
Date of publication March 2021.

A data-aware scheduling strategy for
executing large-scale distributed
workflows
SALVATORE GIAMPÀ1, LORIS BELCASTRO1, FABRIZIO MAROZZO1,2, DOMENICO TALIA1,2

and PAOLO TRUNFIO1,2
1DIMES - University of Calabria, Rende, Italy
2DtoK Lab Srl, Rende, Italy

Corresponding author: F. Marozzo (e-mail: fmarozzo@dimes.unical.it).

ABSTRACT Task scheduling is a crucial key component for the efficient execution of data-intensive
applications on distributed environments, by which many machines must be coordinated to reduce
execution times and bandwidth consumption. This paper presents ADAGE, a data-aware scheduler
designed to efficiently execute data-intensive workflows in large-scale computers. The proposed
scheduler is based on three key features: i) critical path analysis, for discovering the critical tasks of a
workflow and reducing data transferring between nodes; ii) work giving, a new dynamic planning
strategy for migrating tasks from overloaded to unloaded nodes; and iii) task replication, which
executes task replicas on different nodes for improving both execution time and fault tolerance.
Experiments performed on a distributed computing environment composed of up to 1,024 processing
nodes show that ADAGE achieves better performances than existing scheduling systems, obtaining an
average reduction of up to 66% in execution time.

INDEX TERMS Data-aware scheduler, workflow scheduling, distributed workflows, parallel program-
ming, distributed computing, exascale computing

machines operating in parallel [3].

The problem of coordinating many machines in a complex
distributed system is widely represented as a task scheduling
problem. Task scheduling has long been recognized as a
NP-Hard problem, which represents a major challenge for
researchers, especially if the scheduling is performed dynam-
ically and in real time (as required by modern systems). The
scheduling aims at identifying the most suitable resources
for executing the workloads on time and optimizing resource
utilization. In particular, it must also allow for many tasks to
run simultaneously and for the exchange of large amounts of
data. This paper presents ADAGE (A Data-aware scheduler
based on criticAl path, work assiGnment, and rEplication),
a data-aware scheduler designed to efficiently execute data-
intensive workflows in a large-scale computer network. The
proposed scheduler is based on three key features: i) critical
path analysis, for discovering the critical tasks of a work-
flow and reducing data transferring between nodes; ii) work
giving, a new dynamic planning strategy for migrating tasks
from overloaded to unloaded nodes; and iii) task replication,

I. INTRODUCTION

The term Exascale refers to the capabilities of future comput-
ing systems, still to be implemented, which should be capable
of calculating at least one exaFLOPS (i.e., 1018 FLOPS),
far exceeding the most advanced existing computing systems
(about 1015 FLOPS). To reach the Exascale size, other than
new hardware solutions, it is required to define n ew pro-
gramming models, languages and algorithms that combine
abstraction with both scalability and performance [1]. Hybrid
models (based on shared/distributed memory) and commu-
nication mechanisms based on data locality and grouping
are currently investigated as promising approaches. Parallel
applications running on Exascale systems will require to
control a high number of tasks running on a very large set
of computing resources [2]. Such applications will need to
avoid or limit synchronization, use less communication and
remote memory, and handle software and hardware faults that
can occur. In order to achieve such computational speeds,
more and more novel solutions are being proposed with the
aim of harnessing the computational power of a large set of

1

which executes task replicas on different nodes for improving
both execution times and fault tolerance.

ADAGE is composed of the following components: i)
Decision Maker (DM), which runs on each node and assigns
the tasks to the current node or remote nodes; ii) Local Ready
Queue (LRQ), which contains the tasks that are ready to be
executed, sorted by execution priority; iii) Load Balancer
(LB), which moves tasks from the LRQ to the least loaded
neighboring nodes whenever the current node is overloaded;
and iv) Validator, which checks and updates the status of the
tasks in LRQ. These components work together to effectively
execute the submitted workflow, which is composed of many
tasks with dependencies, on a pool of computing nodes in a
distributed platform.

To evaluate our strategy, we carried out several exper-
iments on different workflows by varying both the num-
ber of tasks and computing nodes. In our evaluations, we
compared the designed scheduling strategy with two state-
of-the-art systems, i.e., Matrix [4] and Albatross [5]. In
particular, five existing workflows (i.e., CyberShake, Epige-
nomics, Inspiral, Montage, Sipht), which can generate up
to 10,000 tasks, were evaluated. Experiments performed on
a HPC distributed system composed of 1,024 computing
nodes show that ADAGE achieves better performance than
existing scheduling systems, obtaining an average reduction
of up to 66% in execution time. For the purpose of using the
code of our scheduler and allowing the reproducibility of the
experiments, an open-source version of ADAGE is available
at https://github.com/SCAlabUnical/ADAGE.

Compared to existing techniques, our scheduler includes
the following innovative aspects: i) it combines both static
and dynamic planning strategies for reducing execution time
of data-intensive workflows; ii) it exploits a novel algorithm
for moving tasks from overloaded to unloaded nodes at run-
time; iii) it takes advantage of task replication on different
nodes to improve both execution times and fault tolerance.

The remainder of the paper is organized as follows. Sec-
tion II discusses related work. Section III describes the pro-
posed scheduling strategy. Section IV shows the experimen-
tal results and Section V concludes the paper.

II. RELATED WORK
With the increasing popularity of data-intensive workflows,
several research projects have been carried out to define data-
aware scheduling algorithms [6] [7] [8] aiming at improving
scalability, energy efficiency and execution performance. In
particular, due the imminent implementation of Exascale sys-
tems, task scheduling for massively parallel applications has
become an important and strategic research area [3]. In par-
ticular, several algorithms and systems have been proposed to
cope with the needs of large scale data-intensive applications,
exploiting both static and dynamic scheduling [9] [10] [11].

