDESOME 0.84 0.86 0.85 0.87 0.88 0.87

5.2. Execution time

We evaluated the total execution time and scalability of our method by
carrying out several experiments on a private Cloud. In particular, we used a
cluster with Apache Spark, equipped with 64 CPU cores and 100 GB of memory.
The goal is to assess the scalability of AUDESOME by varying both the number
of CPU cores (from 8 to 64) and dataset size.

Starting from D, a dataset containing 1.2 million Flickr posts published in
Rome and stored in a file of 1.5G B, we applied a random sampling algorithm to
produce four additional datasets Dy, D4, Dg and Dg. In particular, D; contains
i*1.2 million posts and it is stored in a file of i*1.5GB.

Figure [9] shows the execution times of the AUDESOME’s workflow obtained
using different configurations of datasets and number of CPU cores. To better
understand the contribution of each workflow’s step to the overall performance,
the breakdown of the execution time is reported.

As shown, the execution time of each step (keyword extraction, Rol detection,
trajectory mining) grows almost linearly with the dataset size. In particular,
the keyword extraction is the dominant step that most influences the overall
execution time, which takes on average half the overall time. However, increasing
the number of cores leads to a significant reduction in overall execution times,
which demonstrates the scalability of our method. In particular, increasing from
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Figure 9: Execution time vs number of cores.

8 to 64 cores, the overall execution time decreases from 10 minutes to 2.5 minutes
for the smallest dataset (D;), from 16.4 to 5.5 minutes for D, from 28 to 11
minutes for Dy, from 39 to 20 minutes for Dg. For the largest dataset (Dg), the
total execution time decreases from 50 to 27 minutes. It can be noticed that
the Rol detection and trajectory mining steps are the parts whose algorithms
(implemented in Apache Spark) turn out to be more optimized and scalable,
which lead to the greatest time savings. In conclusion, the experimental results
demonstrated the effectiveness of our method, in terms of both quality of results
and scalability.

6. Conclusion

The widespread use of social media can be exploited to extract useful informa-
tion concerning people’s behaviors and interactions. In this paper, we presented
AUDESOME (A Utomatic Detection of user trajEctories from SOcial MEdia), an
automatic method for discovering user mobility patterns from social media posts.
In particular, the method includes two new unsupervised algorithms: (¢) a text
mining algorithm, which analyzes social media posts to automatically extract
the main keywords identifying the Places-of-Interest (Pol) in a given area; and
(#4) a clustering algorithm, which detects the Regions-of-Interest (Rols) by using
geotagged posts and extracted keywords.

We experimentally evaluated the performance and scalability of AUDESOME
using more than 3 million of geotagged items published in Flickr from January
2006 to May 2020 in the cities of Rome and Paris. The experiments demonstrated
that AUDESOME achieves better results than existing techniques. Our method
has been compared to the most relevant techniques used in the literature, by
achieving an improvement of the F; score up to 0.26 in keyword extraction, 0.64
in Rol detection, and 0.52 in trajectory mining.

This study can provide an important contribution in the fields of automatic
Rol and trajectory mining, especially when the areas of interest are not known
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a priori or when they change over time (e.g., periodic or seasonable Rols). Since
such a method is designed to deal with social media data, it can enable to
discover previously unknown places of interest, routes, and mobility patterns of
users, which have a great value for many business sectors, such as transportation
and tourism. For example: tourism agencies and municipalities can discover the
most visited tourist attractions and routes; transport operators can discover the
places and routes where it is more likely to serve passengers and crowded areas
where more transport facilities need to be allocated.

Our technique is primarily designed to identify Rols within urban areas. To
properly work, it requires large amounts of textual and geotagged data, which
are often difficult to obtain due to low use of some social media platforms in some
areas of the world, or to imposed restrictions in data acquisition. Furthermore,
since data collected from social media platforms could be unreliable, it is necessary
to validate the results before applying them in decision-making processes. In
particular, the statistical significance of the collected data should be demonstrated
to evaluate the representativeness of them in the considered application context.

Future research efforts will be devoted to improving the Rol detection algo-
rithm by involving other semantics in the clustering process, such as textual and
image similarity. In such a way, it could be possible to () identify hidden Rols
that are not detected by spatial clustering based on geographical proximity; and
to (i4) involve in the analysis social media items that are not geotagged, but
which still contain information to extract useful knowledge on user behaviors.

Data and code availability statement

The data that support the findings of this study are publicly available.
In particular, this data was gathered using Flickr APIs available at https:
//www.flickr.com/services/api/l For the purpose of using the code of our
method, an open-source version of AUDESOME is available at https://github|
com/SCAlabUnical/AUDESOME along with a small sample of Flickr posts and
instructions for running tests.
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