
ORIGINAL RESEARCH

Mining frequent items and itemsets from distributed data streams
for emergency detection and management

Albino Altomare1 • Eugenio Cesario1 • Domenico Talia2

Received: 26 June 2015 / Accepted: 12 January 2016 / Published online: 29 January 2016

� Springer-Verlag Berlin Heidelberg 2016

Abstract Sensor networks are an important technology

for large-scale monitoring, that allow the collection of

environmental measurement streaming data in remote

areas. Such data constitute a valuable source of information

to be exploited for better understanding natural phenom-

ena. Moreover, in some cases streams of data must be

analyzed in real time to provide information about trends,

outlier values or regularities that must be signaled as soon

as possible, to prevent emergencies or disasters (e.g.,

landslides, fires). For such a reason, real-time analysis of

distributed data streams is a challenging task since it

requires scalable solutions to handle streams of data that

are generated very rapidly by multiple sources. This paper

presents the design and the implementation of an archi-

tecture for the analysis of data streams in distributed

environments. Experimental evaluation shows the effi-

ciency and effectiveness of the approach.

1 Introduction

Big amounts of complex data are available from environ-

mental systems and constitute a valuable source of infor-

mation to be exploited for better understanding natural

phenomena. Such data can be collected by a large variety

of sensors that the commercial remote sensing industry

provides. For example, many companies are very active in

the design and development of sensors for remote sensing

of natural resources (vegetation, water, impervious sur-

faces, and soil), as well as water and energy fluxes, clouds,

atmospheric pollutants, surface temperature, etc., with the

goal of understanding physical, ecological, hydrological

and environmental characteristics of surfaces and sub-

stances. This is leading to an exponential growth of envi-

ronmental data volumes.

Sensor networks, for example, are an important tech-

nology for large-scale monitoring, that allow the collection

of environmental measurement streaming data (soil mois-

ture, leaf wetness, solar radiation, barometric pressure,

humidity, temperature, etc.) in remote areas. By such

technological infrastructures, a huge quantity of data,

which is still growing very rapidly both in the volume and

complexity, is generated. For such a reason, the analysis of

environmental data requires advanced and sophisticated

modeling techniques to extract the proper relevant knowl-

edge, and increasingly perform real-time data processing or

aggregation to provide useful summary information to the

domain experts. In particular, frequent pattern discovery is

one of the most interesting issues in environmental analy-

sis, because it is aimed at detecting associations, correla-

tions and causality relations between value measurements,

and it can reveal insights into natural dynamics. Moreover,

in some cases streams of data must be analyzed in real time

to provide information about trends, outlier values or reg-

ularities that must be signaled as soon as possible, to pre-

vent emergencies or disasters (e.g., landslides, fires). So,

real-time analysis of distributed data streams is a chal-

lenging task since it requires scalable solutions to handle

streams of data that are generated very rapidly by multiple

sources.

& Eugenio Cesario

cesario@icar.cnr.it

Albino Altomare

altomare@icar.cnr.it

Domenico Talia

talia@dimes.unical.it

1 ICAR-CNR, Via P. Bucci 7-11 C, 87036 Rende, CS, Italy

2 DIMES-UNICAL, Via P. Bucci 41C, 87036 Rende, CS, Italy

123

J Ambient Intell Human Comput (2017) 8:47–55

DOI 10.1007/s12652-016-0344-9

http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-016-0344-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-016-0344-9&domain=pdf

This work deals with the design and the implementation

of an architecture for the analysis of data streams in dis-

tributed environments. In particular, data stream analysis

has been carried out for the computation of items and

itemsets that exceed a frequency threshold. The mining

approach is hybrid, that is, frequent items are calculated

with a single pass, using a sketch algorithm, while frequent

itemsets are calculated by a further multi-pass analysis.

