
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2012; 24:1751–1774
Published online 17 October 2011 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.1877

Distributed data mining patterns and services: an architecture
and experiments

Eugenio Cesario 1,*,† and Domenico Talia 1,2

1ICAR-CNR, Via P. Bucci 41C, 87036 Rende (CS), Italy
2DEIS-University of Calabria, Via P. Bucci 41C, 87036 Rende (CS), Italy

SUMMARY

Distributed data mining implements techniques for analyzing data on distributed computing systems by
exploiting data distribution and parallel algorithms. The grid is a computing infrastructure for implement-
ing distributed high-performance applications and solving complex problems, offering effective support to
the implementation and use of data mining and knowledge discovery systems. The Web Services Resource
Framework has become the standard for the implementation of grid services and applications, and it can be
exploited for developing high-level services for distributed data mining applications. This paper describes
how distributed data mining patterns, such as collective learning, ensemble learning, and meta-learning
models, can be implemented as Web Services Resource Framework mining services by exploiting the grid
infrastructure. The goal of this work was to design a distributed architectural model that can be exploited for
different distributed mining patterns deployed as grid services for the analysis of dispersed data sources. In
order to validate such an approach, we presented also the implementation of two clustering algorithms on
the developed architecture. In particular, the distributed k-means and distributed expectation maximization
were exploited as pilot examples to show the suitability of the implemented service-oriented framework. An
extensive evaluation of its performance was provided. Copyright © 2011 John Wiley & Sons, Ltd.

Received 14 October 2009; Revised 7 March 2011; Accepted 28 August 2011

KEY WORDS: grid computing; distributed data mining; OGSA; WSRF

1. INTRODUCTION

1.1. Reference context

Because of advances in information technology availability and use, digital data volumes are grow-
ing exponentially in many fields of human activities. This trend concerns scientific disciplines, as
well as industry and commerce. Moreover, with the availability of inexpensive storage and the
progress in data capture technology, many organizations have created ultra-large databases of busi-
ness and scientific data, and this trend is largely and quickly growing. Examples of such data sources
include gene and DNA databases, astronomy and meteorology data repositories, network access, and
data about web usage, content, and structure.

An important part of data mining research [1] has been historically focused on centralized data
mining, where the data set to be analyzed is stored at a single site. Indeed, even though this approach
is absolutely valid and is making a lot of progress and giving many important results, distributed
data mining (DDM) is a fast growing technology that solves the problem of finding data patterns
in scenarios where data and computation are distributed. DDM was originated by two main rea-
sons: the first one is related to the computational cost of processing large data stores, the second is
concerned with the geographical location of data repositories [2]. Concerning the first issue, under

*Correspondence to: Eugenio Cesario, ICAR-CNR, Via P. Bucci 41C, 87036 Rende (CS), Italy.
†E-mail: cesario@icar.cnr.it

Copyright © 2011 John Wiley & Sons, Ltd.

1752 E. CESARIO AND D. TALIA

the perspective of analyzing huge data repositories (as we have aforementioned), mining large data
sets requires powerful computational resources. This is becoming a more and more important need,
especially considering the very large size of current and next-generation databases. A generic algo-
rithm on a single machine could take a very long processing time on current realistic volumes of data
to get results. The second issue is related to the fact that in some applications, data are inherently
distributed among many sites, but it is necessary to gain global knowledge from the distributed data
partitions. For example, several sites of a multinational company manage their own operational data
locally, but all data must be analyzed for global patterns to allow company-wide activities (such as
planning, marketing, and sales). Moreover, sharing the data to a central site could be too expensive
(because of excessively long time of transfer) or infeasible (for privacy or security issues).

Distributed data mining [2–7] analyzes data in a distributed way and pays particular attention to
the trade-off between centralized collection and distributed analysis of data. Knowledge discovery
is speeded up by executing concurrently a number of data mining tasks on different data subsets
and then combining the results at a centralized site. However, DDM does not come without over-
head. Some DDM algorithms suffer from excessive communication and data dependencies and will
not scale well. For such a reason, DDM is not the most suitable approach in all the cases, even
though it is becoming more and more feasible with the advances in networking and communication
technology (especially the growth of Internet and intranets).

The grid is a computing infrastructure for implementing distributed high-performance applica-
tions and solving complex problems [8]. Grid computing systems received a lot of attention both
from the research community and from industry and governments. The driving grid applications
are traditional high-performance applications, such as high-energy particle physics, and astronomy
and environmental modeling, in which experimental devices create large quantities of data that
require scientific analysis. Grid computing differs from conventional distributed computing because
it focuses on large-scale resource sharing, it offers innovative applications, and, in some cases, it
is geared toward high-performance systems. For these reasons, grids offer effective support to the
implementation and use of DDM algorithms and knowledge discovery systems. To achieve such a
goal, DDM frameworks and applications exploiting the grid infrastructure have been designed and
implemented.