Kosar et al. [12] proposed a data scheduler, namely Stork,
that allows for planning data allocation and data transfer
among computing nodes in a network. In particular, Stork
uses the ClassAd [17] language to represent data manage-

ment tasks, while computational workflows are executed
using both Pegasus [18] for data-aware planning and HTCon-
dor DAGMan [19] for managing task dependencies. Stork
exposes four main data scheduling strategies: first fit, largest
fit, smallest fit and best fit. The first three strategies are
heuristics, while the fourth one is an exact algorithm that
discovers the best data allocation using a greedy approach.

Wei et al. [13] proposed a data-aware scheduling strategy
obtained as the combination of two existing systems: LSF
(Load Sharing Facility) [20] and GFarm [21]. LSF is a
job scheduler expressively designed for HPC systems that
exposes a set of scheduling tools for managing global work-
loads and resources. GFarm is a distributed file system that
is designed for data sharing in large clusters. The proposed
strategy exploits data location information retrieved from
GFarm for evaluating data affinity of tasks and automatically
transfer data among nodes.

Acevedo et al. [14] proposed a data-aware scheduling al-
gorithm based on a variant of the critical path algorithm [22],
named Critical Path File Location (CPFL). The algorithm
is designed to schedule workflow tasks by declaring inter-
task and data dependencies. It also allows to execute an
application composed of multiple workflows by merging
them in a single meta-workflow. The scheduler exploits a pre-
scheduling stage to establish where data should be allocated.
Then, the critical path algorithm is used to assign a priority
value to each task of the meta-workflow. Subsequently, the
scheduler manages each task using priority and assigns it to
a computing node based on its data dependencies.

Marozzo et al. [15] proposed a composition of two sys-
tems, the Data Mining Cloud Framework (DMCF) [23] and
Hercules [24], to obtain a data-aware workflow scheduling
for Cloud environments. DMCF allows to process and sched-
ule workflow tasks, while Hercules manages temporary files
generated during computation. The scheduling strategy is
inspired by the one proposed in [25], but it uses a new local
queue on the executor node, called locallyActivatedTask, to
obtain data-awareness. For each node, the scheduler selects
the best task to run, choosing it from the global or local task
queue. In particular, the scheduler tries to execute the task
whose dependencies have been resolved and for which the
current node is the best concerning data allocation.

MATRIX (MAny-Task computing execution fabRIc at eX-
ascale) [16] is a system that implements a data-aware
scheduling strategy based on work stealing [26]. It ex-
tends the classical work stealing strategy to support data-
awareness by maintaining information about data dependen-
cies of scheduled tasks. The system consists of three entities:
client, scheduler and executor. The network nodes are fully
connected, which means that they can communicate each
other. On each node, three basic components run: execu-
tor, scheduler, and ZHT (Zero-hop distributed HashTable)
server [27]. In particular, the last component allows to im-
plement a shared DKVS (Distributed Key-Value Store) that
stores information about tasks, including data dependencies
and data locality. MATRIX exploits three local queues to

2

https://github.com/SCAlabUnical/ADAGE

Reference
Metadata

Management
System

Storage
system Language Scheduler

features
Evaluated

metrics

Kosar et al. [12] HTCondor
DAGMan Pegasus Go Stork

HTCondor-G Transfer speed

Wei et al. [13] LSF GFarm C\C++ LSF plugin -

Acevedo et al. [14] DHT Distributed/Local
filesystem Java CPFL Execution time

DMCF [15] Microsoft Azure Hercules
Microsoft Azure

Javascript
VL4Cloud

In-memory
temporary file

I/O operations,
Execution time

MATRIX [16] ZHT ZHT C\C++ Work Stealing Throughput

Albatross [5] ZHT HDFS C\C++ Late Binding Latency,
Throughput

ADAGE DHT Distributed/Local
file system Java

Critical Path
Work Giving
Backup tasks

Execution time
Throughput

TABLE 1: Comparison with main related systems.

manage tasks, which contain respectively: tasks that are not
ready to run; strictly data-dependent tasks that read much
data from well-defined nodes; and not strictly data-dependent
tasks that read some temporary data.

Albatross [5] is a system that improves some features
of MATRIX. For example, it enhances fault tolerance by
replacing the local queue containing not ready tasks with
Fabriq [28]. Fabriq is a distributed message queue (DMQ)
that runs on top of a distributed hash table, which prevents
losing tasks when a node fails. Albatross assign tasks to
nodes by using a late-binding technique. Specifically: i)
when a task becomes ready (i.e., all its dependencies are
solved), the load balancer pulls it from the DMQ and tries
to send it to the best node according to data locality; ii) if
the remote node is overloaded or data are local, the task is
assigned to the local queue of the current node; iii) when
the task is pulled from a local queue, the load balancer tries
again to send it to the best node and, if the assignment is not
possible, the task is executed on the current node.

Table 1 shows a comparison among the referred re-
lated works. For each work, the table reports the meta-
data management and storage systems, implementation lan-
guage, features of the scheduler, and performance metrics
that have been evaluated. Differently from existing tech-
niques, ADAGE combines both static and dynamic planning
strategies for improving the execution performances of data-
intensive workflows. In particular, a static planning strategy,
based on the critical path algorithm, is used to optimally
assign tasks to the nodes during the workflow submission.
Then, a novel dynamic strategy, named work-giving, is used
by overloaded nodes for assigning tasks to other nodes.
Furthermore, ADAGE exploits task replication on different
nodes to improve both execution times and fault tolerance.

III. PROPOSED SCHEDULER

goal, ADAGE combines both static and dynamic planning
strategies.

The static planning strategy is based on the critical path
algorithm [22], which permits to find the critical tasks of a
workflow, i.e. tasks that cannot be delayed without delay-
ing the execution of the entire workflow. Starting from the
knowledge of the critical path, our strategy minimizes data
movement and memory latency by executing a task on the
node that holds the largest amount of input data.