The architecture combines parallel and distributed pro-

cessing to keep the pace with the rate of distributed data

streams. In order to keep computation close to data, miners

are distributed among the domains where data streams are

generated. The algorithm and the prototype of the archi-

tecture have been tested on a real environmental dataset

storing measurements collected by 30 sensors distributed

on a mountain area of Italy, aimed at fire emergency

detection and management. Moreover, we present also a

scalability analysis obtained by performing several exper-

iments on a network composed of three domains.

The paper is structured as follows. Section 2 reports the

state of the art on distributed frequent pattern mining.

Section 3 summarizes the main issues to be taken into

account in mining data streams and illustrates the most

common algorithms for the computation of frequent items

and itemsets. Section 4 describes the proposed parallel/

distributed architecture for mining data streams and dis-

cusses the adopted hybrid approach. Section 5 reports the

results of the algorithm on the a real-life dataset, as well as

a scalability analysis of the architecture. Section 6 con-

cludes the paper.

2 Related work

The approaches proposed in literature to discover frequent

items and itemsets from data streams can be divided in three

main classes. The first class includes the counter-based

algorithms, that have their foundation on some techniques

proposed to solve the majority problem (Fisher et al. 1982).

LossyCounting is one of the most popular algorithm of this

type (Manku et al. 2002). The second class refers to the

sketch-based algorithms, which compute a linear projection

of the input (i.e., named sketch), and provide an approxi-

mated estimation of item frequencies using limited com-

puting and memory resources. Popular algorithms of this

kind are CountSketch (Charikar et al. 2002) and

CountMin (Cormode et al. 2005), and the latter is adopted in

this paper. A third class includes the Quantile algorithms,

where the problemof finding the/-quantiles of a sequence of
items drawn from a totally ordered domain is to find an item i

such that it is the smallest item which dominates / � N items

from the input. A quantile summary consists of small number

of data points from the original data sequence and use this

information to calculate any quantile queries. GK (Green-

wald et al. 2001) and QDigest (Shrivastava et al. 2004) are

the most famous algorithms belonging to the quantile cate-

gory. Even if modern single-pass algorithms are extremely

sophisticated and powerful, multi-pass algorithms are still

necessary either when the stream rate is too rapid, or when

the problem is inherently related to the execution of multiple

passes, which is the case, for example, of the frequent

itemsets problem. Single-pass algorithms can be forced to

check the frequency of 2- or 3-itemsets, but this approach

cannot be generalized easily, as the number of candidate k-

itemsets is combinatorial, and it can become very large when

increasing the value of k (Jin et al. 2005). Therefore, a very

promising avenue could be to devise hybrid approaches,

which try to combine the best of single- and multiple-pass

algorithms (Wright 2010). The analysis of streams is even

more challengingwhen data is produced by different sources

spread in a distributed environment, like a large-scale

monitoring system of environmental data. A thorough dis-

cussion of the approaches currently used to mine multiple

data streams can be found in (Parthasarathy et al. 2007). The

paper distinguishes between the centralized model, under

which streams are directed to a central location before they

are mined, and the distributed model, in which distributed

computing nodes perform part of the computation close to

the data, and send to a central site only the models, not the

data. Of course, the distributed approach has notable advan-

tages in terms of degree of parallelism and scalability. An

interesting approach for the continuous tracking of complex

queries over collections of distributed streams is presented in

Cormode et al. (2008). To reduce the communication over-

head, the adopted strategy combines two technical solutions:

(1) remote sites only communicate to the coordinator concise

summary information on local streams (in the form of sket-

ches); (2) even such communications are avoided when the

behavior of local streams remains reasonably stable, or

predictable: updates of sketches are only transmitted when a

certain amount of change is observed locally.

3 Mining frequent items and frequent itemsets
in distributed data streams

A data stream (Gaber et al. 2005) is defined as the con-

tinuous arrival of data items to a computational device,

which must perform most processing analysis online,

because the amount of data is so large that its complete

archiving is too costly. As mentioned, the discovery of

frequent items (Cormode et al. 2008) is a very important

task, consisting of identifying the items whose frequency in

a stream exceeds a specified fraction r of the overall stream

size. The problem is formalized as follows (Cormode et al.

