
Distributed Computation of Mobility
Patterns in a Smart City Environment

Eugenio Cesario, Franco Cicirelli, and Carlo Mastroianni(B)

ICAR-CNR, Rende, CS, Italy
{cesario,cicirelli,mastroianni}@icar.cnr.it

Abstract. This paper copes with the issue of extracting mobility pat-
terns in a urban computing scenario. The computation is parallelized by
partitioning the territory into a number of regions. In each region a com-
puting node collects data from a set of local sensors, analyzes the data
and coordinates with neighbor regions to extract the mobility patterns.
We propose and analyze a “local” synchronization approach, where com-
putation regarding a specific region is performed using the information
received from a subset of neighbor regions. When opposed to the usual
approach, where the computation proceeds after collecting the results
from all the regions, our approach offers notable benefits: reduction of
computation time, real-time model extraction, better support to local
decisions. The paper describes the model of local synchronization by
means of a Petri net and analyzes the performance in terms of the abil-
ity of the system of keeping the pace with the data collected by sensors.
The analysis is based on a real world dataset tracing the movements of
taxis in the urban area of Beijing.

Keywords: Smart city · Mobility patterns · Local synchronization
Parallel computation

1 Introduction

This paper presents a novel approach that can be used for the execution of
distributed smart city applications. We consider a scenario in which the paral-
lelization of computation is performed by partitioning the territory into regions,
and each region is assigned a portion of the computation, for which the input
data has been collected locally. The sample application analyzed in this paper
is the extraction of mobility patterns traced by people and vehicles over a city
area, aiming at providing useful real-time information about mobility-related
phenomena. To this purpose, we assume the existence of a network of sensors
distributed in a city, which collect data about traffic, road, weather conditions,
noise, etc. The analysis of such data, performed in coordination among the nodes,
can provide useful real-time insights for transport users and traffic operators and
can help to tackle a vast variety of mobility situations, e.g., congestion, safety,
tolling.
c© Springer Nature Switzerland AG 2019
G. Mencagli et al. (Eds.): Euro-Par 2018 Workshops, LNCS 11339, pp. 559–572, 2019.
https://doi.org/10.1007/978-3-030-10549-5_44

mastroianni@icar.cnr.it

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10549-5_44&domain=pdf
https://doi.org/10.1007/978-3-030-10549-5_44

560 E. Cesario et al.

The presented approach exploits the fact that useful information can be
obtained by analyzing the data related to a local area of the territory. Specif-
ically, if the computing node assigned to a region is able to process local data
together with data coming from a subset of neighbor regions, it is possible to
rapidly extract mobility patterns regarding a significant portion of the city. With
this approach, the computation does not require the all–to–all or global synchro-
nization among the nodes (i.e., all the nodes need to synchronize and collect all
the data before proceeding to computation), as typical with the master-slave
paradigm. Instead, the opportunity emerges of synchronizing the computation
only among a limited number of parallel nodes, without the need for a cen-
tral coordinator node. With this “local” synchronization, a computation at one
node can proceed after being notified about the mobility patterns discovered in
neighbor nodes, and can then concatenate those patterns with the ones discov-
ered locally. This allows mobility patterns to be available much more rapidly,
while the patterns regarding the whole territory can still be made available by
progressively extending the area covered by the local patterns.

In a previous work, we assessed the benefits of local synchronization in a
context where the objective is to predict the Internet traffic generated by mobile
users in a city avenue [4,5], in a monodimensional scenario. Here we focus on a
different and more general application case where the scenario is bidimensional
and real-time analysis is crucial, as the computation needs to keep the pace
with the production of data. We consider the case in which the computation is
step-based, i.e., at the end of a predetermined time interval (i.e., an hour) it is
possible to process the data regarding that time interval. The main benefits of
local synchronization are:

– Faster computation. Local synchronization allows the overall computation
to proceed faster, see Sect. 5. Intuitively, with global synchronization a long
execution at a node compels all the other nodes to wait, thus slowing down the
overall computation, while with local synchronization only the neighbor nodes
(i.e., the nodes assigned to neighbor regions) need to wait before proceeding
to the next step;

– Real-time model extraction. The previous benefit applies both to offline and
online computation. In the latter case, a further advantage is that a faster
computation helps to keep the pace with the data collected by sensors;