A dynamic planning strategy is used for assigning tasks
to computing nodes at runtime. We designed a new dynamic
planning strategy, called work-giving, which is used for mi-
grating tasks from overloaded to unloaded nodes. Specifi-
cally, if a node is overloaded, it tries to send some of its
tasks to unloaded nodes in its neighborhood. Such behavior
differs from the work-stealing approach, in which an entity
runs on the unloaded nodes and, during the computation,
searches and steals tasks from the overloaded ones. It should
be noted that the stealing process is activated many times
and in many nodes. This behavior can limit the scalability in
large-scale computing systems (such as Exascale computers),
where the unloaded nodes are usually much more than the
overloaded ones. Additionally, each unloaded node competes
with the others to steal tasks, which can lead to a highly
random distribution of tasks in the system. Differently, the
work-giving strategy is executed on a much smaller number
of nodes, which improves the system scalability. In addition,
this approach limits the random distribution of the tasks by
allowing an overloaded node to assign tasks to a limited
number of nodes in its neighborhood.

For increasing the application reliability and finishing
computation faster, ADAGE exploits task replication to exe-
cute speculative copies of tasks on different nodes. As stated
in [29], the use of task replicas (also called backup tasks) is
essential to significantly reduce the completion time of large
workflow applications. In fact, some computing nodes may
take an unusually long time to complete some tasks (e.g.,
due to overhead or hardware/software issues), negatively

ADAGE is a new data-aware scheduler that exploits data
locality to reduce data movement among nodes and improve
the execution time of data-intensive workflows. To reach this

3

affecting the completion time of the entire application. This
mechanism marks a task as completed when the primary or a
replica execution ends.

More details on the architecture, metadata and algorithms
exploited by ADAGE are provided in the following sections.

A. ARCHITECTURE
The software structure of ADAGE consists of the following
macro-components:
• Client: given a workflow composed of several tasks, it

executes the critical path algorithm to pre-assign the
tasks to the nodes and calculates the priority for each
of them.

• Distributed Hash Table (DHT): it stores all the neces-
sary information about tasks, such as the running state,
parent tasks, and actual number of replicas.

• Distributed Message Queue (DMQ): it stores the iden-
tifiers of tasks waiting to be executed by a processing
node.

• Scheduler: it executes a dynamic scheduling strategy,
named work-giving, which is discussed in Section III.

An instance of the scheduler runs on each node of the
system. Specifically, such a scheduler instance is composed
of the following components:
• Decision Maker (DM): it statically assigns tasks to the

current node or remote nodes.
• Local Ready Queue (LRQ): it contains the ready tasks,

which are tasks whose dependencies are solved; such
tasks are sorted by the execution priority calculated with
the critical path algorithm.

• Load Balancer (LB): when the current node is over-
loaded, the LB selects and sends some tasks from the
LRQ to less loaded neighbor nodes.

• Validator: it checks the completion of tasks in the LRQ;
if a task is completed, the Validator removes it from the
queue; otherwise, if the task execution is still pending,
the heartbeat is updated and stored in the DHT.

Figure 1 shows the block diagram and execution flow of
the scheduling system. Each node can dispose of one or more
Executors, which pull ready tasks from the LRQ. If the LRQ
is empty, the execution of the Decision Maker is triggered.

As shown in Figure 1, the client starts storing task meta-
data in the DHT (1) and tasks in the DMQ (2) (also specifying
the preferred execution node for each of them). In particular,
the client executes the critical path algorithm to find an
optimal planning solution for assigning the tasks to nodes.
On each node, an instance of the Decision Maker (DM) takes
one or more tasks from the DMQ (3) and decides on which
node they have to be executed. Specifically, if a task has been
assigned by the client to the current node, it is put in the Local
Ready Queue (LRQ) (4); otherwise, such a task is sent to
another node, which is chosen based on data locality (5), and
inserted in the LRQ (6).

The Executors get the tasks with the highest priorities from
the LRQ (7) for running them, while the Load Balancer (LB)

gets those with the lowest priorities (8). In the latter case,
the tasks are replicated and sent to some neighbor nodes that
are less charged than the current one (9). In particular, each
replicated task is inserted in the LRQ of the chosen neighbor
node (10). The maximum number of replicas for a task is
specified by the client during the workflow submission and
stored in the DHT.

Only the tasks that are assigned to the current node can be
replicated by the LB. In fact, as shown in Figure 1, the LRQ
is logically split in two parts so as to distinguish between
the tasks that have been assigned to the current node and
replicas that have been received from neighbors. More details
about the different components of the scheduling system are
provided in the following subsections.

B. TASK METADATA AND STATES

Table 2 reports the main metadata of a task. In particular, the
field state represents the current state of the task, which can
take one of the values reported in Table 3.

TABLE 2: The task metadata stored in the DHT.

Metadata Description
ID Task identifier

state
[waiting, ready, stage-in, running, failed,
stage-out, complete]

heart-beat
timestamp of last heartbeat from the nodes
having the task

children set of children tasks
parents number of parents the task is waiting for
in-list names of input files the task reads
out-list names of output files produced by the task
node-list list of nodes having the task

num-backup
maximum number of backup nodes, given
by the client

state-history
timestamps of task state changes
(e.g., [{ts1:waiting},{ts2:ready},...])

TABLE 3: The possible states of a task.

State Description
waiting the task is waiting termination of parent tasks

ready
the task is ready to execute, because its
parents are complete

stage-in
the task is ready to run, but it is waiting
availability of input data

running the task is running
failed the task failed for some reason

stage-out
the task is complete, its output data are
being written in the storage

complete
the task is complete, its output data are
available from the storage

4

Scheduler

9

10

8

7

4

5

3

21

from remote node

client

to remote node

tasks from neighbours

node tasks

Validator

Executor
#N

DHT DMQ

LP task with lowest priority task with highest priorityHP

from neighbour

to neighbour

Executor
#1

Decision
Maker

Load
Balancer

LP

HP

Local Ready Queue

6

queries

queries &
heart beats

task
replication

FIGURE 1: Scheduler block diagram and execution flow.

