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a b s t r a c t

Steadily increasing urbanization is causing significant economic and social transformations
in urban areas, posing several challenges related to city management and services. In
particular, in cities with higher crime rates, effectively providing for public safety is
an increasingly complex undertaking. To handle this complexity, new technologies are
enabling police departments to access growing volumes of crime-related data that can
be analyzed to understand patterns and trends. These technologies have potentially to
increase the efficient deployment of police resourceswithin a given territory andultimately
support more effective crime prevention. This paper presents a predictive approach based
on spatial analysis and auto-regressive models to automatically detect high-risk crime
regions in urban areas and to reliably forecast crime trends in each region. The algorithm
result is a spatio-temporal crime forecasting model, composed of a set of crime-dense
regions with associated crime predictors, each one representing a predictive model for
estimating the number of crimes likely to occur in its associated region. The experimental
evaluation was performed on two real-world datasets collected in the cities of Chicago and
New York City. This evaluation shows that the proposed approach achieves good accuracy
in spatial and temporal crime forecasting over rolling time horizons.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Reference Context. The 21st Century is frequently referenced as the ‘‘Century of the City’’, reflecting the unprecedented
global migration into urban areas that is under way [1,2]. This steadily increasing urbanization is bringing vexing social,
economic, and environmental transformations to urban areas. For example, it is presenting challenges to organizations
tasked with city management and provision of essential services, like resource planning (water, electricity), transit, air and
water quality, and public safety [3]. Moreover, for cities with higher crime rates, crime spiking is becoming one of the most
important social problems, affecting not only public safety but also health, education, child development, and adult socio-
economic status [4,5].

Motivations and Contributions. An ever-increasing volume of urban-related data, with spatial and temporal attributes,
from weather to air quality to economic activity, is available for public organizations, including police departments, to
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integrate with internal data. This offers the opportunity to apply data analytics methodologies to extract useful predictive
models related to crime events, which can enable police departments to better utilize their limited resources and develop
more effective strategies for crime prevention. In particular, extensive criminal justice studies show that the incidence of
criminal events is not equally distributedwithin a city. In fact, crime rates can changewith respect to the geographic location
of the area (there are low-risk and high-risk areas) and crime trends can vary (seasonal patterns, peaks, dips) with respect
to the period of the year. For this reason, an accurate predictive model must be able to automatically detect both which
areas in the city are more affected by crime events and how the crime rate of each specific area varies with respect to the
temporal period. This knowledge can enable police departments to efficiently allocate their resources to specific crime hot
spots, allowing for the effective deployment of officers to areas of high risk or removal of officers fromareas seeing decreasing
levels of crime, thus more efficiently preventing or quickly responding to criminal activity.

This paper presents the design and implementation of an approach based on spatial analysis and auto-regressive models
to automatically detect high-risk crime regions in urban areas and to reliably forecast crime trends in each region. The
algorithm is composed of several steps. First, high crime density areas (called crime dense regions, or crime hotspots)
are discovered through a spatial analysis approach, where shapes of the detected regions are automatically traced by the
algorithm without any pre-fixed division in areas. Then, a specific crime prediction model is discovered from each detected
region, analyzing the partitions discovered during the previous step. The final result of the algorithm is a spatio-temporal
crime forecasting model, composed of a set of crime dense regions and a set of associated crime predictors, each one
representing a predictive model to forecast the number of crimes that are estimated to happen in its specific region.

As a case study, we present here the analysis of crimeswithin (i) a large area of Chicago and (ii) the borough ofManhattan
inNewYork City, involving about twomillion crime events (over a period of 16 yr) and 1.5million crime events (over a period
of 11 yr), respectively. Chicago crime data has been gathered by the Plenario platform [6], a Web framework that provides
public access to more than one hundred urban datasets, while the New York City crime data has been gathered from the
New York City Opendata platform [7]. The results of the experimental evaluation show the effectiveness of the approach, by
achieving good accuracy in spatial and temporal crime forecasting over rolling time horizons.We also present a comparative
analysis of the results obtained through our approach with other algorithms presented in the literature, demonstrating
higher accuracy of the proposed algorithm relative to other regressive approaches proposed in literature. For the sake of
clarity, this paper extends theworkpresented in [8] and it provides several original contributionswith respect to the previous
one. The most significant extension concerns the experimental evaluation in Section 5, which has been extended by testing
the proposed algorithm on a second real-world case study (New York City), and by performing a comparative analysis with
other regression analysis approaches proposed in literature.

Plan of the Paper. The rest of the paper is organized as follows. Section 2 reports the most important approaches in crime
datamining literature and themost representative projects in that field of research. Section 3 outlines the problem statement
and goals of our analysis. Section 4 presents the Spatio-Temporal Crime Prediction algorithm by describing its steps in detail.
Section 5 describes the experimental evaluation, performed on two real-world case studies. Finally, Section 6 concludes the
paper and plans future research works.

2. Related work

Several data mining techniques have been used for crime analysis. Some approaches have been proposed for crime
location prediction [4,9], while others are aimed at crime pattern detection [10–13]. In this section we briefly review the
most representative research work in both the areas. Then, we report a critical comparison (on the basis of some specific
features) among the method we developed and state-of-art solutions.

Crime location prediction. CrimeTracer [4] is based on a probabilistic framework to model the spatial behavior of known
offenders within areas they frequent, called activity spaces. Experiments carried out on real-world crime data have shown
that criminals frequently commit crimes within their activity spaces, rather than venture into unknown territories. The
authors in [9] model crime location predictions as a special case of spatial data mining classification task, and exploit one-
class support vector machines (SVM) to classify locations as hot-spot or no hot-spot crime areas.

