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ABSTRACT
The success of Cloud Computing and the resulting ever growing of large
data centers is causing a huge rise in electrical power consumption by
hardware facilities and cooling systems. This results in an increment of
operational costs of data centres, that is becoming a crucial issue to deal
with. Consolidation of virtual machines (VM) is one of the key strategies
used to reduce the power consumption of Cloud servers. For this reason,
it is extensively studied. Consolidation has the goal of allocating virtual
machines on a few physical servers as possible while satisfying the Service
Level Agreement establishedwith users. Nevertheless, the effectiveness of a
consolidation strategy strongly depends on the forecast of the VM resource
needs. Predictive dataminingmodels canbe exploited for this purpose. This
paper describes the design and development of a system for energy-aware
allocation of virtual machines, driven by predictive data mining models. In
particular,migrations are driven by the forecast of the future computational
needs (CPU, RAM) of each virtual machine, in order to efficiently allocate
those on the available servers. The experimental evaluation, performed on
real-worldClouddata traces, reports a comparisonofperformanceachieved
byexploiting several classificationmodels and showsgoodbenefits in terms
of energy saving.

The energy-aware cloud architecture.
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1. Introduction

1.1. Motivations

In recent years, an increasing number of companies are migrating their data, software, and services
on the Cloud, because this relieves them from the need for setting up basic hardware and software
infrastructures, and thus enabling more focus on innovation and creating business value for their
services. In addition, the opportunity of using Cloud resources on a pay-as-you-gobasis, the availability
of powerful data centres and high bandwidth connections is speeding up the success and popularity
of Cloud systems, which is making on-demand computing a common practice for many enterprises
and scientific communities [1–4].

The success of Cloud Computing is causing, as a natural consequence of it, a notable increase in
its global operative costs. In particular, the ever growing of large data centres results in a huge rise
of electrical power consumed by hardware facilities and cooling systems. For instance, the energy
consumption of the Data Center Networks roughly occupies 1.5% of global power consumption and
increases double every five years [3]. Moreover, the rapid diffusion of mobile applications and social
networking sites, e.g. Facebook and Twitter, have accelerated data access on the network, especially to
sharemedia (photos, videos) contents. It is estimated that video streaming traffic (e.g. YouTube,Netflix)
generates more than 50% of the downstream traffic during the peak period and it will increase 16-fold
videos during the year 2017 [3]. Thus, according to the current growing speed in data centres, it will
consume about 140W billion energy in the United States every year, making the energy consumption
a key challenge in the coming years [1].

Unfortunately, the high power utilisation of Cloud data centre has several consequences. First,
operational costs of data centre management will become overwhelming for the companies, that
will be forced to increase the price of the services offered to the users [1,5]. Second, high power
consumption results in reduced system reliability and devices lifetime due to overheating of hardware.
Third, the higher the energy request, the higher CO2 emissions to produce it. This contributes to the
greenhouse effect, thus affecting the carbon footprint of data centres and aggravating, on the global
scale, the problem of global warming [1]. Therefore, the energy consumption reduction is becoming
an important issue that is attracting a huge attention in cloud data centres management.

1.2. Objectives and contributions

One of the major reasons for the huge amount of consumed power is the inefficiency of data centres,
which are often under-utilised: several research works estimate that servers in many organisations
typically run at less than 30% of their full capacity [6,7]. In addition, it has to be considered that an
idle server consumes approximately 65–70% of the power consumed when it is fully utilised [8]. As
a consequence of that, having servers idle or whose computational facilities are not properly used,
generates relevant waste of energy.

At the software level, one of the most popular ways to reduce the power consumption of a data
centre consists in the consolidation of virtual machines. By exploiting the virtualization mechanism,
user processes are not assigned directly to servers, but are first associated with Virtual Machine (VM)
instances, which, in turn, are run by servers. A virtual machine is a software black box encapsulating
one (or more) virtualized service(s), that can be moved, copied, created and deleted depending on
management decisions. In addition, the use of virtualization allows heterogeneous platforms to be
executed on any kind of hardware facility. The basic idea of the consolidation approach is to allocate
the virtualmachines on a few physical servers as possible, while satisfying various constraints specified
as part of the system requirements. In this way, by assigning the virtual machines to aminimal number
of physical servers, some of the nodes will get a higher load, but others will be unused and can be
turned off (or hibernated). These operations, de facto, reduce the number of physical servers needed
to be active (i.e. turned on) and reach the goal of saving energy.
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The optimal mapping of VMs to servers, so as to minimise energy consumption, is a NP-hard
problem and requires a full knowledge of the server loads. From one side, it is profitable to maximise
the number of virtual machines allocated on each physical node, so as to minimise the number of
servers turned on. On the other hand, an aggressive consolidation of VMs could excessively load
physical servers and can lead to performance loss. Nevertheless, it is essential for Cloud providers to
offer reliable Quality of Service (QoS) for the customers that is negotiated in terms of Service Level
Agreements (SLA), i.e. throughput, response time. For such a reason, consolidation algorithms have
to deal with a power-performance trade-off, which reduces the energy consumption while satisfying
performance constraints at the same time.