1 node: the current node the Executor is running on
2 nodeSet: the set of all nodes in the system
3 executorInterval: time to await between task pulling

↪→ attempts
4

5 function Executor(node, nodeSet, executorInterval):
6 repeat:
7 if LRQ is empty:
8 invoke DecisionMaker(nodeSet)
9 end if

10

11 if LRQ is not empty:
12 task := get the next non-finished task from LRQ
13 run the task to its completion
14 set the "state" field of task to "complete"
15 add a new timestamp for the "complete" state to

↪→ the "state-history" field of task
16 foreach child in "children" field of task:
17 decrease the "parent" field of child
18 end foreach
19 else
20 await executorInterval
21 end if
22 until not interrupted
23 end function
24

Listing 1: Pseudo-code of the Executor component. It invokes
the Decision Maker when no tasks are present in the Local
Ready Queue.

After executing a task, the Executor updates metadata of
the task and its children. In particular:
• the state field is set to complete;
• a new timestamp for the complete state is added to the

state-history field;
• for each child in the children field, the parents field is

decreased.
The Decision Maker performs an initial distribution of

tasks to nodes based on data locality. In particular, it performs
the following steps:

1) It checks the DMQ looking for non-finished tasks that
have been assigned to the current node and whose

Figure 2 shows the state diagram describing the life cycle
of a task. When it is submitted by the client, a task is in the
waiting state, which means the task is waiting for termination
of some parent task. The field parents contains the number of
parents the task is waiting for. Such a number is decreased
every time a parent task terminates.

The task switches to the ready state when all its parents
have been completed successfully. In such a state, the node
can start preparing the task for execution, getting the needed
data. When this happens, the task goes in the stage-in state.
Once the stage-in process is completed, the task is executed,
passing in the running state. If the task fails its execution
due to a self-generated error (e.g., a programming error or
an unhandled exception), it goes in the failed state and all its
children fail in cascade. Alternatively, if the task successfully
completes its execution, the scheduler starts to write the
output data in the storage and the task is switched in the
stage-out state. Finally, the task goes in the complete state
when the output data have been fully stored.

C. DECISION MAKER AND EXECUTOR

When an Executor terminates its current work, it selects
another task from the LRQ. If the queue is empty, it activates
the Decision Maker (DM), which starts to load new tasks
from the DMQ to the LRQ. Then, the Executor tries again to
get a task from the LRQ and, if found, executes it; otherwise
it activates the DM again. However, to limit the network
overload due to subsequent calls to the DMQ, the Executor
awaits a short time before activating the DM again. Listing 1
shows the pseudo-code of the Executor component.

5

completefailed

stage-outrunningstage-inreadywaiting

on node failure

on node failure

on node failure

FIGURE 2: State diagram describing the life-cycle of a task.

heartbeats are not up-to-date. If some tasks are found,
the DM inserts them in the LRQ and terminates its
execution; otherwise, it proceeds to the second phase.

2) It scans the DMQ again looking for non-finished tasks
that are not assigned to the current node and whose
heartbeats are not up-to-date (i.e., the tasks that have
been pulled from the DMQ but whose assignee node
failed). If the DM gets any tasks matching such criteria,
it decides where to send them. Specifically, if a task
is assigned to the current node, it is inserted in the
LRQ; otherwise, such a task is sent to another node
in the system, which is optimally chosen based on data
locality.

The DM aims at improving the fault tolerance of the
system when the pre-assignment of tasks (made by the client)
is no longer feasible (e.g., because some assignee node is
failed or unreachable). Listing 2 shows the pseudo-code of
the DM.

1 nodeSet: the set of all nodes in the system
2

3 function DecisionMaker(nodeSet):
4 taskFound := false
5 foreach task in DMQ do:
6 if task is not finished and task is not in waiting

↪→ state and task is preassigned to this node and
↪→ the last heartbeat of the task is too old then:

7 update the heartbeat of the task
8 insert task in the LRQ
9 taskFound := true

10 end if
11 end foreach
12 if taskFound is false then:
13 foreach task in DMQ do:
14 if task is not finished and task is not in waiting

↪→ state and task is not preassigned to this node
↪→ and the last the heartbeat of task is too old
↪→ then:

15 pre_node := the node to which the task has been
↪→ preassigned

16 if pre_node is not null and pre_node is online
↪→ then:

17 update heartbeat of the task
18 insert task in the LRQ of pre_node
19 else:
20 best_node := GetBestNode(task, nodeSet)
21 update heartbeat of the task
22 insert task in the LRQ of best_node
23 end if
24 end if
25 end foreach
26 end if
27 end function

Listing 2: Pseudo-code of the Decision Maker.

In particular, when a task cannot be executed by the
assignee node, the DM sends it to another node for execution.
The new assignee node is chosen using a heuristic that takes
into account the location of the input data used by the task.
Listing 3 shows the pseudo-code of the procedure used to
find the best node for executing a task according to its input
data locality. Similarly to what was proposed by Acevedo
et al. [14], such a procedure aims at minimizing the total
transfer time of all input data. In particular, the transfer
time of a file is calculated as the ratio between file size and
bandwidth of the node. Given a node, the total transfer time is
calculated by considering all the input files, required by the
task, that are owned by the node itself. Then, the node that
grants the smallest total transfer time is chosen.

The time complexity of the Decision Maker function is
O(t * n), where t is the number of submitted tasks and n is
the number of nodes in the computer network.