– Better support to local decisions. With local synchronization mobility patterns
are available earlier, enabling a faster reaction to local events, e.g., a traffic
congestion. This is particularly useful if the territory partitioning follows the
administrative organization. For example, based on the extracted patterns,
decisions on the traffic management in a city district can be performed auto-
matically or semi-automatically;

– Better data traffic management. With local synchronization, data is trans-
mitted among neighbor nodes, which is an advantage – in terms of data
traffic, congestion avoidance and battery consumption in the case of wireless
transmission – with respect to the case when all the data is delivered to a
single node.

mastroianni@icar.cnr.it

Distributed Computation of Mobility Patterns in a Smart City Environment 561

In this paper we focus on the first two advantages. We have modeled the local
and global synchronization paradigms through a Petri net and, starting from
real data extracted from a dataset regarding the mobility of users in the city of
Beijing, China, we have performed a set of experiments varying the partitioning
of the territory and the computational power of the nodes. We came to the
conclusion that local synchronization allows the system to keep the pace with
data production in a wider set of scenarios than global synchronization.

The rest of the paper is organized as follows: Sect. 2 discusses some related
work; Sect. 3 describes the problem of extracting mobility patterns in an urban
scenario; Sect. 4 presents the Petri net that models the computation; Sect. 5
reports performance results regarding the ability of local synchronization to
timely process the generated data; Sect. 6 concludes the paper and suggests
some avenues for future work.

2 Related Work

The availability of urban and environmental data enables to extract mobility-
related knowledge and achieve real-time traffic prediction that can support citi-
zens in their everyday mobility. For example, it is possible to predict travel events
and conditions (travel times over the street segments, traffic jams, slowed down
traffic, congestion points, start-stop locations, availability of parking places) and
road infrastructure conditions (bumpy road, slippery road surface, damaged road
surface location).

Discovering mobility patterns from object movements is a very challenging
task and several approaches to deal with it have been proposed in the litera-
ture [2,3,8,9]. In [3] a sequential approach to discovery hidden periodic patterns
in spatiotemporal data is proposed. In particular, authors define the spatiotem-
poral periodic pattern mining problem and propose an algorithm for retrieving
maximal periodic patterns. Moreover, they devise a specialized index structure,
aimed at supporting more efficient execution of spatiotemporal queries over the
discovered patterns. A parallel approach to estimate an object future location,
based on pattern information and recent movements, is proposed in [2]; specifi-
cally, the discovered trajectory patterns are stored in the TPT (Trajectory Pat-
tern Tree), a tree data structure exploited for an efficient and accurate prediction
of future locations. In [8] the big data generated from mobile devices is analyzed
in parallel at different locations and a final model is extracted by aggregating
several local models following a master-worker paradigm. In particular, human
mobility patterns are discovered by learning data-adaptive representations for
cellular network data that are distributed across a set of interconnected nodes.
In [9] a cooperative smart driving direction system is presented, where GPS-
equipped taxis are employed as mobile sensors aimed at probing the traffic
rhythm of a city. In particular, the main idea is to exploit the intelligence of
experienced taxi drivers so as to provide a user with the practically fastest route
to a given destination at a given departure time.

mastroianni@icar.cnr.it

562 E. Cesario et al.

3 Distributed Mobility Analysis in a Smart City

The analysis of mobility data is conceived for a scenario in which a city is par-
titioned into N regions, and for each region a computing node (e.g., a Rasp-
berry unit) collects and processes data coming from the sensors located in the
region. As mentioned in the introductory section, mobility patterns discovered
in a region can be concatenated with those discovered in neighbor regions, so as
to obtain patterns covering a wider area. The partitioning of the city in regions
can follow the administrative organization of the city, i.e., the shapes of the city
districts. However, for the sake of simplicity, and to allow a readier analysis of the
performance results, in this paper we consider equally-sized regions, uniformly
distributed over a two-dimensional grid, as represented in Fig. 1.

Fig. 1. A city partitioned through a bidimensional grid. This map represents the city
of Beijing.