This paper describes the design and development of a system for energy-aware allocation of virtual
machines on Cloud physical nodes. In particular, the migration is driven by the prediction of the
future computational needs (CPU, RAM) of each virtual machine, in order to efficiently allocate those
on the available servers. The approach is composed of three main steps. First, virtual and physical
machines are monitored, in order to collect data on their real resource utilisation. Second, such data
are analysed by a data mining algorithm, to discover knowledge models that are descriptive of the
resource needs of each virtual machine; in this way, each model should reflect the characteristics of
resourceusageof the individual VMaccurately. Third, at runtime, once resourcedemands arepredicted
by such knowledge models, the allocation of virtual machines on the available servers is periodically
done, by minimising the number of busy servers while satisfying performance constraints and Service
Level Agreement established with users. We apply the proposed methodology to a real-world dataset
(data collected through a private Cloud system), exploiting several data-driven classification models
to perform resource-usage predictions. Experimental evaluation shows that, due to complexity and
large data involved in the application scenario, the proposed energy-aware framework achieves good
benefits in terms of energy saving, number of migrations and SLA violations.

For the sake of clarity, this paper extends the works presented in [9,10] and it provides several
original contributions with respect to the previous ones. In particular: (i) the problem formulation
and the description of the proposed framework have been enhanced; (ii) the experimental evaluation
has been extended, by reporting several additional experimental results; (iii) finally, a comparison of
performance achieved by the framework exploiting several classification models is reported.

1.3. Plan of the paper

The rest of the paper is organised as follows. Section 2 reports the state-of-art of the approaches for
energy-aware virtual machines allocation proposed in literature. Section 3 describes our approach,
where migrations of virtual machines are driven by resource-demand predictive models. Section 4
reports experimental results carried on real-world resource-usage traces and evaluates the effective-
ness and efficiency of the proposed strategy. Finally, Section 5 concludes the paper and plans further
research works.

2. Related work

As the Cloud computing paradigm and its applications are rapidly emerging, many studies focus
on algorithms and procedures aimed at reducing the power consumption of data centres and
improving the ‘green’ characteristics of Cloud environments. We briefly report in the following the
most interesting software-based approaches for virtualized data centres, oriented to optimise task
scheduling, resource allocation and virtual machines consolidation.

A greedy algorithm for an efficient allocation of virtual machines on physical servers is proposed
in [1]. To address this issue, authors propose a virtual machine placement scheme meeting multiple
resource constraints, such as the physical server size (CPU, memory, storage, bandwidth, etc.) and
network link capacity. The final aim is to improve resource utilisation and reduce both the number of
active physical servers and network elements, so as to finally reduce energy consumption. The virtual
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machine placement problem is abstracted as a combination of bin packing problem and quadratic
assignment problem, and a greedy algorithm by combining minimum cut with the best-fit has been
described and experimented in a simulated scenario.

In [11] authors have studied the problem of request scheduling for multi-tiered web-applications
in virtualized heterogeneous systems to minimise energy consumption, while meeting performance
requirements. In particular, the paper analyses the effect of performance degradation due to high
utilisation of different resources when the workload is consolidated. The paper shows that the energy
consumption per transaction results in a U-shaped curve, and it is possible to determine the optimal
utilisation point. To handle the optimization over multiple resources, authors model the workload
consolidation problem as a multidimensional bin packing problem and propose a heuristic to solve it.

In [12] a new architecture for cloud resource allocation is proposed, which maps groups of tasks to
customised virtual machine types. The mapping is based on task usage patterns detected through
the analysis of utilisation trace data. To do that, tasks using a similar quantity of resources are
grouped together by clustering algorithms. Then the clustering output is used for the determination
of customised virtual machine types. The proposed solution results to be effective in decreasing the
resource wastage in data centres via virtualization and efficient resource allocation policies.