2009):

48 A. Altomare et al.

123

Problem statement. Given a stream S of n items

e1; . . .; en, where the frequency of an item i is

fi ¼ jfjjej ¼ igj, and a frequency threshold r, the �- ap-

proximate-frequent-items problem consists of finding the

set F of items such that: F ¼ fijfi �ðr� �Þng
Two basic categories of algorithms can be used to solve this

problem: the Counter-Based and the Sketch-Based algorithms.

Algorithms in the first group maintain counters for a subset of

elements, and counters are updated every time one of these

elements is observed in the stream. If the observed element has

no associated counter, the algorithm must choose whether to

ignore the element or replace an existing counterwith a counter

for the new item. At the end of the first pass, frequent itemswill

surely be among those associatedwith counters, but the inverse

is not true, which requires at least a second pass to verify which

counters actually correspond to frequent items. Conversely,

Sketch-Based algorithms (Cormode et al. 2008) do notmonitor

a subset of elements but provide, with a given accuracy, an

estimation of the frequency for all stream elements using a

matrix of countersCwithd rows andw columns.A set ofdhash

functions h1; . . .; hd are chosen among a family of pairwise-

independent functions, and are associated to the different

matrix rows. Each item i observed in the stream is mapped, for

each row r, to the matrix elementC½r; hrðiÞ�. The sketch-based
CountMin algorithm (Cormode et al. 2005), at the arrival of a

new item i, update the counter as follows:

for r 2 ½1; d� ! C½r; hrðiÞ�þ ¼ 1

Thenumber of counters in a row,w, is lower than thenumber of

elements, so there are conflicts, because several distinct ele-

ments will be mapped by a hash function to the same counter.

However, different elements are in conflict for different rows,

which enables the adoption of statistical techniques to estimate

the actual frequencies of elements. In CountMin, collisions

always cause extra increments of counters, therefore the best

estimation for the frequency fi of element i is the minimum

value of the counters associated to i: fi ¼ minrfC½r; hrðiÞ�g. It
is worth recalling that the overall sketch of multiple streams

can be computedby adding the sketches of single streams. This

is the main reason why we decided to adopt CountMin: in a

distributed architecture, it would be prohibitive to transmit

source data to a central processing node, while the mere

transmission of sketch summaries allows communication

overhead to be drastically reduced.

4 A hybrid multi-domain architecture

This section presents the stream mining architecture that

aims at solving the problem of computing frequent items

and frequent itemsets from distributed data streams. The

architecture includes the following components (Fig. 1):

• Data Streams (DS) data source nodes, located in

different domains.

• Miners (M) placed close to the respective Data Streams,

miners perform two basic mining tasks: the computa-

tion of sketches for the discovery of frequent items, and

the computation of the support count of candidate

frequent itemsets. Each Miner computes the sketch only

for the data it receives, and then forwards the results to

the local Stream Manager.

• Stream Managers (SM) in each domain, the Stream

Manager collects the sketches computed by local

miners, and derives the sketch for the local DS.

Moreover, each SM cooperates with the Stream Man-

ager Coordinator to compute global statistics, valid for

the union of all the Data Streams.

• Stream Managers Coordinator (SMC) this node col-

lects mining models from different domains and

computes overall statistics regarding frequent items

and frequent itemsets. The SMC can coincide with one

of the Stream Managers, and can be chosen with an

election algorithm.

• Data Cachers (DC) are essential to enable the hybrid

strategy. Each Data Cacher stores the statistics about

frequent items discovered in the local domain. These

results are then re-used by Miners to discover frequent

itemsets composed of increasing numbers of items.