Crime pattern detection. The approach proposed in [10] exploits Negative Binomial Regression to infer crime rates in different
city areas, integrating geographic, demographic, POIs and taxi flows data. Multivariate time series clustering and ARIMA
models are proposed in [12] and [14], to discover similar crime trends and to make short-term forecasting of crimes,
respectively. Recurrent Neural Networks models, which exploits spatial and temporal information for forecasting crime
hotspots, are presented in [11]. In [13] Holt Exponential Smoothing has been experimented using city-wide data and resulted
as an accurate forecast model for precinct-level crime series.

Table 1 reports amore detailed and critical comparison among the proposed approach and some other solutions proposed
in the literature. The comparison takes into account four features, as detailed in the following.

Crime hotspot detection. This feature describes whether the approach implements a method to automatically detect crime
hotspots, which is a crucial issue for the accuracy and the effectiveness of the whole crime forecasting task. The proposed
algorithm and the approaches presented in [4,9] implementmethods to detect crime hotspots from raw crime data, whereas
the rest of the related works rely on pre-defined regions, like Community Areas [10], Prescincts [13], city cells [11]. The limit
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Table 1
Comparison of several approaches proposed in literature.

Crime Hotspots Detection Hotspot Detection Approach Crime Hotspot Shapes Crime Predictors Approach

The proposed approach Yes Density-based clustering any shape ARIMA
Ref. [4] Yes (ActivitySpace) Probabilistic framework any shape Not Available (only location prediction)
Ref. [10] No (Comm. Area) No (predefined area) Comm. Area shape Negative Binomial Regression (NBR)
Ref. [13] No (Precincts) No (predefined area) Precinct shape Holt Exponential Smoothing (HES)
Ref. [9] Yes Support Vector Machine any shape Not Available (only location prediction)
Ref. [11] No (grid cells) equal sized grid cell square Recurrent Neural Networks (RNN)

of the latter approaches is that they rely on a static subdivision of regions and categorization of them as region of crime
interests, which could lead to regions not interesting in terms of crime analysis. Differently, our approach and the works
in [4,9] are able to identify data-driven relevant locations, instead of being statically defined a priori.

Crime hotspot detection approach. We also classified the compared systems on the basis of the approach used to detect crime
dense regions, when applicable. The approaches proposed in [4,9] exploit a probabilistic framework and Support Vector
Machine (SVM) approaches, opportunely adapted to deal with crime data. On the other side, the approaches presented
in [10,11,13], as previously highlighted, use no detection approach as they rely on pre-defined regions.

Crime hotspot shapes. Another important feature for classification purpose is the shape of the crime hotspots. In fact, this
feature allows to assess the ability of the detection approach in identifying any possible dense spatial area, regardless of
the shape. The more shapes the algorithm is able to catch, the better the accuracy and effectiveness of the detected dense
regions. Our approach and the work described in [4,9] are able to detect regions of any shape (e.g., circular, rectangular,
linear) while the other works [10,11,13] deal with only specific region shapes.

Crime Predictor approach. This feature classifies the systems on the basis of the approach used to detect crime predictors.
Specifically, our approach exploits ARIMA models, while the approaches presented in [10,11,13] use Negative Binomial
Regression, HES and RNNmodels, respectively. Differently from ours, the other approaches [4,9] perform only crime location
prediction and they do not consider crime trend analysis.

3. Problem definition and goal

We begin by fixing a proper notation to be used throughout the paper. Let T = ⟨t1, t2, . . . , tH⟩ be an ordered timestamp
list, such that th < th+1, ∀0<h<H , and where all th are at equal time intervals (e.g., every hour, day, week, or year). Let D be a
dataset collecting crime instances, D = ⟨D1,D2, . . . ,DN⟩, where each Di is a data tuple described by the following features:
latitude and longitude (coordinates of the places the crime occurs), t (time the crime happens at, with t ∈ T ), type (the crime
typology, i.e. robbery, theft, assault, etc.). Now, let us consider a future temporal horizon, S = ⟨tw, tw+1, . . .⟩, with w > H .
The goal of the analysis is to find models for reliably predicting the number and location of crimes at a given timestamp
tw ∈ S. More specifically, our analysis aims at achieving the following goals:

1. discover a set CDR of crime dense regions (blobs or hotspots), CDR = {CDR1, . . . , CDRK }, where a crime dense region
CDRk is a spatial area which criminal events occur in with an higher density than other areas in the city;

2. extract a function Fncrime : S → (CDR,R), that given a timestamp tw ∈ S states the number of crimes N ∈ R that are
predicted to happen in each crime dense region CDRi ∈ CDR at the timestamp tw .

4. The proposed approach

This section describes the algorithm that we have designed to discover spatio-temporal predictive models from crime data.
Specifically, Section 4.1 depicts the main steps of the proposed approach and its meta-code, whereas Sections 4.2 and 4.3
describe in details the procedures for crime dense regions detection and crime predictors extraction.