1 task: the task to search the best node for
2 nodeSet: the set of all nodes in the system
3

4 function GetBestNode(task, nodeSet)
5 best-node := null
6 best-data-transfer-time := 0
7 foreach node in nodeSet do:
8 if not task is already assigned to node then:
9 data-transfer-time := 0;

10 foreach file read by task do:
11 file-nodes := get all the nodes that contains a

↪→ replica of the file
12 if node is in file-nodes then:
13 data-transfer-time := data-transfer-time + (

↪→ size of file)/(bandwith of node)
14 end if
15 end foreach
16

17 if best-node is null or data-transfer-time < best-
↪→ data-transfer-time then:

18 best-data-transfer-time := data-transfer-time
19 best-node := node
20 end if
21 end if
22 end foreach
23 return best-node
24 end function

Listing 3: Pseudo-code of the procedure used to find the best
node for executing a task.

D. LOAD BALANCER
The Load Balancer (LB) is a periodic thread that monitors
the workload of all nodes in the neighborhood in order to
efficiently distribute tasks among them.

6

Listing 4 shows the pseudo-code of the LB component.
In particular, after setting an initial waiting time lbTime, the
LB gets the list of neighbor nodes, which can be retrieved by
using a static or a dynamic approach. According to the static
approach, the neighborhood does not change over time, while
using the dynamic one it can be calculated many times. For
example, MATRIX [4] uses a dynamic selection strategy that
randomly chooses a number of neighbor nodes equal to the
square root of the total number of nodes. Then, if the local
node is the most overloaded one in the neighborhood, the
LB sends half of the tasks to the less overloaded neighbor
node. However, such operation can fail if: i) the local node
is not the most overloaded one in the neighborhood; ii) a
communication error happens; iii) the LRQ is empty. In such
cases, lbTime is doubled and the LB performs a new attempt
after sleeping for that time. To avoid too long waits, lbTime
is doubled until it reaches a maximum allowed value. On
the other hand, if the tasks are sent successfully, the waiting
time is reset to the initial value (e.g., 1 millisecond). Before
sending tasks to a neighbor, the LB replicates them and
maintains the original copies in the LRQ. In such a way, the
different replicas of a task compete each other to be executed
first. The first replica that completes its execution determines
the end of the task and, consequently, causes the termination
of all other running replicas.

1 node: the local machine
2 maxTime: the maximum waiting time
3

4 function LoadBalancer(node, maxTime):
5 lbTime := 1
6 repeat:
7 success := false
8 neighbourhood := get neighborhood of this node
9 if node is the most overloaded one in neighborhood

↪→ then:
10 neighbour := get the less overloaded node in the

↪→ neighborhood
11 tasks := select half of the tasks assigned to this

↪→ node from the LRQ
12 if tasks is not empty then:
13 insert the replicas of all tasks in the LRQ of

↪→ the neighbor
14 lbTime := 1;
15 success := true
16 end if
17 end if
18 if not success and lbTime < maxTime:
19 double lbTime (lbTime := lbTime * 2)
20 end if
21 await lbTime
22 until not interrupted
23 end function

Listing 4: Pseudo-code of the Load Balancer.

As it can be observed from Listing 4, the time complexity
of the Load Balancer function is O(t + n), where t is the
number of submitted tasks and n is the number of nodes in
the network.

E. VALIDATOR

idator, monitors the LRQ looking for tasks that completed
their execution. If any are found, the local replicas of such
tasks are removed and not executed again. This operation can
be accomplished by querying the DHT, which stores all the
needed information about the tasks that are currently running
in the system. The Validator also updates the heartbeats
of both the tasks in the LRQ and those that are currently
running. Listing 5 shows the pseudo-code of the Validator
component.

1 runningTasks: the tasks currently running on this node
2 validationInterval: interval of time between two

↪→ activations of the Validator
3

4 function Validator(validationInterval):
5 repeat:
6 foreach task in runningTasks do:
7 update heartbeat of task
8 end foreach
9 foreach task in LRQ do:

10 if task is finished then:
11 remove task from LRQ
12 else:
13 update heartbeat of task
14 end if
15 end foreach
16 await validationInterval
17 until not interrupted
18 end function

Listing 5: Pseudo-code of the Validator.

On the single node, the Validator function has a time
complexity that is linear in the number of tasks in the LRQ.
Considering all the nodes, the total time complexity results
to be O(t), where t is the number of submitted tasks.

IV. CASE STUDIES AND EXPERIMENTS
We experimentally evaluated the performance of our schedul-
ing strategy using WorkflowSim [30], a widely used toolkit
for running distributed workflows, which allows to consider
many aspects of the system, such as machine bandwidth, stor-
age types (e.g., RAM, local disk or distributed file systems),
hardware specifics (e.g., number of cores and clock speed)
and power consumption. Each computing node in our tests
has been configured with 4 CPU cores at 2,000 MIPS, 8 GB
of RAM, 1 Gbps of bandwidth, and 1 TB of storage.

In our experiments, we used five existing workflows that
are defined in [31]: CyberShake, Epigenomics, Inspiral, Mon-
tage, Sipht. To assess the effectiveness of our scheduling
strategy, we compared it with two related systems: MA-
TRIX [4] and Albatross [5]. In particular, we evaluated the
execution time by varying both the number of nodes and
tasks, the throughput as the number of completed tasks per
second, and the distribution of the completed tasks over the
execution time.

A. EXPERIMENT RESULTS

Figure 3 reports the elapsed execution time of the differ-
ent scheduling systems when executing the five different
workflows by varying the number of nodes from 1 to 1,024
(i.e., up to 4,096 cores). Specifically, each workflow has

As explained in Section III-D, the Load Balancer can repli-
cate the tasks on the neighborhood of the current node. In
particular a replica of a task is inserted in the LRQ of a
neighbor node. An additional component, namely the Val-

7

been configured to spawn 1,000 tasks. Each test has been
configured with the following parameters:

• number of replicas for each task: 2;
• heartbeat expiration period: 125 s;
• period between two subsequent activations of the Val-

idator: 62.5s (i.e., half of the heartbeat expiration pe-
riod).