The algorithm for the computation of frequent items,

outlined in Fig. 2 (left side), is performed continuously, for

every new block of data that is generated by the data

streams. A block is defined here as the set of transactions

that are generated in a time interval P. If the generation rate

is too fast to be sustained by a single Miner, a filter is used

to partition the block into as many mini-blocks as the

number of available miners (step 1 in the figure). Each

Miner computes the sketch related to the received mini-

block (step 2) and transmits it to the SM (step 3), which

overlaps the sketches, thanks to the linearity property of

sketch algorithms, and extracts the frequent items for the

local domain. Then, every SM sends the local sketch to the

SMC (step 4a) and the Miners send the most recent blocks

of transactions to the local Data Cacher (step 4b). At step 5,

the SMC aggregates the sketches received by SMs and

identifies the items that are frequent for the union of data

streams. Frequent items are computed for a window con-

taining the most recent W blocks. This can be done easily

thanks to the linearity of the sketch algorithm: at the arrival

of a new block, the sketch of this block is added to the

current sketch of the window, while the sketch of the least

recent block is subtracted.

The schema of the algorithm for mining frequent

itemsets is illustrated in Fig. 2 (right side), assuming that

steps 1–5 (frequent items computation) have already

Mining frequent items and itemsets from distributed... 49

123

been performed. At step 6, every SM builds the candi-

date k-itemsets for the local domain (6a), and the SMC

also builds the global candidate k-itemsets (6b). The

SMC sends the global candidates to the SMs for the

computation of their support at the different domains

(step 7). The SMs send both local and global candidates

to the Miners (step 8), which turn to the Data Cacher to

retrieve the transactions included in the current window

(step 9),1 compute the support count for all the candi-

dates, and transmit the results to the local SM (step 10).

The SM aggregates the support counts received by

Miners and selects the k-itemsets that are frequent in the

local domain (step 11). Analogously, the SMs send the

SMC the support counts of the global candidates (step

12), and the SMC computes the itemsets that are fre-

quent over the whole system (step 13). The algorithm

restarts from step 6 to find frequent itemsets with

increasing numbers of items. The cycle stops either

when the maximum allowed size of itemsets is reached

or when no frequent itemset was found in the last

iteration.

5 Prototype and experimental evaluation

The architecture described in the previous section was

implemented using the Mining@Home system, adopted to

perform several classes of data mining computations (Ce-

sario et al. 2014, 2009). Section 5.1 shows the effective-

ness of the algorithm, by describing the results obtained on

a real-life dataset. Section 5.2 presents the efficiency

Fig. 1 Distributed architecture

for data stream mining

Fig. 2 Schema of the algorithm

for mining frequent items (left)

and itemsets (right)

1 Miners may have the ability to store some transactions in their own

memory. In this case, they only ask the Data Cacher those

transactions that could not be stored locally.

50 A. Altomare et al.

123

analysis of the approach, obtained on reference dataset.

The parameters used to assess the prototype are listed

below:

• P the time interval to receive a block of data. This

interval determines the average number of transactions

generated within a block, denoted as Nt, and the

average size of a block in bytes, B;

• NMD the number of available miners per domain. In our

experiments, this number is the same for the three

domains;

• NM the total number of available miners in the Grid,

equal to 3 � NMD;

• FCPU the fraction of CPU time reserved on miners for

the experiments, set to 30 %. This setting was used to

make the results independent from the execution of

other processes on the same nodes.2

• S the support threshold used to determine frequent

items and itemsets;

• W the size of the sliding window, i.e., the number of

consecutive blocks of data on which computation is

performed;

• CM the capacity of the miner buffer. Unless otherwise

stated, it is equal to the size of a data block B.

• � and d, the accuracy parameters of the sketch

algorithm (both set to 0.01).