1.2. Motivations and contribution

Typically, DDM data sets are stored in local databases or file systems hosted by local comput-
ers/repositories that are connected in a computer network. Data mining takes place both locally at
each remote site and at a global level where the local knowledge is fused in order to discover global
knowledge. One of the most common DDM patterns is reported in Figure 1. The first phase normally
involves the analysis of the local datasets at each site; this step infers statistics or local models. In
the second step, the locally discovered knowledge is usually transmitted to a merger (or central) site,
where the integration/refinement of the distributed local models is performed. To achieve such goal,
in some cases, the dataset (or part of it) is replicated also in the central node. The merger site evalu-
ates if the algorithm is terminated or not. If it is the case, the merger site produces the global mining
model that could be returned to the user. Otherwise, the merger site requests further elaboration to
the local sites (and in some cases, the temporary global model is broadcasted to all the local sites)
and, so on, until the merger site obtains the convergence of the algorithm. In some approaches, at
the end of the computation, the local models are finally broadcasted to all other sites, so that each
site can compute the global model in parallel.

It is worth noting that such a pattern is very common in many classes of DDM algorithms.
Examples of solutions adhering to this design pattern fall into the following categories: cluster-
ing [3, 9–12], classification [13], association rule and frequent itemsets mining [13–16], ensemble
learning [1], collective data mining [3], and meta-learning [6].

The aforementioned schema is not the only pattern used in DDM, but it is common to several
DDM algorithms. An example of DDM technique is meta-learning, which aims at building a global
classifier from a set of inherently distributed data sources [6]. Meta-learning is basically a two-step
process: first, a number of independent classifiers are generated by applying learning programs to

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1751–1774
DOI: 10.1002/cpe

DISTRIBUTED DATA MINING PATTERNS AND SERVICES: AN ARCHITECTURE 1753

Figure 1. Typical architecture of a distributed data mining algorithm.

a collection of distributed and homogeneous data sets in parallel. Then, the classifiers computed
by local learning programs are collected in a single site and combined to obtain a global classifier.
Another example of DDM is the collective data mining [7]: instead of combining partial local mod-
els, collective data mining builds the global model through the identification of significant sets of
local information. In other words, the local blocks are directly composed to form the global model.
This result is based on the fact that any mining function can be expressed in a distributed fashion
using a set of appropriate basis functions. If the basis functions are orthogonal, the local analy-
sis generates results that can be correctly used as components of the global model. Another DDM
model is the ensemble learning [1], a well-known technique for improving classification accuracy
by aggregating predictions of multiple classifiers. An ensemble method constructs a set of base clas-
sifiers from training data and performs classification by voting (in the case of classification) or by
averaging (in the case of regression) on the predictions made by each classifier. The final result is the
ensemble classifier that generally has higher classification quality than that of any single classifier
composing it.

The main contribution of this paper is the design and implementation of a framework for devel-
oping and executing DDM algorithms on a grid infrastructure. In particular, one main motivation of
the work is to simplify the reuse of data mining patterns, differently from generic tools that often
require a user to program ex-novo data mining applications. To do that, we developed a service-
oriented system to implement prearranged algorithmic patterns, adhering to the schema described
in Section 1.2. In particular, if a user needs to exploit a master/worker schema, the framework pro-
vides a specific prearranged pattern; therefore, the user is not requested to design an ad hoc structure
(i.e., workflow) modeling the application to be executed. We firstly present the design of such a
distributed architecture, in which mining algorithms deployed as grid services can run on. Such
services, defined as Open Grid Services Architecture (OGSA)-compliant, have been developed by
exploiting the Web Services Resource Framework (WSRF) specifications. Technical details about
the implementation of the framework and low-level specifications on its usage will be provided.
Then, the suitability of the provided solution is discussed by two clustering task examples, chosen
as pilot case studies. Moreover, it is pointed out that any process adhering to the schema shown in
Figure 1 can be easily integrated in our framework. Finally, we describe an extensive experimental
evaluation of the system on a real grid, aimed at evaluating both its efficiency and effectiveness.
In addition, we provide a quantitative comparison with other grid-based data mining frameworks
found in literature.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1751–1774
DOI: 10.1002/cpe

1754 E. CESARIO AND D. TALIA

1.3. Plan of the paper

The rest of the paper is organized as follows. Section 2 introduces grid service technologies and
presents how these are used in the design of the architectural model that we developed. Section 3
describes the implementation of two clustering algorithms in such service-oriented grid data min-
ing architecture, the k-means and expectation maximization (EM) algorithms. Section 4 discusses
the experimental evaluation of the implemented algorithms. Section 5 describes other data min-
ing systems exploiting the grid infrastructure and analyzes the main differences with the developed
framework. Section 6 gives some concluding remarks.