A new virtual machine placement algorithm is proposed in [13], which is aimed at handling
deployment, migration, and cancellation of virtual machines. Specifically, a mathematical model is
used to build a CPU utilisation estimator that can be used to forecast current and future energy
efficiency at different levels (virtual machine, node, infrastructure, and service levels). Experimental
results show that when running webworkloads, estimators focused on noise filtering provide the best
precision even if they react slowly to changes, whereas reactive predictors are desirable for batch
workloads.

Apower-aware algorithm for VMallocations in virtualizedheterogeneous computing environments
is proposed in [14]. The approach is aimed at leveraging the min, max and shares parameters of VM
monitor, which representminimum,maximumandproportion of the CPU allocated to VMs sharing the
same resource. The key strategy is to adopt a shares based mechanism for the hypervisor to distribute
spare resources among contending VMs. The running tasks are assigned to the VMs (that have been
configured by the aforementioned parameters), in order to minimise the power usage. A limitation of
the approach is that the allocation of VMs is static (and not adapted at runtime) and no other resources
except for the CPU are considered during the VM reallocation.

A bio-inspired approach for adaptive assignment of VMs to servers and their dynamic migration
is presented in [5], with a twofold goal: reduce the energy consumption and meet the Service Level
Agreements established with users. The main goal is to cluster VMs in as few servers as possible, using
statistical procedures for the assignment and the migration of VMs. Specifically, a new VM is assigned
to one of the available servers through statistical Bernoulli trials for which the success probability
depends on the current utilisation of the servers. On the other hand, the migration procedure fosters
the relocation of VMs from servers in which the current utilisation is either too high or too low, that
is, above or below two defined thresholds. In the first case, the migration of a VM helps to prevent a
possible overload of the server, which may lead to Service Level Agreement (SLA) violations. In the
second case, the objective of the migration is to take VMs away from lightly loaded servers, and then
power off these servers.

A study and evaluation of some energy-aware allocation policies, aimed atminimising energy costs
of Cloud platforms, is provided in [15]. In this case, the power consumption is minimised by switching
off/on some servers whenever it is convenient and thus improving the utilisation of the server farm.
To do that, two heuristics are proposed. The first one, named adaptive, takes decision at runtime
with respect to the current computational load of the servers. The second one, named predictive, is
based on the assumption that the load typically follows certain patterns (daily, weekly, etc.) and thus
estimates the future arrival rate of jobs. Authors claim that such a heuristic has experimentally shown
good results under different workload conditions.
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In [16] an algorithm for energy-efficient management of homogeneous resources in Internet
hosting centres is proposed. The main idea is to determine the resource demand of each application
at its current request load level, and to allocate resources in the most efficient way. In particular,
the system maintains an active set of servers selected to serve requests for each service. Energy
consumption is reduced by switching idle servers to power saving modes (e.g. sleep, hibernation),
through the applicationof statistical approaches that reduce thenumberof unproductive reallocations
and lead to a more stable and efficient control.

In [17] an approach for power-efficient resource management of Web servers, satisfying a fixed
SLA (response time) and load balancing, is provided. In detail, authors propose two power saving
techniques: (i) switching power of computing nodes on/off and (ii) Dynamic Voltage and Frequency
Scaling (DVFS). The main idea of the policy is to estimate the total CPU frequency required to provide
thenecessary response time, determine theoptimal number of physical nodes and set theproportional
frequency to all the nodes. A similar technique has been proposed in [18], where the load balancing is
handled by an external system, which is driven by a centralised algorithm.

A software consolidation solution for saving both energy and cost is proposed in [19], which suits
theSoftware-as-a-Service (Saas) cloudmodel. Insteadof trying to consolidateonly virtualmachines, the
approach relieson thedynamic consolidationof softwareapplications, so as to reduce the total number
of VMs used. The algorithm takes into account issues like software isolation and migration, and shows
better performance when software consolidation is combined with virtual machine consolidation.

A solution for the management of resources aims at coping with traffic burst is presented in [20].
The main contribute of the work consists in a novel model for workload bursts forecasting, which is
exploitable to create, migrate or destroy VMs so as to both guaranty QoS and save costs. However,
such a solution does not explicitly consider energy efficiency as a goal.