5.1 A real-world case study: analysis

of the ‘AltaIrpinia’ dataset

In this section we report the results obtained by using the

proposed architecture on the AltaIrpinia data, a real-life

dataset populated by several environmental measures of a

mountainous area of Italy. This dataset is a collection of

data streams collected by 30 sensors distributed on the

territory of Avellino (Campania, South Italy), whose

morphology is presented in Fig. 3. The list of the moni-

toring stations (which sensors are positioned on) as well as

their localizations is reported in Table 1. The dataset

AltaIrpinia contains several measurements collected from

June 2013 to November 2013. Sensors have detected, with

a sampling period of twenty minute, four environmental

values: leaf wetness (%), soil moisture (%), atmospheric

temperature (�C) and soil temperature (�C). The total

number of values was fifty thousands circa, where data size

amounted to almost 21 MB. Such data measurements,

completed by the LocationID, StationID and Timestamp

features, have been stored and analyzed in streaming, to

discover in real-time some environmental frequent patterns

as well as to quickly provide information about trends,

outlier values, regularities hidden in the data. Such

knowledge is very useful to detect fire threats that must be

signaled as soon as possible, for efficient emergency

detection and management.

As a preliminary step for the analysis, all the values

have been properly discretized by a pre-processing step in

several bins, representing different ranges of values. To do

that, we adopted a unsupervised discretization approach.

The analysis has been performed on 30 domains, one data

source (a sensor) and one miner running on each one. We

fixed S ¼ 2% and B ¼ 400, while all other parameters

assumed default values. Such experiments were aimed at

computing both items and itemsets that are frequent for a

single domain and those that are frequent for the union of

distributed streams. Table 2 reports some frequent itemsets

of length 2, 3 and 4, as well as their support values,

returned by the algorithm. Interestingly, a very regular

association between measurements can be observed in the

4-frequent patterns, which highlight that usually leaf wet-

ness and soil moisture assume low values (around 0 and

10 %, respectively), while the atmospheric temperature

and soil temperature are around 11.5 and 6 �C, respec-
tively. Such trends are confirmed, with an higher support,

for itemsets of length 3 and 2. So, outlier values must be

signaled as soon as possible, to prevent emergencies or

disasters (e.g., fire, landslides).

The whole AltaIrpinia dataset has been analyzed in

about 5 s. Our experiments showed that the architecture is

suitable to analyze such kind of data, but the size of that

dataset is limited to perform a scalability analysis on it.

However, it is worth noting that Sect. 5.2 reports a detailed

analysis about scalability and efficiency of the system,

carried on a larger dataset (i.e., 1 M instances) that is more

appropriate to evaluate computational issues.

5.2 Scalability analysis of the architecture

To assess an efficiency analysis of the prototype, we used

the transactional dataset published by the ‘‘kosarak’’ of the

FIMI Repository, composed of 1 millions of instances and

appropriate for a scalability analysis. More in detail, such a

dataset contains a list of click-streams generated by users

of an online portal and its analysis is useful to identify the

most popular sections of the portal, the preferences and

requirements of users, etc. During the experiments, data

(stored on the Data Source nodes) are sent to local Miners

with a specified transfer rate, to reproduce the original data

stream. The transmission rate is adjusted by setting the

parameter Nt, the number of transactions generated during

the time interval P.

The main performance index assessed during the

experiments is the execution time, defined as the time

interval between the transmission of a new block of stream2 the fraction of CPU is tuned using the program ‘‘cpulimit’’.

Mining frequent items and itemsets from distributed... 51

123

data and the time at which the analysis of this block has

been completed by the Stream Manager Coordinator

(SMC). If this value is not longer than the time interval P,

it means that the system is able to keep the pace with data

production. The experiments were executed assuming a

time period P equal to 15 s. As generation rates, we con-

sidered values of Nt equal to about 40,000, 30,000 and

20,000 transactions per block. The generation rates were

equally partitioned between the three domains. These are

very high generation rates, and allowed the prototype to be

tested in challenging conditions.