The discovery of mobility patterns is usually modeled in literature as a fre-
quent itemset mining problem [3]. Let us suppose N sensors s1, ..., sN that collect
streams of urban mobility data in a region. Specifically, each sensor si collect a
data stream of data Di = {vt1

i , vt2
i , · · · , vtn

i , · · · }, where each v
tj
i represents the

value of a given observed measure (intensity of traffic, average speed, occupation
of the lane, etc.) at the sampling time tj . A common approach to assist mobility
services is the discovery of frequent mobility patterns from such data. A frequent
mobility pattern is represented in the form vt1

i vt2
j · · · vts

k , where the elements of
the pattern represent item values that co-occur together with a high frequency
(higher than a given threshold value). The mechanisms of association allow to
identify the conditions that tend to occur simultaneously, or the patterns that
repeat in certain conditions. As an example, a frequent pattern can represent the
flow of vehicles along the city avenues, i.e., the observation that a large number
of vehicles have been observed at a given location during a time interval and have
been later observed in a successive time interval in adjacent locations. Moreover,
rules can be derived from mobility patterns, in the form vt1

i vt2
j · · · →c vts

k with
time constraints t1 < t2 < . . . < ts. The blocks on the left and on the right are
the premises and the consequence of the rule, respectively, and c is its confidence

mastroianni@icar.cnr.it

Distributed Computation of Mobility Patterns in a Smart City Environment 563

Fig. 2. Transitions modelling a grid partitioning of a city territory.

(meaning that when the premise event occurs then the consequence event will
happen with probability c).

The discovery of mobility patterns has been performed by running an algo-
rithm for frequent items and itemsets mining that we described and assessed in
[1], and then by assembling the patterns discovered locally with those received
by neighbor regions. The assembling operation consists in concatenating a pat-
tern discovered in the local region with another pattern discovered in one of
the adjacent regions, in the case that these two patterns overlap on the border
between the two regions. In this way, two local patterns are joined and a longer
inter-region pattern is discovered. This approach requires the definition of a syn-
chronization barrier: the computation at one node, at a given step, can proceed
only after receiving the results of the computation performed by neighbor nodes
in the previous step. The formalization is provided in the next section.

4 The Petri Net Computational Model

The parallel computation process described in this paper is modeled by using
a Petri net [6]. This formalism has been chosen because it allows to represent
and analyze the main issues related to the parallel and distributed nature of the
examined scenario, in particular concerning the synchronization aspects. The
city territory is partitioned into multiple regions through a bidimensional grid,
and the computation step – aiming at deriving the mobility patterns – is modeled
by considering a timed Petri net transition for each region. In Fig. 2 we report the
case in which a territory is partitioned into nine regions and, as a consequence,
nine Petri net transitions are considered. The layout of the transitions mirrors
the topological and neighborhood relationship among the corresponding city
regions. For instance, the transition A is associated with a city region which has
three neighbors, respectively modeled by the transitions B, D and E.

In the following we derive a Petri net modeling the case of local synchroniza-
tion, while at the end of this section we focus on the case of global synchroniza-
tion. Figure 3 shows the Petri net associated with a single region, in this case,
region E, chosen here because it is the one having the largest number of neigh-
bors in Fig. 2. Beyond the transition associated with the computation, a further
transition, i.e., transition P in the figure, is defined to model the data acquisition
process. The acquisition process is performed through sensors that are spread
over the territory. We assume that at each region this data is produced and

mastroianni@icar.cnr.it

564 E. Cesario et al.

collected at regular intervals of time, e.g., every hour, at a single node. The time
interval is denoted as Tprod. The transition P is used to inform the computation
transitions of all the regions that the data has been collected for the last time
interval and is ready to be analyzed.

Fig. 3. Details of the Petri net model related to a single region in the city.

With reference to Fig. 3, the node at region E (also referred to as node E
in the following) can execute the next computation step when: (i) the node has
completed the previous computation step (ii) the node has received the results
related to the previous computation at the neighbor regions and (iii) the data
collected by the sensors during the last time interval has been collected and
consigned to the node. In terms of the Petri net formalism, the transition E is
connected by inbound arcs to ten input places, and in accordance with Petri net
rules [7], the transition is enabled, and the computation can start, if all the input
places hold at least one token. More in detail, the transition at node E is enabled
when there is one token at the input place Ready, meaning that the previous
step has been executed by node E, one token at the place Data, meaning that
the sensor data is available, and one token at each of the eight remaining input
places, meaning that all the eight neighbor nodes have completed the execution
of the previous step. As an example, one token is produced at the input place AE

when the transition A has completed its execution and node A has transmitted
the results to node E.

Once the node E has completed the computation step, it communicates the
results to its neighbors. This is modeled by the Petri net as follows: after the
firing of E, a token is consumed at each input place, and a new token is generated
(i) in the place Ready and (ii) through the outbound arcs shown in the figure,
in the input places of all the node E’s neighbors, i.e., in the input place EA of
the neighbor A, in the input place EB of the neighbor B, and so forth.