4.1. The algorithm

Fig. 1 sketches the general idea of the algorithm through a graphic representation of the whole process as a sequence
of three main steps. The input data of the analysis is the set of collected crime data to be processed. The first step of the
algorithm consists in the detection of crime dense regions from the original dataset. The goal of this step is detecting areas
(i.e., polygons, blobs) where crime events occur with greater density than other adjacent areas, automatically traced by the
algorithm without any pre-fixed division in areas. This task can be modeled as a geo-spatial clustering instance and can be
solved, as described below, using clustering algorithms that process both spatial and temporal crime data. The final result
of this step consists of K clusters, where each cluster corresponds to a crime dense region. The number of detected regions
(i.e., number of clusters) can be fixed a-priori or automatically detected, depending on the specific clustering algorithm. The
second step consists in the spatial data splitting of the original crime data, based on the clustering model discovered at the
previous step. In other words, the points of the original crime data events assigned to the ith cluster are transformed in a
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Fig. 1. Spatio-Temporal Crime Prediction Steps.

Fig. 2. Spatio-Temporal Crime Prediction Algorithm.

time series and gathered in the ith output dataset, for i = 1, . . . , K . At the end of this step, K different time series datasets
are available, each one containing the time series of crimes occurred in its associated dense region. The third step is aimed
at extracting a specific crime prediction model for each crime dense region (or the most representative regions), analyzing the
crime data split during the previous step.

The meta-code of the Spatio-Temporal Crime Prediction algorithm (STCP) is reported in Fig. 2. The algorithm receives
in input D, i.e. the crime dataset, and returns the discovered knowledge models, i.e., the crime dense region set CDR =

{CDR1, . . . , CDRK } and the crime predictor set F = {F1, . . . , FK }. It is worth noting that this meta-code is parametric with
respect to the algorithm for crime dense region detection and crime predictors, and we will give additional details (about
the specific algorithms exploited in this work) in the following two sub-sections. The algorithm begins by performing a
spatial clustering task over the dataset D, aimed at detecting dense regions (i.e., hot spots) of crimes. This is performed
by the DiscoverCrimeRegions() method, which extracts K spatial clusters, each one representing a detected dense region
of crimes (line L1). As soon as this step is completed, the crime dataset is transformed in K time-series datasets on
the basis of the discovered clustering model extracted at the previous step. Specifically, this task is executed by the
BuildCrimeTSData() method (line L2), which processes the original dataset D and transforms it in the time series dataset
collection D⊥

= {D⊥

1 , . . . ,D⊥

K }, where each D⊥

i is the time series of crimes geo-localized in the area CDRi ∈ CDR (detected
during the previous step). At the end of this step, K different time-series datasets are available. Finally, for each D⊥

i , the
DiscoverLocalCrimePredictor() method discovers a predictive model (lines L3–L6) to forecast the number of crimes that
will happen in the specific area CDRi (associated to D⊥

i ). The whole model returned by the algorithm, comprising the crime
dense region set CDR = {CDR1, . . . , CDRK } and the crime predictor set F = {F1, . . . , FK }, can be used for spatio-temporal
crime forecasting.

4.2. Detection of crime dense regions

TheDiscoverCrimeRegions() method (line L1) performs a spatial clustering of the dataset, where each cluster represents
a dense region of crimes. The density-based notion is a common approach for clustering, whose inspiring idea is that objects
forming a dense region should be grouped together into one cluster. In our implementation, this step is performed by
applying DBSCAN [15], a popular density-based clustering algorithm that finds clusters starting from the estimated density
distribution of the considered data. We have chosen the DBSCAN algorithm because it has the ability to discover clusters
with arbitrary shape such as linear, concave, oval, etc. and (in contrast to other clustering algorithms proposed in literature)
it does not require the predetermination of the number of clusters to be discovered. Basically, the algorithm finds clusters
with respect to the notion of density reachability among points: a point is directly density-reachable from another point
if it is not farther away than a given distance (ϵ) (i.e., is part of its neighborhood) and if it is surrounded by sufficiently
many points (minPts). In the considered context, a cluster corresponds to a crime dense region. Moreover, to capture the
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dynamic changing of clusters, we compute the density of each data point by weighting it through a decay factor which gives
less importance to historical information and more weight to recent data: for each data record Ci, we assign it a density
coefficient which decreases with as Ci ages: if Ci occurs at the timestamp ti, its density coefficient is weighted by λtmax−ti ,
where λ ∈ (0, 1) is a constant called the decay factor, and tmax is the most recent timestamp. Finally, DBSCAN requires the
user to specify the radius of the neighborhood (i.e., ε) and the minimum number of objects it should have (i.e., minPoints),
whose values affect size and density of the discovered clusters. Generally, an optimal setting of its parameters is complex to
be achieved and requires specific techniques; nevertheless, such a topic is out of the scope of this paper.

4.3. Extraction of crime predictors

Given a specific crime dense region (or crime hotspot), the DiscoverLocalCrimePredictor() method (line L4 in Fig. 2)
discovers a predictive model to forecast the number of crimes that will happen in its specific area. In our implementation,
this has been performed by the Seasonal AutoRegressive Integrated Moving Averagemodel (Seasonal ARIMA, or SARIMA [16]),
which is defined as a combination of auto-regression, moving average and difference modeling. Briefly, having the time
series {yt : t = 1...n}, where yt is the value of the time series at the timestamp t , an ARIMA(p, d, q) model is written in the
form

y(d)t = c + φ1y
(d)
t−1 + · · · + φpy

(d)
t−p + θ1et−1 + · · · + θqet−q + et

where c is a correcting factor, φ1, . . . , φp are the regression coefficients of the auto-regressive part, θ1, . . . , θq are the
regression coefficient of themoving average part, yt−1, . . . , yt−p, et−1, . . . , et−q are lagged values of yt and lagged errors (p+q
predictors), and et is white noise and takes into account the forecast error. In our study we exploit seasonal ARIMA models,
which are an extension of the classic ARIMA. A seasonal ARIMA model is formed by including additional seasonal terms in
the classic ARIMA models previously introduced. The seasonal part of the model consists of terms that are very similar to
the non-seasonal components of the model. In the final formula, the additional seasonal terms are simply multiplied with
the non-seasonal terms. A seasonal ARIMA model is defined as ARIMA(p, d, q)(P,D,Q )m, where m is a periodicity factor,
(p, d, q) and (P,D,Q ) are the orders of the auto-regressive, differencing and the moving average part for the non-seasonal
and seasonal model, respectively [16].