Figure 4 reports the execution time experienced for

the computation of frequent items exclusively (I), and

for the computation of both frequent items and itemsets

(I?IS), vs. the total number of miners NM . In these

experiments, we set S ¼ 0:02, CM ¼ B and W ¼ 5. Plots

are reported for three different values of Nt. Both fig-

ures show that the processing time decreases as the

number of miners increases, which is a sign of the good

scalability of the architecture. Scalable behavior is

ensured by two main factors: the linearity property of the

sketch algorithm, and the placement of Data Cachers

close to the miners. The system is stable when the

execution time is lower than the time period P (15 s): in

such a case, the system is able to keep the pace with the

generation of stream data. This condition is always

verified when the system is only asked to compute fre-

quent items, as is clear from Fig. 4a. On the other hand,

the computation of frequent itemsets is much more time

consuming. The dashed line depicted in Fig. 4b corre-

sponds to the time period P, and it is shown to easily

check in which cases the system is stable.

Fig. 3 Areas of the territory monitored for the fire detection

Table 1 Station ID, longitude,

latitude and altitude of the

sensor stations

ID Long Lat Alt ID Long Lat Alt

1 15�20041.7300E 40�5703.4000N 820 16 15�12056.5800E 40�58051.5700N 875

2 15�190430094E 40�55053.5400N 875 17 15�9020.8800E 40�49040.9800N 1053

3 15�3002.6500E 41�0014.7600N 473 18 15�10036.1200E 40�49030.1800N 957

4 15�29020.1400E 40�59027.1300N 473 19 15�30021.1800E 41�0033.0000N 461

5 15�28041.0400E 41�0043.3800N 545 20 15�33025.8300E 41�005.6000N 423

6 15�21054.9100E 41�0037.3400N 825 21 15�31046.8000E 40�59043.5600N 757

7 15�24024.4000E 40�59047.3800N 830 22 15�14038.5200E 40�56037.5600N 778

8 15�2206.3100E 40�53032.5600N 625 23 15�8025.0000E 40�5800.6000N 735

9 15�2601.2900E 40�54012.2900N 434 24 15�21044.2700E 40�50051.0000N 590

10 15�30054.4000E 40�55037.4900N 564 25 15�12057.7800E 40�5606.1800N 875

11 15�29054.1800E 40�56027.7200N 542 26 15�9023.7000E 40�55017.2200N 673

12 15�29055.0000E 40�54040.6600N 496 27 15�8012.5600E 40�54053.7100N 690

13 15�20044.4000E 40�52020.7600N 444 28 15�13042.4200E 40�51017.5000N 557

14 15�19042.6000E 40�52030.7800N 474 29 15�15046.9300E 40�5108.9600N 742

15 15�12037.3800E 40�5706.1200N 1016 30 15�4051.8100E 40�55015.8700N 675

52 A. Altomare et al.

123

An efficiency analysis was performed in accordance

with the study of parallel architectures presented in Grama

et al. (1993). Specifically, we extracted the overall

computation time TC, i.e., the sum of the computation

times measured on the different miners, and the overall

overhead time TO, defined as the sum of all the times spent

Table 2 Some frequent

itemsets discovered by

analyzing the AltaIrpinia

dataset, with the corresponding

support value

Frequent 4-itemsets

{LeafWetness = 0, SoilMoisture = 10, AtmTemp = 11, SoilTemp = 5} : 12.2 %

{LeafWetness = 0, SoilMoisture = 10, AtmTemp = 11, SoilTemp = 6} : 9.3 %

{LeafWetness = 0, SoilMoisture = 10, AtmTemp = 12, SoilTemp = 5} : 6.4 %

{LeafWetness = 0, SoilMoisture = 10, AtmTemp = 12, SoilTemp = 6} : 11.0 %

{LeafWetness = 0, SoilMoisture = 10, AtmTemp = 12, SoilTemp = 7} : 10.8 %

...