Most of cited approaches try to reduce energy consumption by virtual machine consolidation,
which is currently considered as the most effective way exploited to decrease the number of active
servers. Assignments and migrations of virtual machines are made by some scheduling algorithm or
statistic technique. However, resource needs of virtual machines may change over time due to the
workload variability, so such techniques sometimes are not able to well model the variability over time
of the VM resource needs. Differently from the approaches described above, in this paperwepropose a
VM data-driven consolidation approach to forecast resource needs of each machine in the future. The
approach is based on data mining models. Such knowledge models are trained off-line from historic
data and are used at runtime to drive energy-efficient allocation of virtual machines.

3. The proposed approach

This section presents the high-level architecture we designed for supporting energy-aware allocations
of virtual machines, based on predictive data mining models. The architecture, depicted in Figure 1,
includes some components working on-line (to plan and execute live VM migrations) and other ones
acting off-line (to analyse log usage data and extract predictive models). The system includes the
following modules:

• Physical and Virtual Machines. Physical machines are the underlying physical computing servers
which constitute the hardware infrastructure of the Cloud data centre. On each server, multiple
virtual machines can be dynamically started and stopped according to incoming requests, and
they can be migrated from one to another machine with respect to the decisions taken by the
VM Migrations Manager module. Whenever a server results with no virtual machine running, it
can be turned off or switched to a low-power mode for saving energy.

• VM Monitor. Virtual machines resource needs (CPU, RAM, storage) are monitored by the VM
Monitor module, which is a software component running on the server and in charge of storing
VM resource usage data over a time horizon. It is usually implemented as a low-priority running
process that collects resource usage data including CPU,memory and I/O bandwidth of all virtual
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machines and physical machines. The most important virtualization suites provide a module to
collect performance data (e.g. vCenter Server of VMware [21]), that are usually stored in text files
(labeled in Figure 1 as VM Resource Usage Data).

• consumption modeller. This component analyses resource usage data of virtual machines by
executing a data mining algorithm, with the goal of discovering patterns or trends that are
generally followed. In particular, the consumption modeller extracts a specific model for each
virtual machine, aimed at having an accurate model for each one. Different kinds of models
can be exploited, i.e. classification tree, numeric regression, neural network, etc. as well as more
complex ones (obtained by ensemble-learning or meta-learning approaches). The data mining
algorithms adopted in this work are described in Section 4.2.

• VM Migrations Manager. This module handles virtual machine migrations, with the goal of
minimising the number of running servers. Synchronized by a periodic trigger, each T time
the VM Migrations Manager obtains, by the consumption model, a prediction of the resource
sizes that will be used by the virtual machines in the next T -time window. According to that, it
plans a new relocation, aimed at reducing the number of busy physical machines while satisfying
SLA constraints. Obviously, servers with no virtual machines running on it are switched off.
Moreover, to avoid that CPU/RAM demands (at runtime) exceed resources actually available
on the physical servers, the consolidation policy allocates the virtual machines by cautiously
considering as upper bound the δ ratio (with δ assuming values in [0, 1]) of the server resource
availabilities, thus saving the other 1 − δ ratio for unpredicted needs.

We describe here by an example the steps composing the whole process, by pointing out details
of the interactions between entities composing the architecture. Let us suppose N physical servers,
where several virtual machines in charge of running client tasks are allocated on. At runtime, CPU and
RAM needs of each virtual machine are monitored by the VM Monitor module and suitably logged
as VM Resource Usage Data (step 1). Periodically, such data are analysed off-line by the consumption
modeller (step 2), with the goal of discovering usage models for CPU and RAM resources (step 3),
labeled in Figure 1 as fCPU and fRAM functions. Such models are used on-line by the VM Migrations
Manager, with a period T , to forecast resource sizes used by virtual machines in the next T -time
window (step 4). Based on this information, it plans a new relocation of the virtual machines, aimed at
managing their consolidation in a minimum number of servers while satisfying SLA constraints (step
5). As a consequence of that, some servers will get a higher load, but others will be unused and can be
hibernated or turned off. For example, Figure 1 shows that virtual machines of the server 2 are moved
to other servers (1 and 3 respectively) and it can be switched off.

4. Experimental evaluation

To evaluate effectiveness and performance of the proposed energy-aware approach, we carried out
several tests considering various scenarios. Themain goal of our experiments is to quantify howmuch
energy can be saved when VM migrations are driven by data mining models with respect to a no
energy-aware case, while satisfying performance constraints and offering a reliable quality of service
to users. The experimental evaluation, performedon real data, showshowour approach canbe applied
on a concrete private Cloud scenario and how it can provide benefits in terms of energy saving.