5. Analysis and experimental results

To evaluate the performance and the effectiveness of the approach described above, we carried out an extensive
experimental analysis by executing different tests in two real-world case-studies, i.e., two large areas of Chicago (CHI) and
New York City (NYC). For each city, the goal of our analysis comprises detecting themost significant crime dense regions and
discovering effective predictive models, which can estimate the number of crimes that are likely to happen in the future.
We also performed a comparative analysis of our results with respect to other algorithms proposed in literature. The rest
of this section is organized as follows. Section 5.1 presents the analysis and the most important results carried out on the
Chicago data. Section 5.2 describes the results obtained by analyzing theNewYork City data. Section 5.3 compares the results
obtained by exploiting autoregressive models with other approaches used for regression analysis.

5.1. Chicago: Experimental results

In the following sub-sections we describe the main steps of our analysis carried out on Chicago data: (i) data description
and gathering, (ii) crime dense region detection, (iii) training and evaluation of the regressive models.

5.1.1. Data description
The data that we used to train the models and perform the experimental evaluation is housed on Plenario, a publicly

available data search and exploration platform that was developed (and currently managed) by the University of Chicago’s
Urban Center for Computation and Data. Crime data has been gathered from the ’Crimes - 2001 to present’ dataset, a real-
life collection of instances describing criminal events occurred in Chicago from 2001 to present (the repository is updated
every week, so it is kept up-to-date minus the most recent seven days). As a pilot research study, in this work we focus our
experiments on a large area of Chicago, which is shown in Figs. 3(a) and 3(b). The selected area includes different zones of
the city, some growing in terms of population, others in terms of business activities, with different crime-densities over their
territory (so making it interesting for crime analysis). Its perimeter is about 52 KM and its area is approximately 135 KM2.
Starting from the ’Crimes - 2001 to present’ dataset, we collected all crime events within the bounded area over 16 yr (834
weeks), from January 2001 to December 2016. The total number of collected crimes is 1,897,682, while the average number
of crimes per week is 2275. The total size of this dataset is 418 MB.

Figs. 4(a) and 4(b) show a preliminary view of the collected crime data, which provides some hints about data trends and
distribution. Fig. 4(a) reports the time plot of the observed crime data, in which the number of crimes is plotted versus the
time of observation. The plot immediately reveals some interesting features. First, it is evident that the number of crimes is
decreasing over the time period, showing a general clear decreasing trend in the data. Second, a repeating seasonal pattern
within each year is clearly observable, that seems to decrease in size (magnitude) as the overall crime counts in the series
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Fig. 3. Selected area of Chicago and geolocalized crime events (2001–2016).

Fig. 4. CHI crime data: number of crimes vs time and their distribution by month.

decreases. From the plot, we see that the occurrence of crimes typically increases in late Spring, peaks during the Summer,
decreases in Autumn, and generally dips inWinter. A clearer viewof the seasonality hidden in the data can be seen in Fig. 4(b),
which shows the distribution of the average number of crimes by month. The histogram shows that the number of crimes
in the city area under observation varies significantly between different periods of the year. In particular, the number of
criminal events is highest in July (with 11,050 crimes on average), and lowest in February (with 8124 crimes, on average).

To perform the regression task and its validation, we split the original dataset in two partitions: the training set and
the test set. The first is used to discover the relationships inside data while the second is used for evaluating whether the
discovered relationships hold generally. In our case, the overall crime dataset has been split with respect to the number of
years: the training set contains the crime data of the first 13 yr (2001–2013, 678 weeks), while the test set holds the crime
data of the last 3 yr (2014–2016, 156 weeks). As described in the following sub-sections, we trained the knowledge model
(i.e., crime dense regions and crime predictors) using data from January 2001 to December 2013 and we used the trained
model to forecast the crime events from January 2014 to December 2016, to assess the quality of the predictions.

5.1.2. Detection of crime dense regions from the training set
As described in Section 4.2, crime dense regions are detected by applying an our ad-hoc modified version of DBSCAN,

which exploits a decay factor that gives a higher weight to recent crime events. Moreover, in order to detect high quality
crime dense regions, it is necessary to tune the key parameters of the algorithm so as to improve results’ performance.
In particular, the values of the DBSCAN’s parameters ϵ and minPts determines the size of the clusters, as they represents
the minimum crime density required by an area to be part of a cluster. On the one hand, the bigger ϵ, the larger is the
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Fig. 5. Detected crime dense regions in the selected area of Chicago. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Table 2
Extension of the wider Crime Dense Regions w.r.t. the whole area considered.
Region Extension (KM2) Extension (%) Crimes (#) Crimes (%)