Frequent 3-itemsets

{LeafWetness = 0, SoilMoisture = 10, AtmTemp = 10} : 11.3 %

{LeafWetness = 0, SoilMoisture = 10, AtmTemp = 11} : 32.5 %

{LeafWetness = 0, SoilMoisture = 10, AtmTemp = 12} : 35.1 %

{LeafWetness = 0, SoilMoisture = 10, AtmTemp = 13} : 14.5 %

{LeafWetness = 0, SoilMoisture = 10, SoilTemp = 5} : 25.5 %

{LeafWetness = 0, SoilMoisture = 10, SoilTemp = 6} : 27.9 %

{LeafWetness = 0, SoilMoisture = 10, SoilTemp = 7} : 24.0 %

...

Frequent 2-itemsets

{LeafWetness = 0, SoilMoisture = 1} : 8.0 %

{LeafWetness = 0, SoilMoisture = 10} : 68.5 %

{LeafWetness = 0, SoilMoisture = 2} : 8.4 %

{LeafWetness = 0, SoilMoisture = 100}: 7.5 %

{LeafWetness = 0, SoilMoisture = 3} : 16.4 %

{LeafWetness = 0, SoilMoisture = 9} : 29.1 %

{LeafWetness = 0, AtmTemp = 10} : 16.3 %

{LeafWetness = 0, AtmTemp = 11} : 35.5 %

...

 0

 500

 1000

 1500

 2000

 2500

 3000

 3 6 9 12 15 18 21 24 27 30 33 36

Ti
m

e
(m

s)

Number of miners, NM

I; Nt=20000
I; Nt=30000
I; Nt=40000

(a) Computation of frequent items (I).

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 3 6 9 12 15 18 21 24 27 30 33 36

Ti
m

e
(m

s)

Number of miners, NM

P=15000 ms
I+IS; Nt=20000
I+IS; Nt=30000
I+IS; Nt=40000

(b) Computation of frequent items (I) and item-
sets (IS).

Fig. 4 Execution time for the computation of frequent items (I) and itemsets (IS), vs. the number of miners, for different values of the number of

transactions per block, Nt

Mining frequent items and itemsets from distributed... 53

123

in other activities, which practically coincide with the

transfer times. These two indexes are shown in Fig. 5a

using a logarithmic scale. The overall computation time

TC, on the other hand, has a nearly constant trend. The

efficiency of the computation can be defined as the fraction

of time that the miners actually devote to computation with

respect to the sum of computation and overhead time:

E ¼ TC
TCþTO

. Figure 5b reports efficiency values, always

higher than 0.9. It is appreciated that efficiency increases as

the number of miners per domain increases up to 5, i.e., the

window size B. This effect is induced by the use of cach-

ing, as explained in Grama et al. (1993). Specifically, when

NMD increases up to the window size, each miner needs to

request less data from the Data Cacher, because more data

can be stored in the local cache: this leads to a higher

efficiency. For larger values of NMD, this effect does not

hold anymore and the efficiency slightly decreases, being

still very high. Thus, we can observe that the architecture

maximizes its efficiency for NMD ¼ B, because data can be

retrieved from the local cache, by minimizing the com-

munication with the Data Cacher. Moreover, it is noticed

that the efficiency increases with the rate of data streams.

This means that the distributed architecture is increasingly

convenient when the problem size increases, which is a

another sign of good scalability properties.

6 Conclusion

The distributed stream mining system presented in this

paper is aimed at solving the problem of computing fre-

quent items and frequent itemsets from distributed data

streams. The experimental results confirm that the

approach is scalable and can manage large data production

by using an appropriate number of miners in the distributed

architecture. As future work, some optimizations in the

communication protocol could be studied, to reduce the

communication overhead as well as to save energy of the

sensor batteries. In addition, the effectiveness of the

architecture could be tested on a larger real-world test case.

Acknowledgments This research work has been funded by the

project INSYEME.