The work described in this paper is an extended version of the work presented in [17]. This
new version describes an improved implementation of the framework, includes a wider set of
experimental results, and outlines system extensions on which we are currently working.

2. DESCRIPTION OF THE FRAMEWORK

Based on the algorithmic schema described in Section 1.2, here we present the service-oriented
architecture (SOA) we designed for the execution of DDM patterns on grids. To describe in detail
our proposal, we give a brief description of what a service-oriented architecture is and its impact on
grid computing.

2.1. Service-Oriented Architecture, Open Grid Services Architecture, and Web Services Resource
Framework

The SOA is a model for building flexible, modular, and interoperable software applications. The
key aspect of SOA is the concept of service, a software block capable of performing a given task or
business function.

The most important implementation of SOA is represented by Web Services, whose popularity is
mainly caused by the adoption of universally accepted technologies such as XML, SOAP, and HTTP.
Also, the grid provides an SOA framework whereby a great number of services can be dynamically
located, balanced, and managed, so that applications are always guaranteed to be securely executed
according to the principles of on-demand computing. The grid community has adopted the OGSA
as an implementation of the SOA model within the grid context. In OGSA, every resource is rep-
resented as a Web service that conforms to a set of conventions and supports standard interfaces.
OGSA provides a well-defined set of Web service interfaces for the development of interoperable
grid systems and applications [8].

Recently, the WSRF has been defined as an evolution of early OGSA implementations [18].
WSRF defines a family of technical specifications for accessing and managing stateful resources
using Web services, as required by OGSA. In other words, WSRF depicts some specifications to
implement OGSA-compliant Web services. Another way of expressing this relation is that, whereas
OGSA is the architecture, WSRF is the infrastructure on which that architecture is built on [19].
The composition of a Web service and a stateful resource is termed as WS-resource. The possibility
to define a state associated to a service is the most important difference between WSRF-compliant
Web services and pre-WSRF ones. This is a key feature in designing grid applications, because
WS-resources provide a way to represent, advertise, and access properties related to both computa-
tional resources and applications. In order to implement services in a highly decentralized way, it
commonly used a design pattern that allows a client to be notified when interesting events happen in
a server. The WS-notification specification defines a publish/subscribe notification model for Web
services, which is exploited to notify interested clients and/or services about changes that occur to
the status of a WS-resource. In other words, a service can publish a set of topics that a generic client
can subscribe to; as soon as the topic changes, the client receives a notification of the new status.

2.2. Architecture of the proposed framework

In order to provide a simple approach for the specification and execution on the grid of DDM
algorithms designed according to the master/worker pattern, we have designed the grid service

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1751–1774
DOI: 10.1002/cpe

DISTRIBUTED DATA MINING PATTERNS AND SERVICES: AN ARCHITECTURE 1755

Figure 2. Architectural model of distributed data mining services.

architectural model shown in Figure 2. It is composed of two grid services: the GlobalMiner-WS
and the LocalMiner-WS. The overall architecture resembles a typical DDM schema contemplat-
ing the presence of an entity acting as coordinator (the GlobalMiner-WS) and a certain number
of entities acting as miners (LocalMiner-WS) on local sites. Thus, it is a master/worker architec-
ture, in which the service on the master node arranges the operations performed by the services
on the worker nodes. A resource is associated to each service: the GlobalModel Resource to the
GlobalMiner-WS and the LocalModel Resource to the LocalMiner-WS. Such resources are used to
store the state of the services, in this case, represented by the computed models (globally and locally,
respectively). Additionally, the resources are published also as topics, in order to be considered as
“items of interest of subscription” for notifications. As it can be evicted from Figure 2, a global
algorithm library (GAL) and a local algorithm library (LAL) are present in the two types of nodes;
they are code libraries providing the mining algorithms to be executed (at the global and local level,
respectively). In the following, we describe all the steps composing the whole process, by pointing
out details of the interactions between entities composing the whole architecture. Let us suppose
that a client wants to execute a distributed mining algorithm on a dataset D, which is split in N

partitions, fD1, : : : , DN g, each one stored on one of the nodes fNode1, : : : , NodeN g. A request to
the framework of performing a mining process can be labeled in three different main phases, each
one composed of various steps, as described in the following:

Phase 1 - Resource creation and notification subscription. Whenever a client wants to submit
a request, it firstly invokes the createResource operation of the GlobalMiner-WS to create the
GlobalModel Resource (step 1). In turn, the GlobalMiner-WS dispatches this operation in a similar
way: for each local site with a running LocalMiner-WS (supposing that the GlobalMiner-WS holds
a list of them), it invokes the createResource operation (of the LocalMiner-WS) to create the
LocalModel Resource (step 2). At this point, the client invokes the subscribe method to sub-
scribe a listener (inside the client) as consumer of notifications on the GlobalModel topic (step 3).
Finally, the GlobalMiner-WS invokes the subscribe method to subscribe a listener as consumer

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1751–1774
DOI: 10.1002/cpe

1756 E. CESARIO AND D. TALIA

of notifications on the LocalModel topic (step 4). As an effect of such subscription steps, as soon as
a resource changes, its new value will be delivered to its listener.

Phase 2 - Task submission and results notification. Such a phase is the core of the applica-
tion, that is, the execution of the mining process, and the result returns. The client invokes the
submitGlobalTask operation (step 5), by passing a GlobalTaskDescriptor, that is, a complete
description of the task to be executed (algorithm name, parameters, initialization type, etc.). At this
stage, through an interaction with the GAL, the GlobalMiner-WS runs the appropriate code execut-
ing the steps to be done. During this phase, suitable data structures are initialized, and a suitable
set of LocalTaskDescriptor are created. It invokes the submitLocalTask operation (step 6), by
passing a LocalTaskDescriptor. At this stage, each i th LocalMiner-WS begins the analysis of the
local dataset for inferring a local model and local statistics. Such task is executed with the support
of the LAL and is (obviously) executed concurrently on all the grid sites. While every local task is in
progress, the GlobalMiner-WS does not need to periodically poll if they are terminated: the notifica-
tion mechanism foresees an asynchronous delivery of a message when a particular event occurs (in
our case, the termination of local tasks). As soon as a local computation terminates, the value of the
LocalModel Resource is set by the value of the inferred local model. The changes in this resource are
automatically notified to the listener on the GlobalMiner-WS (step 7); in this way, the local model
computed at the i th local site is delivered to the global site. As soon as all the local models are
delivered to the GlobalMiner-WS, the integration of all these local models is performed. According
to the logic of the particular algorithm (provided by the GAL), the GlobalMiner-WS evaluates if
the algorithm is terminated (or not). If it is, the global model computed by the GlobalMiner-WS is
stored on the GlobalModel Resource, that is immediately delivered (for the notification mechanism)
to the client (step 8). Otherwise, the GlobalMiner-WS asks for further processing, by invoking one
more time the submitLocalTask operation (step 6) and waiting for the delivering of the result
(step 7). Such couple of steps (6 and 7) are executed, as many times as the GlobalMiner-WS needs,
until the computation achieves a convergence condition.

Phase 3 - Resource destruction. As final steps, as soon as the computation terminates and
its results have been notified to the client (step 8), the client invokes the destroy operation of
the GlobalMiner-WS (step 9), which eliminates the resource previously created (GlobalModel).
Similarly, the GlobalMiner-WS asks for the destruction of the LocalModel (step 10).

2.3. Some details on “submitGlobalTask” and “submitLocalTask” operations

Figure 3 shows the schema of the submitGlobalTask operation. The procedure receives a glob-
alTaskDescriptor instance as parameter, that is, a description of the task to be executed (algorithm
name, input parameters, initialization choice, etc.). Initially, by an interaction with the GAL, the
appropriate globalAlgorithm instance is loaded (line 5). Then, the chosen algorithm performs an
initialization step (line 6), consisting in the preparation of the local computation descriptions and
global model initialization (if it is needed). In the main loop (lines 7–14), the local tasks are submit-
ted to all local services (lines 8–10) and, as soon as their results have been notified, the globalModel
is updated (line 13). The loop is repeated until the algorithm stops because the obtained global
model is stable or it fits the convergence requirements specified in the input parameters (line 14).
Some finalization operations (line 15) and the setting of the GlobalModel Resource by its cor-
rect value (line 16) complete the procedure. A similar, but simpler, structure is adopted for the
submitLocalTask (whose schema is reported in Figure 4). Initially, the appropriate localAlgo-
rithm is loaded from the LAL (line 3). After an initialization step (line 4), the local computation is
executed (step 5). The procedure terminates with a finalization step (line 6).