Whole Area 135.02 100.00% 1,896,782 100%
Crime Dense Region 1 17.04 12.62% 461,996 24.35%
Crime Dense Region 2 6.03 4.47% 168,159 8.86%
Crime Dense Region 3 4.59 3.40% 131,154 6.91%

extension of the dense regions detected: this results in the discovery of large regions that actually are no longer dense. On
the other hand, the smaller ϵ, the smaller the cluster sizes, resulting in a high number of dense regions detected that could
be (because of their small sizes) not significant for the analysis. Conversely, growing the minPts value results in increasing
the fragmentation of the clustering assignment produced. The values of ϵ and minPts are, thus, critical to the accuracy of
the dense region detection phase and for the right balance among separability, compactness and significance of clusters.
We present here the results achieved by fixing ϵ = 83.25 m and minPts = 20, which have been assessed through several
experimental tests and best suits our application scenario and the considered dataset.

Crime dense regions discovered through our analysis are shown in Fig. 5, where each region is represented by a different
color. Interestingly, this image shows how crime events are clustered on the basis of a density criteria; for example, the
algorithm detects eight significant crime regions clearly recognizable through different colors: a large crime region (in red)
in the central part of the area along with seven smaller areas (in green, blue and light-blue) on the left and right side,
corresponding to zones with the highest concentration of crimes. The three largest crime dense regions (CDR1, CDR2, and
CDR3) are zoomed-in on the left side of Fig. 5. Many other smaller regions representing very local high-density crime zones
are distributed in the whole area. Table 2 shows the extension of the three largest crime dense regions (CDR1, CDR2, and
CDR3), with respect to the whole area. Overall, these regions cover about the 20.5% of the whole area extension, and about
the 40% of the crime events detected in the whole area between 2001 and 2016.

5.1.3. Training and evaluating the regressive crime models
As described in Section 4, the next steps of the algorithm consist of (i) the spatial data splitting of the original crime

dataset (aimed at building a time series for each discovered dense region), and (ii) the training of local crime predictors
(as ARIMA models) for each dense region. Specifically, considering the three largest crime dense regions detected by our
algorithm, the auto-regressive models trained from the input data were ARIMA(1, 1, 2)(1, 1, 2)52, ARIMA(4, 1, 3)(0, 1, 1)52
and ARIMA(1, 1, 1)(0, 1, 1)52 for the first, second and third region, respectively. It is worth noting that the predictive crime
models differ among regions, showing that each area presents specific crime trends and patterns.

In order to assess the effectiveness and accuracy of the regressive functions, we performed an evaluation analysis on the
test set consisting of the last three years of data (i.e., years 2014–2016). In particular, for each crime dense region and for
the whole area, its respective ARIMA model has been used to predict future values of the number of crimes that are likely
to happen in that region, week by week. The prediction of the type of crimes is beyond the scope of this work and it will be
studied in a further research activity. Fig. 6 shows observed and forecasted data (plotted in blue and green, respectively) for
the test set period. We note that forecasted data adhere very well to the observed data over the whole test set period.
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Fig. 6. Number of crimes observed and forecasted (blue and green lines) on the Chicago test set, for the whole area and the top 3 largest crime dense
regions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
Forecast error measures vs years, for the whole area and the top three largest crime dense regions in Chicago.
Time MAE MAPE

Area CDR1 CDR2 CDR3 Area CDR1 CDR2 CDR3

2014 88.86 30.20 14.47 11.15 6.19 8.68 10.86 11.90
2015 74.54 28.24 12.13 9.24 5.42 7.60 8.94 9.62
2016 81.47 31.04 12.86 13.83 6.29 10.14 9.99 18.66

Time ME RMSE

Area CDR1 CDR2 CDR3 Area CDR1 CDR2 CDR3
hline 2014 −62.96 30.19 −8.36 −2.67 108.34 35.98 19.01 13.57
2015 −27.05 4.75 −1.80 −1.57 97.77 34.61 14.98 11.43
2016 −48.77 −24.94 −5.36 −11.02 115.16 38.31 15.95 16.66

Now, let us give a quantitative evaluation about the performance of the regressive models and their effectiveness in
making predictions on the corresponding test sets. To this end, we computed four error measures (MAE, MAPE, ME, RMSE),
which are commonly used in regressive analysis literature to quantify forecast performance. Table 3 reports the values of
the four error measures described above for the whole area and the three largest crime dense regions, by considering one-
year-ahead, two-year-ahead and three-year-ahead prediction horizons. Looking at the values in the table, we can observe
the MAE decreases when the areas of regions are smaller and smaller. For example, considering one-year-ahead forecasting,
the MAE monotonously decreases from 88.86 (whole area) to 30.20, 14.47 and 11.15 (three crime dense regions, ordered
by decreasing size), and similarly all other years. This is a reasonable result, because predictions appear more precise both
in terms of specific identification of the areas and in terms of forecasting accuracy, thus giving a more detailed information
to city administrator and police officers for planning how to distribute resources and efforts in the different regions of the
city. Finally, considering the MAPE, we observe that percentage errors are very low as well. In fact, the table shows that the
maximum MAPE forecasting error ranges from 8.68% to 11.90% for the first year, from 7.60% to 9.62% for the second year,
and from 10.14% to 18.66% for the third year, which represents a very interesting result. To the best of our knowledge, these
results exceed those of other approaches proposed in the crime forecasting literature. As a final consideration, we observe
from Fig. 6 that the regressive models for each area tend to slightly over-forecast the number of crimes with respect to those
that actually occurred.
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Fig. 7. Selected area of New York City and geolocalized crime events (2001–2016).