We also present a comparative evaluationof several algorithmsused for usage resource predictions.
Details about tests and results on real data are reported in the following subsections. In particular,
Section 4.1 presents the experimental setting used for the experiments, Section 4.2 describes the
data mining algorithms exploited to discover predictive usage models, Section 4.3 introduces the
evaluation metrics adopted to assess system performances, and Section 4.4 reports the experimental
results achieved by running tests in different scenarios.
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Figure 1. The energy-aware cloud architecture.

4.1. Experimental setting and VMusage data

The experimental scenario of our tests is a real private Cloud system composed of 10 servers, running
VMWare as virtualization software, with 75 virtual machines running on the servers. Each server is
equipped with 8 cores, all having 3 GHz CPU frequency; 4 servers have 32 GB and 6 servers have 24 GB
of RAM. Such machines have been monitored for 80 days during their operations, by collecting data
on resources used to execute running tasks. The tweaking of resources has been done by a module
implemented on vSphere. In particular, performance data have been stored in a file, populated by
records reporting CPU and RAM needs (sampled every 5 min) of the virtual machines.

As the targeted system is a generic Cloud computing environment, it is essential to evaluate it
on a large-scale virtualized data centre infrastructure. However, it is extremely difficult to conduct
repeatable large-scale experiments on a real infrastructure, which is required to evaluate and compare
the proposed resourcemanagement algorithms. Therefore, to ensure the repeatability of experiments,
simulations have been chosen as a way to evaluate the performance of the proposed heuristics.
Specifically, the experimental evaluation has been carried out by running an ad hoc discrete-event
simulator developed in Java. Our goal was to reproduce the behaviour of the architecture described in
Section 3 by simulating virtual machine migrations, server switching on/off, the energy consumed by
servers, etc. An event queue is used to exchange messages and data among Java objects associated
with the system components, i.e. physical server, virtual machines, VM migration manager, etc. To
make the simulator behaviour the most adhering to the real case, we implemented it by taking into
account the time needed to perform a live migration of a virtual machine from a server to another
one, the additive CPU overhead to do that, the capacity of each physical machine (in terms of CPU
power and memory), etc. In particular, the time elapsed for migrations has been computed as the size
of its memory divided by the available network bandwidth [22], while the CPU overhead has been
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Table 1. Bin boundaries for CPU usage.

Bin Level consumption CPU usage range (GHz) RAM usage range (GB)

1 Very low 0.18–1.26 0.052–1.63
2 Low 1.27–2.34 1.63–3.21
3 Medium 2.35–3.43 3.21–4.79
4 High 3.44–4.51 4.79–6.37
5 Very high 4.52–5.60 6.37–7.95

considered equal to almost 1% of the nominal CPU power, in accordance with the results reported
in [23].

The experimental evaluation has been carried on as follows. First, we collected usage data from a
real private Cloud (above described) and partitioned it in training and test sets. Second, we analysed
the training set to discover predictive models (fCPU and fRAM functions) for each virtual machine. Third,
by exploiting the simulator developed to reproduce the behaviour of the architecture described in
the paper, we performed several runs on the test data set and evaluated energy consumed, number
of migrations, SLA violations, etc. to assess the effectiveness of the energy-aware approach. We also
present a comparative evaluation of several algorithms exploited for usage resource predictions.

4.2. Discovery of predictive usagemodels

As described in Section 3, the consumption modeller analyses virtual machine usage data with the
goal of discovering their resource utilisation patterns and trends. Such data-driven knowledge is
used at runtime to plan an energy-efficient allocation of virtual machines across the available servers.
In particular, in our approach the discovery of predictive usage models has been modelled as a
classification task andhasbeen implemented through several algorithms, asdescribed in the following.

A classification task can be defined as follows. Let us suppose a collection of records, each one
modelled as a tuple 〈x, y〉, where x is the attribute set (features of the record) and y is the class label
(category or target attribute). The classification goal consists in learning a target function f , i.e. the
classification model, which maps each possible attribute set x to one of the predefined class labels y.
The target function can be used to classify future data for which the class labels are unknown.