Figure 4 shows a portion of the whole Petri net model, which includes the
Petri net of node E and the analogous Petri nets of the other nodes. For the
sake of readability, the input places used by a node X to synchronize with its
neighbors are collapsed into a single place, labeled as NGX , and the arc that

mastroianni@icar.cnr.it

Distributed Computation of Mobility Patterns in a Smart City Environment 565

Fig. 4. A Petri net of the proposed computational model.

connects this place to the transition X has a weight equal to the number of X’s
neighbors. For example, the eight places labeled as AE , BE , CE , DE , FE , GE ,
HE , IE in Fig. 3 are now substituted with a single node NGE connected to node
E with an arc having a weight equal to eight. Analogously, the outgoing arcs
directed to the input places of neighbor nodes are substituted with a single arc
on which the input places are specified1.

From the definition of the Petri net models, it emerges that the time experi-
enced at a generic node i at the end of the step k + 1, denoted ad Ti(k + 1), is
determined by the recursive expression (1):

Ti(k + 1) = max
(
Ti(k),max(TNgh(i)(k)), Tprodi

(k)
)

+ Tcompi
(k + 1) (1)

where TNgh(i)(k) is the set containing the times experienced at all the nodes that
are adjacent to node i at the end of the step k, Tprodi

(k) is the time at which
the data related to step k has been consigned by the local sensors to node i, and
Tcompi

(k + 1) is the time needed by node i to compute the step k + 1.
In the case of global synchronization, the approach for synchronization is cen-

tralized: at each step a central entity receives the results (i.e., the local mobility
patterns) from every node that has completed the step, and after receiving the
results from all the nodes, sends an ack to every node to trigger the execution
of the next step. For brevity, here we do not show the Petri net that models the
global synchronization case.

1 Even with these simplifications, the Petri net maintains the desired semantics if
we assume that: (i) the computation at each region has a progressive step number,
(ii) each token holds the step number of the related computation, (iii) in a NGX

input place, only the tokens having the same step number can be used to enable the
transition.

mastroianni@icar.cnr.it

566 E. Cesario et al.

5 Experimental Evaluation

In this section we analyze the performance of the sample parallel application, i.e.,
the prediction of mobility patterns for an urban scenario (Sect. 3). In this paper
we focus on the computational efficiency, while we do not discuss the semantics
of the extracted patterns, nor the way they are obtained by concatenating those
discovered in neighbor regions, which is left to a future work.

The main objective is to analyze the advantages deriving from the local
synchronization strategy, with respect to the usual global synchronization strat-
egy. We developed a Matlab simulator that reproduces the local synchronization
model, in particular the recursive expression (1) of Sect. 4, and the global syn-
chronization model. The execution times of the nodes are established by consid-
ering the real execution times obtained when executing the algorithm for mobil-
ity pattern analysis on a real dataset, namely T-Drive Trajectory Data Sam-
ple [10]. T-Drive is a collection of GPS traces describing the movement of taxis
in the city of Beijing, China. In this fashion, we were able to assess the expected
performance of local and global synchronization for a real scenario. Section 5.1
describes the T-Drive dataset and the scenario of interest, while Sect. 5.2 reports
some interesting performance results.

5.1 Dataset Description and Scenario of Interest

The temporal span of the T-Drive dataset is one week. The number of vehicles
tracked is 10,357. The total distance covered by the trajectories reaches almost
9 million kilometers, with 15 millions of locations (geographic points). The total
data size amounts to about 772 MB. The original dataset was preprocessed to
make it suitable for the analysis. In particular, we cleaned the data by remov-
ing all the points with unreliable position (i.e., coordinates with clear errors in
latitude-longitude values) and those outside the city area of interest. The final
dataset counts about 61,500 daily trajectories, each containing the set of points
traced by a single taxi during a day.

The T-Drive dataset has been used to simulate a scenario where streams of
data are collected by sensors distributed in the regions and analyzed to discover
frequent mobility patterns in a city. As mentioned in Sect. 3, the analysis has
been performed by running an algorithm for frequent itemsets mining that we
presented in [1], and then by assembling the patterns discovered locally with
those received by neighbor regions.