5.2. New York City: Experimental results

This section presents the analysis performed on New York City crime data. As with the previous case study, the main
steps are described in four subsections: (i) data description and gathering, (ii) crime dense region detection, and (iii) training
and evaluation of the regressive models.

5.2.1. Data description
The data that we used to train the models and perform the experimental evaluation for New York City is housed on NYC

Opendata [7], a publicly available resource managed by the Mayor’s Office of Data Analytics (MODA) and the Department
of Information Technology and Telecommunications (DoITT). We focus our experiments on the Manhattan borough of New
York City, which is shown in Figs. 7(a) and 7(b). The selected area represents one of the most well-known and dense urban
areas in the world, growing in terms of population, business activities, and mobility patterns. Its perimeter is about 44 KM
and its area is roughly 76 KM2. Starting from the ’NYPD Complaint Data Historic’ dataset, we collected all crime events that
were recorded within the bounded area in 11 yr (572 weeks), from January 2006 to December 2016. The total number of
collected crimes is 1,472,305, and the average number of crimes per week is 2573. The total data size is about 1.3 GB.

New York City data trends and distribution are shown in Figs. 8(a) and 8(b). As a preliminary view, we observe that there
are several differences with the distribution of the Chicago data. Fig. 8(a) reports the time plot of the observed crime data,
in which the number of crimes are plotted versus the time of observation. In contrast to the Chicago data (showing steady
decrease in total crimes over time), the chart clearly shows that the number of crimes exhibits a stable trend until the year
2010, followed by a smooth decreasing trend from 2010 to 2012, and a stable trend again from 2012. Second, a yearly seasonal
pattern is observable, which increases in size (magnitude) and becomesmore evident from the year 2012. In general, we can
infer that the occurrences of crimes usually achieve peaks during both the Spring and the Summer (differing from the Chicago
data), decrease in Autumn and generally have dips inWinter. The seasonality component can be observed in Fig. 8(b), which
shows the distribution of the average number of crimes by month. The average number of criminal events is highest during
the Summer (11,910 in July and 11,188 in August), but there are also some peaks in the Spring (11,586 in March and 11,742
in May). The lowest count is in February (with 9,615 crimes on average). Data splitting into training set and test set has
been performed as follows: the training set contains the crime data of the first 8 yr (2006–2013; 416 weeks), while the test
set holds the crime data of the last 3 yr (2014–2016; 156 weeks). The crime dense regions and crime predictors discovered
on the training set, as well as a discussion about the quality assessment of the models on the test set, are described in the
following two subsections.

5.2.2. Detection of crime dense regions from the training set
As discussed in Section 4.2, the optimal parameter setting of DBSCAN to discover crime dense regions is not an easy task.

The goal is to detect a suitable tuning of ϵ and minPts values, which are key factors for the accuracy of the dense region
detection phase and for the right balance among separability, density, compactness and significance of clusters. We present
here the results achieved by fixing ϵ = 120.36 m andminPts = 20, which have been assessed through several experimental
tests to best suit our application scenario and the considered dataset.

Crime dense regions of New York City, discovered through the DBSCAN algorithm, are shown in Fig. 9. The algorithm
detects seven significant crime regions clearly recognizable through different colors: a large crime region (in red) covering
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Fig. 8. NYC crime data: number of crimes vs time and their distribution by month.

Fig. 9. Detected crime dense regions in the selected area of New York City. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Table 4
Extension of the wider Crime Dense Regions w.r.t. the whole area considered.
Region Extension (KM2) Extension (%) Crimes (#) Crimes (%)

Whole Area 76.41 100.00% 1,472,305 100%
Crime Dense Region 1 13.57 17.77% 452,113 30.70%
Crime Dense Region 2 2.33 3.05% 79,803 5.42%
Crime Dense Region 3 2,71 3.55% 69,268 4.70%

Midtown and Lower Manhattan (including the Financial District), and other six smaller areas (in green, purple, blue and
light-blue) on the upper East and West sides, corresponding to zones with the highest concentration of crimes. The three
largest crime dense regions (CDR1, CDR2, and CDR3) are zoomed-in on the left side of Fig. 9. We observe that there are many
other smaller regions representing very local high-density crime zones, whose small size make them less interesting for our
analysis. Table 4 shows the extension of the three largest crime dense regions (CDR1, CDR2, and CDR3), with respect to the
whole area. Overall, these regions cover about 24.5% of the whole area, and about 40% of the crime events detected in the
whole area between 2006 and 2016.

5.2.3. Training and evaluating the regressive crime models
Crime regressive models have been extracted for the three largest crime dense regions detected by our algorithm for

Manhattan. Specifically, the auto-regressive models trained from the input data were ARIMA(1, 1, 2)(0, 1, 1)52,
ARIMA(1, 1, 1)(0, 1, 1)52 and ARIMA(2, 1, 3)(0, 1, 1)52 for the first, second and third regions, respectively. It is worth noting
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Fig. 10. Number of crimes observed and forecasted (blue and green lines) on the New York test set, for the whole area and the top 3 largest crime dense
regions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

that predictive crime models differ among regions (as also seen for the Chicago case study), as evidence that each area
presents specific crime trends and patterns.