As shown in Figure 3(a), for the Sipht application, our
strategy results to be on average 21% and 13% faster than
Albatross and MATRIX respectively. For other applications,
the reduction of execution time ranges from 15% to 30%
for Epigenomics (Figure 3(b)), from 20% to 31% for Inspi-
ral (Figure 3(c)), from 18% to 66% for CyberShake (Fig-
ure 3(d)), and from 1% to 23% for Montage (Figure 3(e)).

Since our scheduler was designed to support Exascale
applications, which can be composed of tens of thousands
of tasks, we carried out additional experiments to evaluate
the execution times when the number of tasks is increased
up to 10,000. For the sake of brevity, we compared the
performance of the three systems using only the Montage
and CyberShake workflows. Figure 4 shows the execution
time obtained by increasing the number of tasks up to 10,000
on 1,024 computing nodes. In particular, as the number of
tasks increases, in both Figures 4(a) and 4(b) the execution
time of ADAGE grows slower than that of the other two
systems. This experiment demonstrates a greater ability of
our scheduler to manage large computational resources.

Figure 5 illustrates the throughput of the different schedul-
ing systems, which has been calculated as the number of
completed tasks per second. As shown, ADAGE achieves sig-
nificantly better results than the other systems. In particular,
as the number of available nodes increases, the throughput
of our scheduler considerably increases compared to that of
the two other strategies, which demonstrates how ADAGE
is particularly suitable for very large distributed computation
systems. By executing the CyberShake workflow with 1,024
compute nodes, ADAGE obtains a throughput that is 83%
and 1377% greater than that of Albatross and MATRIX re-
spectively (Figure 5(a)). In the Montage workflow case, using
1,024 nodes, the throughput of ADAGE is 11% and 50%
greater (Figure 5(b)) of Albatross and MATRIX respectively.

Figure 6 shows the distribution of the completed tasks over
the execution time. The plotted results show that ADAGE
achieves the peak of completed tasks much faster than the
other two systems. This figure reports how the execution time
of tasks is greatly reduced by using ADAGE, which means
that computational resources are released in a shorter time
with reference to the other two approaches.

Overall, the obtained results and the wide number of exper-
iments carried out on different workflows demonstrated how
the proposed scheduling strategy offers better performance
than other existing systems. This is especially true when
a very large number of nodes is used. This feature makes
the proposed algorithm particularly interesting for supporting
massive task execution in the upcoming Exascale systems.

V. CONCLUSION
In this paper we presented ADAGE, a new data-aware
scheduling strategy for large distributed computation en-
vironments, such as the upcoming Exascale systems. Dif-
ferently from existing techniques, ADAGE combines both
static and dynamic planning strategies for improving the
execution time of data-intensive workflows. I n p articular, it
is based on three key features: i) critical path analysis, for
discovering the critical tasks of a workflow and reducing data
transferring between nodes; ii) work giving, a new dynamic
planning strategy for migrating tasks from overloaded to
unloaded nodes; and iii) task replication, which executes
task replicas on different nodes for improving both execu-
tion times and fault tolerance. Experiments performed on a
distributed environment composed of up to 1,024 compute
nodes showed that ADAGE achieves better performances
than existing techniques, obtaining a reduction of up to 66%
in execution time. Moreover, as the number of available
nodes increases, ADAGE outperformed the other techniques
in terms of throughput, demonstrating that is particularly
suitable for very large distributed computing systems.

In future work, additional research issues will be inves-
tigated. In particular, since our scheduler supports different
workflows patterns (e.g., map-reduce, divide-and-conquer,
pipeline), we plan to investigate its usability in combination
with Apache Hadoop and Spark, which are widely used for
developing and executing general-purpose high performance
applications.

DATA AND CODE AVAILABILITY STATEMENT
For the purpose of using the code of our scheduler, an open-
source version of ADAGE is available at https://github.com/
SCAlabUnical/ADAGE along with some sample workflows
and instructions for running experiments.

ACKNOWLEDGMENT
This work has been supported by the ASPIDE Project funded
by the European Union’s Horizon 2020 Research and Inno-
vation Programme under grant agreement No 801091.

REFERENCES
[1] Georges Da Costa, Thomas Fahringer, Juan-Antonio Rico-Gallego, Ivan

Grasso, Atanas Hristov, Helen D. Karatza, Alexey Lastovetsky, Fab-
rizio Marozzo, Dana Petcu, Georgios L. Stavrinides, Domenico Talia,
Paolo Trunfio, and Hrachya Astsatryan. Exascale machines require new
programming paradigms and runtimes. Supercomputing Frontiers and
Innovations, 2(2):6–27, 2015.

[2] Loris Belcastro, Fabrizio Marozzo, and Domenico Talia. Programming
models and systems for big data analysis. International Journal of Parallel,
Emergent and Distributed Systems, 34:632–652, 2019.

[3] Domenico Talia, Paolo Trunfio, Fabrizio Marozzo, Loris Belcastro, Javier
Garcia Blas, David Del Rio, Philippe Couvee, Gael Goret, Lionel Vincent,
Alberto Fernandez-Pena, Daniel Martin de Blas, Mirko Nardi, Teresa

8

https://github.com/SCAlabUnical/ADAGE
https://github.com/SCAlabUnical/ADAGE

ADAGE
MATRIX
Albatross

E
xe

cu
tio

n
Ti

m
e

104

105

Compute Nodes
0 200 400 600 800 1000

(a) Sipht

ADAGE
MATRIX
Albatross

E
xe

cu
tio

n
Ti

m
e

104

105

106

Compute Nodes
0 200 400 600 800 1000

(b) Epigenomics

ADAGE
MATRIX
Albatross

E
xe

cu
tio

n
Ti

m
e

1000

104

105

Compute Nodes
0 200 400 600 800 1000

(c) Inspiral

ADAGE
MATRIX
Albatross

E
xe

cu
tio

n
Ti

m
e

100

1000

104

Compute Nodes
0 200 400 600 800 1000

(d) Cybershake

ADAGE
MATRIX
Albatross

E
xe

cu
tio

n
Ti

m
e

1000

200

500

2000

5000

Compute Nodes
0 200 400 600 800 1000

(e) Montage

FIGURE 3: Comparison of the execution times by varying the number of compute nodes (five workflows and 1,000 tasks).