For the purposes of this work, the input data set consists of 〈vm,month, day, dayOfWeek, hour,
minute,cpu-usage,ram-usage〉 instances, representing that the virtual machine vm has requested cpu-
usage and ram-usage resource sizes at the timestamp identified by the 〈month, day, dayOfWeek, hour,
minute〉 attribute set. In order to be suitable for a classification task, cpu-usage and ram-usage class
attributes have been discretized in 5 bins, as reported in Table 1, where each bin represents a specific
value range. This has been performed by adopting a discretization approach [24], which tries to put
the same number of objects into each bin (or interval) and well works when there are outlier values.
Such intervals correspond to several levels of usage resources, that can be seen as interval labels (i.e.
1.27–2.34 GHz, 2.35–3.43 GHz, 3.44–4.51 GHz) or conceptual labels (i.e. low,medium, high usage). The
goal of the consumption modeller is to learn (for each virtual machine vm) two target functions, fCPU
and fRAM, which can be used to predict future resource needs of vm in terms of computation and
memory usage. Specifically, when a new attribute set 〈month, day, dayOfWeek, hour,minute〉 is given
in input, fCPU and fRAM return the estimated CPU and RAM needs of a virtual machine at the given
timestamp. The whole dataset, composed of almost 1728 millions of tuples, has been split into two
parts, whose sizes are circa 2/3 (53 days) and 1/3 (27 days) of the whole file, respectively. The first one
has been used as training set to discover predictive models, while the second one (or testing set) has
been exploited as a test bed to validate the approach.

For what concerns the classification algorithms, in this work we exploit J48, RandomForest, and JRip.
Specifically, J48 is an implementation of the C4.5 classification algorithm [25], which builds decision
trees from a training set using the concept of information entropy. During the execution, at each node
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Table 2. Average error prediction of the classifiers, computed by ten-fold cross-validation.

Error prediction
Classification algorithm CPU (%) RAM (%)

J48 8.1 21.1
JRip 6.7 18.9
RandomForest 10.5 25.7

of the tree J48 chooses the attribute thatmost effectively splits the current sample set into subsetsw.r.t.
the normalised information gain. Once the attribute is chosen, a value is select for splitting the current
set into subsets, and thus for making the decision. JRip is an implementation of the RIPPER algorithm
(Repeated Incremental Pruning to Produce Error Reduction) [26], which is a propositional rule learner
adopting rule pruning policies aimed at avoiding data overfitting. Finally, RandomForest [27] is an
ensemble classification algorithm that builds a collection of different decision trees, and exploits them
for classifying new objects by aggregating predictions of all trees through a voting technique. The
average error rate (i.e. number of wrong predictions on the total number of predictions) of classifiers
on the test set is reported in Table 2, which has been computed by a ten-fold cross validation method.
Error predictions are quite low for CPU usage, while show higher values for RAM. In particular, we can
notice that JRip achieves generally an higher accuracy than the other two algorithms.

4.3. Evaluationmetrics

The goal of the experimental evaluation is to assess the energy saving effectiveness of the proposed
framework, aswell as to evaluate how the number of virtualmachinemigrations and SLA violations are
affected by it. In particular, we evaluated the results by exploiting the following performance metrics:

• Total Energy Consumption E. To analyse the amount of consumed energy, we adopt a general
model described by several studies ([8,28–31]). Specifically, the power consumed in data centres
is mostly determined by the CPU, memory, disk storage, and network interfaces. Nevertheless,
in comparison to other system resources, the CPU consumes the main part of the energy, hence
the consumed power is generally computed by taking into account only the CPU utilisation.
From these studies results that the power consumption at time t of a server i is expressed by the
following mathematical model:

Pi(t) = PMAX · (0.7 + 0.3 · ui(t))

where PMAX is the maximum power consumed when the server is fully utilised (it is usually equal
to 250W for modern servers) and ui(t) is the CPU utilisation ratio at time t in the server i. From
the formula, it clearly results that on average an idle server consumes approximately 70% of the
power consumed by a server running at the fully utilised CPU. This fact justifies the technique
of switching idle servers to the sleep mode to reduce the total power consumption. In our
experiments, the total energy consumption Ei of a physical node in the time interval [t0, t1] has
been computed as an integral of the power consumption function over the given period of time.
Finally, the total energy E consumed in a data centre composed of N servers is computed as:

E =
N∑

i=1

Ei =
N∑

i=1




t1∫

t0

Pi(t) dt





• Service Level Agreement Violations. Meeting Quality of Service (QoS) requirements is extremely
important for Cloud computing environments. Generally, QoS requirements are commonly
formalised in the form of SLAs violations, which can be determined as the number of times

698 A. ALTOMARE ET AL.



Figure 2. Consumed energy vs. T (hours), varying predictive algorithms, considering δ = 0.6.

the cumulative CPU demand (at runtime) over a server exceeds that physically available on it,
thus causing a computational overload and some performance degradation.