The evaluation of the regressive functions trained on the New York City data has been performed on the test set, which
consists of the last three years of data (i.e., years 2014–2016). Fig. 10 shows observed and forecasted data (plotted in blue
and green, respectively) for the test set period. It is worth noting that forecasted data adhere very well to the observed data
over the whole test set period. Only in the Crime Dense Region 2 case, we observe that there is an evident difference among
the two curves, and in particular how the forecasting trend assumes lower values than the real trend.

Now, let us give a quantitative evaluation about the performance of the regressive models and their effectiveness in
making predictions on the corresponding test sets. To this end, forecasting performance have been evaluated using the
MAE, MAPE, ME and RMSE error measures, for several time horizons. The values of the four error measures are reported in
Table 5, for the whole area and the top three largest crime dense regions, by considering one-year-ahead, two-year-ahead
and three-year-ahead prediction horizons. We can observe that MAE values decrease when the areas of regions are smaller.
For example, considering one-year-ahead forecasting, theMAE decreases from 135.30 (whole area) to 52.15, 10.56 and 12.46
(three crime dense regions, ordered by decreasing sizes), and similarly all other years. A similar trend has been observed also
for the Chicago case study, and it is confirmed for the NYC case study. It is worth noting that it is a reasonable result, because
forecasts appear more precise both in terms of specific identification of the areas and in terms of forecasting accuracy. As
a final consideration, we observe from Fig. 10 that the regressive models for the whole area, Crime Dense Region 1 and 3
(Figs. 10(b) and 10(d)) adhere to the observed data much better than the Crime Dense Region 2 case (Fig. 10(c)).

5.3. Comparative analysis with other approaches

To make our evaluation more accurate and complete, we performed a comparative analysis of several approaches for
crime predictors extraction. Specifically, we evaluated the performance of ARIMA models versus three classic regression
algorithms (i.e., RandomForest [17], REPTree [18], ZeroR [19]) and versus the approaches [10] and [13] specifically proposed
in the crime forecasting literature. To perform the comparative analysis, we evaluated the forecasting performance of the
different approaches on the test set of the three areas (both in Chicago and New York City), versus different prediction
horizons. The results for the algorithms were obtained by performing an accurate tuning of the input parameters: for each
dataset, different runs were executed for different values of the parameters, then the best results were selected. The results
shownbelowonly refer to the runwith the best combination of parameters. Fig. 11 summarizes the results of the comparison,
showing the achieved Mean Absolute Error (MAE) for one-year-ahead forecasts, for the three highest crime dense regions
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Table 5
MAE, MAPE, ME and RMSE prediction errors vs years, for the whole area and the top three largest crime dense regions in New York City.
Time MAE MAPE

Area CDR1 CDR2 CDR3 Area CDR1 CDR2 CDR3

2014 135.30 52.15 10.56 12.46 6.17 7.26 8.15 12.59
2015 141.68 51.51 20.86 11.06 6.04 7.42 14.95 9.87
2016 117.49 47.85 25.05 11.80 4.79 6.41 16.64 10.58

Time ME RMSE

Area CDR1 CDR2 CDR3 Area CDR1 CDR2 CDR3

2014 −80.05 −41.17 2.11 −6.55 184.81 70.99 14.23 14.73
2015 −0.6 −28.57 15.63 1.51 177.08 66.08 24.60 14.45
2016 31.21 −8.00 23.84 2.68 143.73 57.80 29.85 16.19

Fig. 11. Comparative analysis among several approaches, evaluating the Mean Absolute Error (MAE) of the crime dense regions, for CHI (a) and NYC (b).

in Chicago and New York City. In particular, we can see that the ARIMA approach generally achieves greater accuracy than
other algorithms. In fact, considering both the Chicago and New York datasets, the ARIMA models perform better for all of
the highest crime-dense regions. Indeed, the performance difference is more evident for larger areas. These results confirm
the appropriateness of the autoregressive model and its good performance in the crime prediction domain.

6. Conclusion

This paper presented a general algorithm for Spatio-Temporal Crime Prediction in urban areas, implemented in context of
partitioning large areas of cities into sub-areas by detecting crime dense regions (of arbitrary shapes). Such regions are then
analyzed and a different forecasting auto-regressive model is tailored specifically for each detected region. Experimental
evaluation, performed on two datasets, related to the crime data of wide areas of Chicago and New York City, showed that
the proposed methodology can forecast the number of crimes with high accuracy. Furthermore, the approach gives fine-
grained information about where crime events are expected to occur. We also presented a comparative analysis with other
regressive algorithms, showing that (at the best of our knowledge) the achieved results outperform those of other approaches
proposed in the crime forecasting literature so far. In future work, other research issues may be investigated. First, we may
further explore the application of other spatial analysis approaches for the detection of crime dense regions, to forecast crime
trends on such regions. Specifically, we are interested in studying the application of hierarchical spatial algorithms, which
can achieve further splitting of clusters when their sizes are too large. Second, wewill correlate the trend of crimes and other
events of the city to understand relationships among those, as well as to explore the use of these spatio-temporal prediction
algorithms to predict other kinds of events.