Since the conditions in urban environments change dynamically, the genera-
tion rate of data and the processing times vary during the day and among the
regions. For this reason, we split the T-Drive data by considering time win-
dows of one hour, and we executed the algorithm by analyzing the volume
of data generated in those time windows. To analyze the statistical behavior
of the algorithm execution time, we clustered the computation time by hour
(for example, a cluster includes the execution times obtained from 5:00 pm to
6:00 pm of all the different days), computed the average of each cluster and then
normalized each computation time with respect to the average of its cluster.

mastroianni@icar.cnr.it

Distributed Computation of Mobility Patterns in a Smart City Environment 567

The distribution of the normalized execution times is reported in Fig. 5. The
figure also reports the probability density function of a normal distribution with
same mean and standard deviation. The two distributions appear very simi-
lar, which is confirmed by the fact that the Pearson coefficient is higher than
0.95. In conclusion, approximating the execution times with a normal curve is a
reasonable assumption.

 0

 1

 2

 3

 4

 5

 6

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Fr
eq

ue
nc

y

Execution Time

Execution Time
Normal Distribution

Fig. 5. Histogram of the normalized execution time of the algorithm for frequent item-
sets mining. A normal distribution with same mean and standard deviation is also
reported.

Though we base the analysis on the real data related to a specific city, in
this case Beijing, we aim to assess the performance for a more general scenario,
so as to draw conclusions that are related to the use of the local synchronization
approach in general, and that are not tied to a given city only. To this aim, we
define an experimental frame as indicated in the following:

1. we consider a city partitioned into N regions through a bidimensional grid,
with square numbers of equally sized-regions, i.e., N = 2 × 2, 3 × 3, etc.

2. we assume that the extraction of mobility patterns is executed on each region
by a computing node that receives and collects the mobility data produced at
sensors every time interval Tprod, which is set to 1 h. Therefore each computing
step is associated with the computation performed on the data of a specific
hour;

3. we assume that the users are distributed uniformly in the area of interest.
When considering the central area of Beijing, we found this assumption rea-
sonable. The rationale of this assumption is that the analysis of a uniform
scenario is preliminary to subsequently understand what happens in a non-
uniform scenario, which will be the subject of further studies;

4. all the N computing nodes are assumed to have the same computation power;
5. this computation power of nodes is varied by adopting the following approach.

We assume that the average time that would be needed by a single node to

mastroianni@icar.cnr.it

568 E. Cesario et al.

perform the computation at a single step for the entire area is Tserial. Then, we
define R = Tserial/Tprod and vary the values of this ratio by varying the value
of Tserial. Clearly the computation power of nodes in inversely proportional
to the ratio R;

6. the average computation time, Tnode, defined as the average time needed to
perform the computation on a single node, is assumed to be proportional
to the number of users located in the corresponding region, and then to the
area of the region. Therefore, when the area is partitioned into N regions,
Tnode = Tserial/N . When considering the definition of R given in the previous
item, it follows that Tnode = (R · Tprod)/N ;

7. the time needed to communicate (transmit and receive) data with the neigh-
bor nodes is negligible with respect to the computation time. This assump-
tion is reasonable because the nodes only need to transmit synthetic models,
i.e., the results of the mobility pattern analysis, which can be done in a few
seconds.

5.2 Experiments

The performance analysis was performed by using a Matlab simulator that repro-
duces the local and global synchronization models, as discussed at the beginning
of Sect. 5, under the assumptions listed in the previous subsection. The local
computation times used in the simulator are extracted from a normal distribu-
tion with average equal to Tnode = (R · Tprod)/N (see item 6 in Sect. 5.1)2. To
analyze the benefits of local synchronization in the case that different degrees of
variability are experienced, the standard deviation σ of the normal distribution
was taken as a parameter, and it was set to three different values, i.e., 0.25·Tnode,
0.5 · Tnode and 1.0 · Tnode. The number of simulated steps is equal to nstep. The
evaluated performance indices were the following:

– the average step time Tstep, defined as the average time to perform a com-
putational step on all the nodes. It is computed as the time to execute nstep

steps of the Petri net model divided by nstep. This index allows to assess the
ability of the system to timely process the data coming from sensors. More in
particular, the system does not keep the pace with data production (in the
following, we say that it is “unstable” for brevity) when Tstep is larger than
the acquisition interval Tprod, while it keeps the pace (it is “stable”) when
Tstep = Tprod. The value of Tstep cannot be lower than Tprod, because the
computation of a step must wait for the arrival of the related data;

– the fraction of missed deadlines, Fmiss, defined as the fraction of times that
a node receives new data coming from the sensors (the data produced during
the interval Tprod) before completing the computation related to the previous
bunch of data, i.e., the fraction of times that a single node does not keep the
pace with data production.