• Virtual Machine Migrations. Live migration of VMs allows transferring a VM between physical
nodes without suspension and with a short downtime. However, live migration has a negative
impact on the performance of applications running in a VM during a migration, because VM
images must be transferred from source to destination nodes, and several memory pages
(depending on the application) must be updated at both nodes during the course of migration.

In the next section, we will describe the results obtained through an extensive evaluation carried
out in various experimental scenarios.

4.4. Results

To validate the energy-aware method presented in Section 3, we adopted as benchmark the testing
dataset above described (see Section 4.2) and we performed our tests in different scenarios:

• no-energy aware case: this scenario corresponds to the case where no energy-aware policy is
adopted; to do that, we ran the simulator in the hypothesis that the VM Migration Manager is
disabled, thus reproducing resource needs and migrations among hosts of virtual machines as
contained in the inputfile; inparticular, the relocationpolicy adopted in theno-energyaware case
is the load balancing strategy, which represents an useful baseline for a performance comparison
with other approaches;

• energy-aware case: this scenario corresponds to the case where migrations of virtual machines
are forced by the VM Migration Manager module of the architecture, on the basis of VM usage
predictions; various tests have been carried out by varying the consolidation period T and the
threshold load δ; moreover, as introduced in Section 4.2, several predictive algorithms have
been used (JRip, J48, RandomForest), in order to provide a comparative analysis in terms of
effectiveness and performance of the proposed approach;

• oracle: this scenario corresponds to the case where we suppose that the VM Migration Manager
can query an oracle to have advance knowledge about resource sizes (cpu, ram)will be requested

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 699



Figure 3. Number of SLA violations vs. resource limit (δ), considering T = 0.5.

in the future by each virtual machine, and can handle their relocations on the basis of such
information; this case is obviously not applicable to reality, but it is a reference scenario showing
the best result that we could achieve (in theory).

As a first result, let us show how the consolidation period T influences the energy consumption.
Figure 2 plots the total energy consumed by the data centre over the whole simulation time, for
reallocation periods T values ranging from 0.5 to 10 h. By observing the chart, we can make two main
observations. First, the adopted energy-aware approaches obtain better results for shorter reallocation
periods; in particular the lowest energy consumption is achieved for T = 0.5 h. This is a reasonable
result, because shorter T values guarantee more frequent predictions of VM resource needs and, thus,
more reactive VM reallocations to changing resource demands at runtime. In addition, this means that
predictions of the consumption modeller have an effective impact on the overall system efficiency.
Second, the chart shows that (as expected) the load balancing strategy (i.e. no-energy aware scenario)
is not influenced by T , and that oracle-driven relocations achieve the best results with respect to the
other policies. Finally, for small values of T the energy consumed by adopting J48-driven, JRip-driven
andRandomForest-drivenpolicies is lower than the loadbalancing case, thus showing the effectiveness
of the data-driven relocation policies. In particular, since T = 0.5 h is the best relocation period value
in terms of consumption in all cases, we will show further results considering this value setting.

Now, let us consider how the proposed data-driven approaches influence SLA violation events.
Since virtual machine allocations performed in the energy-aware scenarios are based on resource
predictions, it is possible that some of them are incorrect (e.g. the virtual machine CPU/RAM needs
forecasted by the classifier is less than that will be used at runtime); this could lead to consolidate
on a server a set of virtual machines whose cumulative CPU demand (at runtime) will exceed that
physically available on it, by causing a SLA violation (and a consequent degradation of the QoS).
Such a problem can be handled by cautiously considering a δ fraction of server resource availabilities
as upper bound, thus saving the other 1 − δ for unpredicted needs. Figure 3 reports the number
of SLA violations vs. δ, for different predictive algorithms (fixed T = 0, 5 h). As expected, the higher
δ the higher SLA violations. In particular, the number of violations computed in the load balancing
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Figure 4. CPU utilisation (%) of each server vs. time (fixed T = 0.5 h and δ = 0.75).

(i.e. no-energy aware) scenario is 184, and such value is comparable with the number of violations
computed in the energy-aware scenarios when δ is fixed to 0.75 (59, 162, and 61 violations for J48,
JRip and RandomForest, respectively). Thus, in order to provide results in similar QoS conditions for a
fair performance comparison, in the following we will show further experimental results for δ = 0.75
(i.e. 75% as resource usage limit).