References

[1] United Nations Settlements Programme, the state of the world’s cities 2004/2005: Globalization and urban culture. Earthscan, 2004.
[2] Cities: The century of the city, Nature 467 (2010) 900–901.

http://refhub.elsevier.com/S1574-1192(18)30542-X/sb1
http://refhub.elsevier.com/S1574-1192(18)30542-X/sb2


74 C. Catlett, E. Cesario, D. Talia et al. / Pervasive and Mobile Computing 53 (2019) 62–74

[3] F. Cicirelli, A. Guerrieri, G. Spezzano, A. Vinci, An edge-based platform for dynamic smart city applications, Future Gener. Comput. Syst. 76 (2017).
[4] M. Tayebi,M. Ester, U. Glasser, P. Brantingham, CRIMETRACER:Activity space based crime locationprediction, in: Advances in SocialNetworksAnalysis

and Mining, ASONAM, 2014 IEEE/ACM International Conference on, 2014, pp. 472–480.
[5] H.Wang, D. Kifer, C. Graif, Z. Li, Crime rate inferencewith big data, in: Proc. of the 22ndACMSIGKDD International Conference onKnowledgeDiscovery

and Data Mining, KDD ’16, ACM, 2016.
[6] C. Catlett, T.Malik, B. Goldstein, J. Giuffrida, Y. Shao, A. Panella, D. Eder, E. van Zanten, R.Mitchum, S. Thaler, I.T. Foster, Plenario: An open data discovery

and exploration platform for urban science, IEEE Data Eng. Bull. 37 (4) (2014).
[7] New York city opendata, , 2018-09-30.
[8] C. Catlett, E. Cesario, D. Talia, A. Vinci, A data-driven approach for spatio-temporal crime predictions in smart cities, in: Proceedings of the 2018 IEEE

International Conference on Smart Computing, SMARTCOMP’18, 2018, pp. 17–24.
[9] K. Kianmehr, R. Alhajj, Crime hot-spots prediction using support vector machine, in: Computer Systems and Applications, 2006. IEEE International

Conference on, 2006, pp. 952–959.
[10] H.Wang, D. Kifer, C. Graif, Z. Li, Crime rate inferencewith big data, in: Proc. of the 22ndACMSIGKDD International Conference onKnowledgeDiscovery

and Data Mining, ACM, 2016, pp. 635–644.
[11] Y. Zhuang, M. Almeida, M. Morabito, W. Ding, Crime hot spot forecasting: A recurrent model with spatial and temporal information, in: 2017 IEEE

International Conference on Big Knowledge, ICBK, 2017, pp. 143–150, http://dx.doi.org/10.1109/ICBK.2017.3.
[12] B. Chandra, M. Gupta, M. Gupta, A multivariate time series clustering approach for crime trends prediction, in: Systems, Man and Cybernetics, 2008.

SMC 2008. IEEE International Conference on, 2008.
[13] W. Gorr, A. Olligschlaeger, Y. Thompson, Short-term forecasting of crime, Int. J. Forecast. 19 (4) (2003) 579–594.
[14] P. Chen, H. Yuan, X. Shu, Forecasting crime using the ARIMA model, in: Fuzzy Systems and Knowledge Discovery, 2008. FSKD ’08. Fifth International

Conference on, vol. 5, 2008, pp. 627–630.
[15] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, in: Proceedings of the

Second International Conference on Knowledge Discovery and Data Mining, KDD’96, AAAI Press, 1996.
[16] R.J. Hyndman, G. Athanasopoulos, Forecasting: Principles and Practice, OTexts.com, 2014.
[17] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5–32.
[18] A. Hall Mark, H. Witten Ian, Frank Eibe, Data Mining: Practical Machine Learning Tools and Techniques, Morgan Kaufmann, 2011.
[19] S. Nasa C., Evaluation of different classification techniques for WEB data, Int. J. Comput. Appl. 52 (9) (2012) 34–40.

http://refhub.elsevier.com/S1574-1192(18)30542-X/sb3
http://refhub.elsevier.com/S1574-1192(18)30542-X/sb5
http://refhub.elsevier.com/S1574-1192(18)30542-X/sb5
http://refhub.elsevier.com/S1574-1192(18)30542-X/sb5
http://refhub.elsevier.com/S1574-1192(18)30542-X/sb6
http://refhub.elsevier.com/S1574-1192(18)30542-X/sb6
http://refhub.elsevier.com/S1574-1192(18)30542-X/sb6
http://refhub.elsevier.com/S1574-1192(18)30542-X/sb10
http://refhub.elsevier.com/S1574-1192(18)30542-X/sb10
http://refhub.elsevier.com/S1574-1192(18)30542-X/sb10
http://dx.doi.org/10.1109/ICBK.2017.3
http://refhub.elsevier.com/S1574-1192(18)30542-X/sb13
http://refhub.elsevier.com/S1574-1192(18)30542-X/sb15
http://refhub.elsevier.com/S1574-1192(18)30542-X/sb15
http://refhub.elsevier.com/S1574-1192(18)30542-X/sb15
http://refhub.elsevier.com/S1574-1192(18)30542-X/sb16
http://refhub.elsevier.com/S1574-1192(18)30542-X/sb17
http://refhub.elsevier.com/S1574-1192(18)30542-X/sb18
http://refhub.elsevier.com/S1574-1192(18)30542-X/sb19

	Spatio-temporal crime predictions in smart cities: A data-driven approach and experiments
	Introduction
	Related Work
	Problem Definition and Goal
	The Proposed Approach
	The Algorithm
	Detection of Crime Dense Regions
	Extraction of Crime Predictors

	Analysis and Experimental Results
	Chicago: Experimental results
	Data Description
	Detection of Crime Dense Regions from the Training Set
	Training and Evaluating the Regressive Crime Models

	New York City: Experimental results
	Data Description
	Detection of Crime Dense Regions from the Training Set
	Training and Evaluating the Regressive Crime Models

	Comparative Analysis with Other Approaches

	Conclusion
	References