References

Cesario E, De Caria N, Mastroianni C, Talia D (2009) Distributed

data mining using a public resource computing framework. In:

Proceedings of the CoreGRID ERCIM Working Group Work-

shop on Grids, P2P and Service Computing, pp 33–44

Cesario E, Mastroianni C, Talia D (2014) A multi-domain architec-

ture for mining frequent items anditemsets from distributed data

streams. J Grid Comput 12(1):153–168

Charikar M, Chen K, Farach-Colton M (2002) Finding frequent items

in data streams. In: Proceedings of the 29thInternational

Colloquium on Automata, Languages and Programming

(ICALP), pp 693–703

Cormode G, Muthukrishnan S (2005) An improved data stream

summary: the count-min sketch and its applications. J Algorithms

55(1):58–75

Cormode G, Garofalakis M (2008) Approximate continuous querying

over distributed streams. ACM Trans Database Syst 33(2):1–39

CharikarM,ChenK, Farach-ColtonM (2002) Finding frequent items in

data streams. In: Proceedings of the 29thInternational Colloquium

onAutomata, Languages and Programming (ICALP), pp 693–703

Cormode G, Hadjieleftheriou M (2009) Finding the frequent items in

streams of data. Commun ACM 52(10):97–105

Fischer M, Salzburg S (1982) Finding a majority among n votes:

solution to problem. J Algorithms 3(4):376–379

Gaber M, Zaslavsky A, Krishnaswamy S (2005) Mining data streams:

a review. ACM SIGMOD Rec 34(1):18–26

 1000

 10000

 100000

 1e+006

 3 6 9 12 15 18 21 24 27 30 33 36

T1
, T

o
(m

s)

Number of miners, NM

T1; Nt=20000
To; Nt=20000
T1; Nt=30000
To; Nt=30000
T1; Nt=40000
To; Nt=40000

(a) TC and TO

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 3 6 9 12 15 18 21 24 27 30 33 36

Ef
fic

ie
nc

y

Number of miners, NM

Nt=20000
Nt=30000
Nt=40000

(b) efficiency

Fig. 5 Computing time (TC) and overhead time (TO), efficiency vs. the number of miners, for different values of the number of transactions per

block, Nt

54 A. Altomare et al.

123

Grama AY, Gupta A, Kumar V (1993) Isoefficiency: measuring the

scalability of parallel algorithms and architectures. IEEE Parallel

Distrib Technol 1(3):12–21

Greenwald M, Khanna S (2001) Space-efficient online computation

of quantile summaries. In: Proceedings of the 2001 ACM

SIGMOD International Conference on Management of Data

(SIGMOD), pp 58–66

Jin R, Agrawal G (2005) An algorithm forin-core frequent itemset

mining on streaming data. In: Proceedings of the 5th IEEE

International Conference on Data Mining (ICDM), pp 210–217

Jin R, Agrawal G (2005) An algorithm forin-core frequent itemset

mining on streaming data. In: Proceedings of the 5th IEEE

International Conference on Data Mining (ICDM), pp 210–217

Parthasarathy S, Ghoting A, Otey ME (2007) A survey of distributed

mining of data streams. In: Aggarwal C (ed) Data Streams:

Models and Algorithms. Springer, pp 289–307

Shrivastava N, Buragohain C, Agrawal D, Suri S (2004) Medians and

beyond: New aggregation techniques. In: Proceedings of the 2nd

International Conference on Embedded Networked Sensor

Systems (SenSys), pp 239–249

Wright A (2010) Data streaming 2.0. Commun ACM 53(4):13–14

Mining frequent items and itemsets from distributed... 55

123

	Mining frequent items and itemsets from distributed data streams for emergency detection and management
	Abstract
	Introduction
	Related work
	Mining frequent items and frequent itemsets in distributed data streams
	A hybrid multi-domain architecture
	Prototype and experimental evaluation
	A real-world case study: analysis of the ‘AltaIrpinia’ dataset
	Scalability analysis of the architecture

	Conclusion
	Acknowledgments
	References