As explained in Section 3, the architecture presented in the paper achieves energy saving by a
more efficient CPU usage of the servers and by allocating all tasks on aminimum number of machines.
In this way, some servers will get a higher load, but others will be unused for some periods and can
be switched off, finally reducing the energy consumption. This phenomenon is clearly pointed out
in Figure 4, which shows the CPU utilisation rate of the servers in the load balancing, oracle, and
energy-aware cases, for T = 0.5 h and δ = 0.75. We can observe that in the first scenario (see Figure
4(a)) all servers are turned on for the whole observed time period, with a CPU usage that is balanced
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Figure 5. Cumulative consumed energy vs. time (fixed T = 0.5 h and δ = 0.75).

Figure 6. Cumulative migration number vs. time (fixed T = 0.5 h and δ = 0.75).

between them and with some peaks depending on the variability of the running tasks needs. In this
case, the average CPU usage is about 34.4%. In the second and third scenarios (see Figure 4(b) and (c)),
where the J48-driven and JRip-driven energy-aware policies are adopted, it clearly appears that all the
computational work is done by seven and six servers (respectively) which get higher loadswith respect
to the previous case, while the remaining three and four machines (respectively) are inactive. Indeed,
this is the positive consequence of virtual machine consolidations, that is, reducing the number of
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physical servers turned on for all the time. In this case, considering the active servers, the average CPU
usage is about 49.7% for J48 and 57.3% for JRip. Finally, Figure 4(d) shows the CPU utilisation rate of
the servers, when migrations are planned in the oracle case. We can observe some differences with
respect to the energy-aware case, that is worth noting more in detail. First, the CPU usage rate in the
energy-aware case ranges from low values, i.e. 8%, to high values (one server uses even the 92% of its
cpu power). In the oracle case, we can observe a more balanced cpu usage, where the most of servers
(with some exceptions) exploit between 60 and 80% of their computational power, with an average
CPU usage about 68.8%. Considering such results, we observe that the oracle strategy achieves two
goals: (i) the lowest number of machines are running (only five machines) w.r.t. the other cases and (ii)
the load capacity threshold of the servers is always respected (sincemigrations are driven by an oracle,
there are no errors in predictions and no SLA violations).

The energetic effectiveness of the proposed energy-aware approach can be inferred from Figure
5, which shows the energy consumed by the data centre over the whole simulation time (646.5 h,
corresponding to circa 27days) in thedifferent scenarios. Theenergy consumptionhasbeen computed
by summing up the energy consumedby all the hosts. In particular, the figure shows consumed energy
values for different algorithms exploited for relocation. We can observe that the Load Balancing
strategy achieves the highest energy consumption, while the Oracle approach obtains the lowest
energy consumption. The other policies (J48, JRip, and RandomForest) assess an energy consumption
lower than the load balancing scenario. In particular, at the end of the experiments, the energy
consumption is reduced from 1267.69 KWh (no energy-aware scenario) to 857.91 KWh (adopting the
JRip-driven relocation, for T = 0.5 h), corresponding to circa 32.32% of saving in 27 days. In theory, by
applying the oracle strategy, the energy consumption would amount to 734.41 KWh, corresponding
to circa 42.07% of saving, which represents the (theoretical) best result that could be achieved.

Finally, Figure 6 shows the cumulative number of virtual machine migrations with respect to the
time, fixed T = 0.5 h and for different data-driven relocation policies. Interestingly, the number of
migrations ranges from 16,414 (JRip) to 23,718 (RandomForest). This means that, given δ = 0.75
and T = 0.5, the JRip-driven relocation policy assesses the best results both in terms of number of
migrations and energy consumption, at expense of only slightly more SLA violations (See Figure 3).

5. Conclusion

This paper presented a data-driven system for energy-aware allocation of virtual machines in a Cloud
framework. Specifically,migrations of virtualmachines areplannedbypredicting future computational
needs (CPU, RAM) of each virtual machine through data mining algorithms, in order to plan their
efficient allocations across the available servers. Experimental evaluation of the approach, performed
on real-world Cloud data, shows encouraging benefits in terms of energy saving and SLA violations.

In future work, several research issues will be investigated. First, while this paper shows results
related to a set of well-known classification algorithms, more advanced data-driven algorithms will
be considered for the discovery of usage models, such as deep-learning models, Markov models,
and sequential patterns. Moreover, it will be interesting to study some heuristic approaches that
automatically fix the most effective values for the consolidation period T and load threshold δ. Finally,
an extension of the presented approach, which discovers clusters of virtual machines having similar
resource utilisation patterns and performs the consolidation task on the basis of this knowledge, will
be investigated.
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