CyberShake - 1024 nodes

ADAGE
MATRIX
Albatross

E
xe

cu
tio

n
Ti

m
e

100

1000

Number of tasks
10 100 1000 104

(a) CyberShake

Montage - 1024 nodes

ADAGE
MATRIX
Albatross

E
xe

cu
tio

n
Ti

m
e

100

1000

Number of tasks
100 1000 104

(b) Montage

FIGURE 4: Comparison of the execution times by increasing the number of tasks up to 10,000 (two workflows and 1,024
compute nodes).

Pizzuti, Adrian Spataru, and Marek Justyna. A novel data-centric program-
ming model for large-scale parallel systems. In Euro-Par 2019: Parallel
Processing Workshops, Lecture Notes in Computer Science, pages 452–
463, Gottingen, Germany, 26-30 August 2020. ISBN: 978-3-030-48339-5.

[4] Anupam Rajendran, Ke Wang, and Ioan Raicu. Matrix: Many-task
computing execution fabric at exascale. 01 2013.

[5] Iman Sadooghi, Geet Kumar, Ke Wang, Dongfang Zhao, Tonglin Li, and

Ioan Raicu. Albatross: An efficient cloud-enabled task scheduling and
execution framework using distributed message queues. pages 11–20, 10
2016.

[6] Tevfik Kosar and Mehmet Balman. A new paradigm: Data-aware schedul-
ing in grid computing. Future Generation Computer Systems, 25(4):406–
413, 2009.

[7] Shivaram Venkataraman, Aurojit Panda, Ganesh Ananthanarayanan,

9

Throughput - CyberShake

ADAGE
MATRIX
Albatross

Th
ro

ug
hp

ut
 (t

as
k/

se
c)

0

2

4

6

8

Compute nodes
0 200 400 600 800 1000

(a) CyberShake

Throughput - Montage

ADAGE
MATRIX
Albatross

Th
ro

ug
hp

ut
 (t

as
k/

se
c)

0

2

4

6

8

Compute nodes
0 200 400 600 800 1000

(b) Montage

FIGURE 5: Comparison of number of tasks completed per second (throughput) vs the number of compute nodes.

CyberShake - 1000 tasks

ADAGE
Albatross
MATRIX

Fi
ni

sh
ed

 T
as

ks

0

200

400

600

800

1000

Time
0 500 1000 1500 2000

(a) CyberShake

Montage - 1000 tasks

ADAGE
Albatross
MATRIX

Fi
ni

sh
ed

 T
as

ks

0

200

400

600

800

1000

Time
0 50 100 150 200 250

(b) Montage

FIGURE 6: Comparison of task completion times using 1,024 compute nodes.

Michael J Franklin, and Ion Stoica. The power of choice in data-aware
cluster scheduling. In 11th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 14), pages 301–316, 2014.

[8] Jiahui Jin, Junzhou Luo, Aibo Song, Fang Dong, and Runqun Xiong.
Bar: An efficient data locality driven task scheduling algorithm for cloud
computing. In 2011 11th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, pages 295–304. IEEE, 2011.

[9] CL Philip Chen and Chun-Yang Zhang. Data-intensive applications, chal-
lenges, techniques and technologies: A survey on big data. Information
sciences, 275:314–347, 2014.

[10] Ji Liu, Esther Pacitti, Patrick Valduriez, and Marta Mattoso. A survey of
data-intensive scientific workflow management. Journal of Grid Comput-
ing, 13(4):457–493, 2015.

[11] Ke Wang, Kan Qiao, Iman Sadooghi, Xiaobing Zhou, Tonglin Li, Michael
Lang, and Ioan Raicu. Load-balanced and locality-aware scheduling for
data-intensive workloads at extreme scales. Concurrency and Computa-
tion: Practice and Experience, 28(1):70–94, 2016.

[12] Tevfik Kosar, Mehmet Balman, Esma Yildirim, Sivakumar Kulasekaran,
and Brandon Ross. Stork data scheduler: Mitigating the data bottleneck in
e-science. Philosophical transactions. Series A, Mathematical, physical,
and engineering sciences, 369:3254–67, 08 2011.

[13] Xiaohui Wei, Wilfred Li, Osamu Tatebe, Gaochao Xu, Liang Hu, and
Jiubin Ju. Implementing data aware scheduling in gfarm(r) using lsf(tm)
scheduler plugin mechanism. pages 3–10, 01 2005.

[14] César Acevedo, Porfidio Hernández, Antonio Espinosa, and Víctor Mén-
dez. A critical path file location (cpfl) algorithm for data-aware multiwork-

flow scheduling on hpc clusters. Future Generation Computer Systems, 74,
04 2017.

[15] Fabrizio Marozzo, Francisco Duro, Javier Garcia Blas, Jesus Carretero,
Domenico Talia, and Paolo Trunfio. A data-aware scheduling strategy for
workflow execution in clouds. Concurrency and Computation: Practice
and Experience, page e4229, 08 2017.

[16] Ke Wang, Xraobing Zhou, Tonglin Li, Dongfang Zhao, Michael Lang,
and Ioan Raicu. Optimizing load balancing and data-locality with data-
aware scheduling. In 2014 IEEE International Conference on Big Data
(Big Data), pages 119–128. IEEE, 2014.

[17] Rajesh Raman, Marvin Solomon, Miron Livny, and Alain Roy. The
classads language. pages 255–270, 01 2004.