2 Negative values of the normal distribution are discarded and re-extracted.

mastroianni@icar.cnr.it

Distributed Computation of Mobility Patterns in a Smart City Environment 569

The experiments were carried out when setting Tprod to one hour and the
number of steps nstep to 720, corresponding to 30 days with the chosen value of
Tprod. Furthermore, we considered different numbers and computation powers of
nodes, more in particular, values of N ∈ {2, 4, 9, 16, 25}, and values of R ranging
between 1 and 12.

Figure 6 shows the values of the two performance indices versus the value
of R, when setting the number of nodes to 9, 16 and 25, and the value of the
standard deviation σ to 0.25 ·Tnode. In the left figure we can see that the system
is stable (i.e., Tstep = 1 hour) when the computation is partitioned on 25 nodes.
When using 16 nodes, the system is stable with local synchronization, but it is
unstable with global synchronization when R is greater than 11. When using 9
nodes, we notice that there is an interval of values of R, between 6 and 7, for
which the system is stable with local synchronization and unstable with global
synchronization. The values of Fmiss confirm this behavior: when the system
is stable the fraction of missed deadlines is zero or negligible, while this index
increases up to 1 when the system becomes unstable.

In Figs. 7 and 8 we report the performance values obtained when assum-
ing a larger variability of local computation times, as detailed in the captions.
When comparing these results to those in Fig. 6, we can notice two interesting
phenomena:

– when the variability increases, the system tends to be unstable even with low
values of R, i.e., with high values of the computation power of nodes. For
example, with R = 10, the system is stable (Tstep = 1 hour) with σ = 0.25 ·
Tnode when using 16 and 25 nodes, with both local and global synchronization;
it is stable with σ = 0.5 · Tnode only when using 25 nodes, irrespective of the
type of synchronization; it is stable with σ = 1.0 · Tnode only when using 25
nodes and local synchronization;

– when the variability increases, the advantage of local synchronization
increases as well. For example, if Fig. 8 is observed, we can notice that there
is a significant range of R values (between 8 and 10 for the case N = 25)
for which the system is stable with local synchronization but unstable with
global synchronization.

The reported results confirm the benefits brought by local synchronization.
Indeed, in some scenarios with local synchronization it is possible to keep the
pace with data production, while it is impossible with global synchronization and
it would be required to either increase the number of nodes (which means install
more computing nodes and sustain larger costs) or increase their computational
power. It will be important to assess this interesting outcome when removing
the simplifying assumption of uniform user distribution. When the distribution
is non-uniform, it can be useful to modify the territory partitioning, for example
by defining smaller regions where the user density is higher. Indeed, this is one
of the issues of our current research work in this field.

mastroianni@icar.cnr.it

570 E. Cesario et al.

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1 2 3 4 5 6 7 8 9 10 11 12

T
st

ep
 [

ho
ur

s]

R

9 nodes - g
9 nodes - l

16 nodes - g
16 nodes - l
25 nodes - g
25 nodes - l

 0

 0.5

 1

 1.5

 2

 1 2 3 4 5 6 7 8 9 10 11 12

Fm
is

s

R

9 nodes - g
9 nodes - l

16 nodes - g
16 nodes - l
25 nodes - g
25 nodes - l

Fig. 6. Values of Tstep and Fmiss versus the ratio R, with N = 9, 16 and 25, and σ
equal to 0.25 · Tnode. Characters “g” and “l” in the legend refer to global and local
synchronization, respectively.

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1 2 3 4 5 6 7 8 9 10 11 12

T
st

ep

R

9 nodes - g
9 nodes - l

16 nodes - g
16 nodes - l
25 nodes - g
25 nodes - l

 0

 0.5

 1

 1.5

 2

 1 2 3 4 5 6 7 8 9 10 11 12

Fm
is

s

R

9 nodes - g
9 nodes - l

16 nodes - g
16 nodes - l
25 nodes - g
25 nodes - l

Fig. 7. Values of Tstep and Fmiss versus the ratio R, with N = 9, 16 and 25, and σ
equal to 0.5 · Tnode. Characters “g” and “l” in the legend refer to global and local
synchronization, respectively.