[18] Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda Gil,
Carl Kesselman, Gaurang Mehta, Karan Vahi, G. Berriman, John Good,
Anastasia Laity, and Daniel S. Katz. Pegasus: A framework for map-
ping complex scientific workflows onto distributed systems. Scientific
Programming, 13:219–237, 01 2005.

[19] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed com-
puting in practice: the condor experience. Concurrency - Practice and
Experience, 17(2-4):323–356, 2005.

[20] Ms A, Songnian Zhou, Xiaohu Zheng, Jingwen Wang, and Pierre Delisle.
Utopia: A load sharing facility for large, heterogeneous distributed com-
puter systems. Software: Practice and Experience, 23, 12 1993.

[21] O. Tatebe, Y. Morita, S. Matsuoka, N. Soda, and S. Sekiguchi. Grid
datafarm architecture for petascale data intensive computing. In 2nd

10

IEEE/ACM International Symposium on Cluster Computing and the Grid
(CCGRID’02), pages 102–102, 2002.

[22] James E Kelley Jr. Critical-path planning and scheduling: Mathematical
basis. Operations research, 9(3):296–320, 1961.

[23] Fabrizio Marozzo, Domenico Talia, and Paolo Trunfio. A workflow man-
agement system for scalable data mining on clouds. IEEE Transactions
On Services Computing, 11(3):480–492, 2018.

[24] Francisco Rodrigo Duro, Javier Garcia Blas, and Jesus Carretero. A
hierarchical parallel storage system based on distributed memory for
large scale systems. In Proceedings of the 20th European MPI Users’
Group Meeting, EuroMPI ’13, page 139–140, New York, NY, USA, 2013.
Association for Computing Machinery.

[25] Fabrizio Marozzo, Domenico Talia, and Paolo Trunfio. Js4cloud: Script-
based workflow programming for scalable data analysis on cloud plat-
forms. Concurrency and Computation: Practice and Experience, 27, 06
2015.

[26] Robert D Blumofe and Charles E Leiserson. Scheduling multithreaded
computations by work stealing. Journal of the ACM (JACM), 46(5):720–
748, 1999.

[27] Tonglin Li, Xiaobing Zhou, Kevin Brandstatter, Dongfang Zhao, Ke Wang,
Anupam Rajendran, Zhao Zhang, and Ioan Raicu. Zht: A light-weight
reliable persistent dynamic scalable zero-hop distributed hash table. 05
2013.

[28] Iman Sadooghi, Ke Wang, Dharmit Patel, Dongfang Zhao, Tonglin Li,
Shiva Srivastava, and Ioan Raicu. Fabriq: Leveraging distributed hash
tables towards distributed publish-subscribe message queues. 12 2015.

[29] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data process-
ing on large clusters. Communications of the ACM, 51(1):107–113, 2008.

[30] Weiwei Chen and Ewa Deelman. Workflowsim: A toolkit for simulating
scientific workflows in distributed environments. pages 1–8, 10 2012.

[31] Shishir Bharathi, Ann Chervenak, Ewa Deelman, Gaurang Mehta, Mei-
Hui Su, and Karan Vahi. Characterization of scientific workflows. pages 1
– 10, 12 2008.

SALVATORE GIAMPÀ is a research fellow of
computer engineering at the University of Cal-
abria, Italy. He received a Master’s degree in com-
puter engineering in 2019. His research interests
include distributed and parallel computing, pro-
gramming framework and software engineering.

LORIS BELCASTRO is a research fellow of
computer engineering at the University of Cal-
abria, Italy. He received a Ph.D. in Information and
Communication Engineering at the University of
Calabria. In 2012 he held a scholarship at the In-
stitute of High-Performance Computing and Net-
working of the Italian National Research Council
(ICAR-CNR). His research interests include cloud
computing, social media and Big Data analysis,
distributed knowledge discovery, and data mining.

FABRIZIO MAROZZO is an assistant professor
of computer engineering at the University of Cal-
abria. He received a Ph.D. in Systems and Com-
puter Engineering at the University of Calabria.
In 2011-2012 he visited the Barcelona SuperCom-
puting Center for a research internship with the
Grid Computer Research group in Computer Sci-
ences department. He is serving as associate editor
the IEEE Access and the International Journal
of Intelligent Systems Technologies and Applica-

tions. His research interests include distributed systems, data mining, cloud
computing, social media and Big Data analysis, and peer-to-peer networks.

DOMENICO TALIA is a professor of computer
engineering at the University of Calabria. He
is a member of the editorial boards of Future
Generation Computer Systems, IEEE Transactions
on Parallel and Distributed Systems, the Inter-
national Journal of Web and Grid Services, the
Journal of Cloud Computing—Advances, Systems
and Applications, Scalable Computing: Practice
and Experience, the International Journal of Next-
Generation Computing. His research interests in-

clude parallel and distributed data mining algorithms, cloud computing, grid
services, distributed knowledge discovery, peer-to-peer systems, and parallel
programming models.

PAOLO TRUNFIO is an associate professor of
computer engineering at the University of Cal-
abria. In 2007 he was a visiting researcher at the
Swedish Institute of Computer Science (SICS) in
Stockholm. In 2001-2002 he was a research col-
laborator at the Institute of Systems and Computer
Science of the Italian National Research Council
(ISI-CNR). He is in the editorial board of Future
Generation Computer Systems, IEEE Transactions
on Cloud Computing, and Journal of Big Data. His

research interests include cloud computing, social-media analysis, service-
oriented architectures, distributed knowledge discovery, and peer-to-peer
systems.

11

	Introduction
	Related work
	Proposed scheduler
	Architecture
	Task metadata and states
	Decision Maker and Executor
	Load Balancer
	Validator

	Case studies and experiments
	Experiment results

	Conclusion
	REFERENCES
	Salvatore Giampà
	Loris Belcastro
	Fabrizio Marozzo
	Domenico Talia
	Paolo Trunfio