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1 2 3 4 5 6 7 8 9 10 11 12

T
st

ep

R

 0

 0.5

 1

 1.5

 2

 1 2 3 4 5 6 7 8 9 10 11 12

Fm
is

s

R

9 nodes - g
9 nodes - l

16 nodes - g
16 nodes - l
25 nodes - g
25 nodes - l

Fig. 8. Values of Tstep and Fmiss versus the ratio R, with N = 9, 16 and 25, and σ
equal to 1.0 · Tnode. Characters “g” and “l” in the legend refer to global and local
synchronization, respectively. The legend is not shown in the left figure for the sake of
readability.

mastroianni@icar.cnr.it

Distributed Computation of Mobility Patterns in a Smart City Environment 571

6 Conclusion

In this paper, we presented an original approach based on local synchronization
which is exploitable for the execution of distributed smart city applications. The
main idea is to speed up the computation by limiting the overhead induced
by the synchronization of the parallel nodes operating in different regions of
the city. Specifically, with the presented local synchronization approach, each
node needs to synchronize only with a set of neighbor nodes, instead of all the
other nodes as required by the classical master-slave paradigm. As a specific
application domain, the extraction of mobility patterns in an urban area was
considered. Results, based on the analysis of a real dataset, showed that local
synchronization helps to better keep the pace with the production of data in the
environment, and that the advantage increases with the variability of execution
times. This work has focused on the computation performance of the mobility
patterns analysis. We have not discussed the semantics of the extracted patterns,
nor the way they are obtained by concatenating those discovered in neighbor
regions, but we intend to focus on this aspect in a future work. Other interesting
research avenues are:

– extend the mobility patterns analysis to other city contexts;
– apply the approach to other smart city applications like those related to traffic

management, transportation systems, and crowd monitoring and control;
– improve the approach so as to consider scenarios having a non-uniform and

dynamic distribution of the workload among city regions;
– enrich the approach by furnishing a theoretical framework for the local syn-

chronization approach.

References

1. Cesario, E., Mastroianni, C., Talia, D.: A multi-domain architecture for mining
frequent items and itemsets from distributed data streams. J. Grid Comput. 12(1),
153–168 (2014)

2. Jeung, H., Liu, Q., Shen, H., Tao Zhou, X.: A hybrid prediction model for moving
objects. In: Proceedings of the 2008 IEEE 24th International Conference on Data
Engineering, ICDE 2008, pp. 70–79. IEEE Computer Society (2008)

3. Mamoulis, N., Cao, H., Kollios, G., Hadjieleftheriou, M., Tao, Y., Cheung, D.W.:
Mining, indexing, and querying historical spatiotemporal data. In: Proceedings
of the Tenth ACM International Conference on Knowledge Discovery and Data
Mining, KDD 2004, pp. 236–245. ACM (2004)

4. Mastroianni, C., Cesario, E., Giordano, A.: Balancing speedup and accuracy in
smart city parallel applications. In: Desprez, F., et al. (eds.) Euro-Par 2016. LNCS,
vol. 10104, pp. 224–235. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-58943-5 18

5. Mastroianni, C., Cesario, E., Giordano, A.: Efficient and scalable execution of
smart city parallel applications. In: Concurrency and Computation: Practice and
Experience (2017). http://dx.doi.org/10.1002/cpe.4258. Early view

6. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

mastroianni@icar.cnr.it

https://doi.org/10.1007/978-3-319-58943-5_18
https://doi.org/10.1007/978-3-319-58943-5_18
http://dx.doi.org/10.1002/cpe.4258

572 E. Cesario et al.

7. Peterson, J.L.: Petri nets. ACM Comput. Surv. 9(3), 223–252 (1977)
8. Wu, T., Rustamov, R.M., Goodall, C.: Distributed learning of human mobility

patterns from cellular network data. In: 51st Annual Conference on Information
Sciences and Systems (CISS) (2017)

9. Yuan, J., Zheng, Y., Xie, X., Sun, G.: T-Drive: enhancing driving directions with
taxi drivers’ intelligence. IEEE Trans. Knowl. Data Eng. 25(1), 220–232 (2013)

10. Yuan, J., et al.: T-Drive: driving directions based on taxi trajectories. In: Proceed-
ings of the 18th SIGSPATIAL International Conference on Advances in Geographic
Information Systems, GIS 2010, pp. 99–108. ACM (2010)

mastroianni@icar.cnr.it