We observe that if a new X-algorithm has to be added to the library, it is sufficient to implement
suitable X-globalAlgorithm and X-localAlgorithm instances providing the methods
used in the procedures: initialize, computeGlobalModel, needsMoreIteration, and finalize for the
GlobalAlgorithm; initialize, computeLocalModel, and finalize for the localAlgorithm. A brief expla-
nation of such methods is reported in Figure 5. The new algorithm instances must be added to the
code libraries, so that can be retrieved for further computations. More implementation details are
reported in section 4.3.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1751–1774
DOI: 10.1002/cpe

DISTRIBUTED DATA MINING PATTERNS AND SERVICES: AN ARCHITECTURE 1757

Figure 3. The submitGlobalTask operation.

Figure 4. The submitLocalTask operation.

Method Description
INITIALIZE Initialization of the global model, variables, etc.
COMPUTEGLOBALMODEL Compute the global model by integration of the local

models
NEEDSMOREITERATION Evaluates if the computation is terminated or not,

w.r.t. convergence condition
FINALIZE Finalization steps

(a) GlobalAlgorithm interface.

Method Description
INITIALIZE Initialization steps
COMPUTELOCALMODEL Compute the local model, by processing the available

data
FINALIZE Finalization steps

(b) LocalAlgorithm interface.

Figure 5. Interface of the (a) GlobalAlgorithm and (b) LocalAlgorithm.

Let us do two final considerations on the submitGlobalTask operation. The first one is that
the number of iterations performed in the main cycle (Figure 3, lines 7–14) cannot be generally
fixed a priori. In fact, it depends on the particular mining application submitted to the framework
and may also depend on the data. Some algorithms require the execution of a certain number of
iterations until a convergence condition has been reached [11, 12]. Other algorithms perform the
execution of exactly one [3, 6, 20] or two ([10]) iterations. The exit-loop condition is implemented
in the needsMoreIteration method, and each algorithm exploiting the framework has to provide it.
The second consideration is about the computeGlobalModel method (Figure 3, line 13). Its logic and
complexity is strictly dependant on the particular technique used. In some cases, the global model
is just a composition of the local models computed on the remote site (e.g., collective data mining).
In other cases, the global model is a new mining model obtained by aggregating (voting, regres-
sion) predictions of the local models (e.g., ensemble learning). In other cases, the global model is

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1751–1774
DOI: 10.1002/cpe

1758 E. CESARIO AND D. TALIA

obtained by processing the statistics composing the local models. The computeGlobalModel
method, provided by each algorithm, implements its particular aggregate/merge strategy.

3. TWO APPLICATIVE SCENARIOS: DISTRIBUTED K-MEANS AND DISTRIBUTED
EXPECTATION MAXIMIZATION

In order to show how to apply the proposed architecture for implementing service-oriented DDM
patterns, we present two examples of distributed clustering algorithms exploiting the architecture
described in Section 2.

Clustering is one of the main techniques in scientific data analysis. It is an unsupervised classifi-
cation technique that aims at grouping a set of unlabeled objects into meaningful clusters, with the
requirement that the resulting groups are homogeneous (i.e., pairs of objects in the same cluster are
highly similar), and separated (i.e., objects in distinct clusters are dissimilar). Several distributed
clustering algorithms have designed [10–12, 21]. Among them, we have selected two well-known
algorithms, the distributed k-means and distributed expectation maximization, as pilot examples to
show the suitability of the proposed service-oriented framework. Note that our contribution is in the
service-oriented infrastructure and not in new distributed mining algorithms.

3.1. Distributed k-means

K-means is a well-known partitional clustering algorithm and one of the simplest unsupervised
learning techniques. It receives the number of clusters K as input and proceeds as follows: First, it
randomly selects K of the objects in the dataset, each one representing a cluster mean or center (also
called representative). The representative of a cluster C is an object containing, for each attribute,
the mean values of the data objects in C . For each of the other objects in the dataset, an object is
compared with the K representatives and is assigned to the cluster to which it is the most similar,
based on the distance between the object and the cluster representative (usually, the Euclidian dis-
tance is used). Then, it computes the new representative for each cluster. This process iterates until
the criterion function P erfKM converges, that is, cluster assignments are stable.

The distributed k-means algorithm has been one of the earliest distributed mining algorithms
[11, 12]. Exploiting the classical DDM algorithm structure represented in Figure 1, it includes a
coordinator site and a certain number (i.e., N) of local sites, where the dataset D is distributed
(D1, : : : , DN). The key idea consists of asking the local nodes to compute sufficient statistics (or
local models) in parallel that are suitably summarized to the coordinator site.

We can observe that the distributed k-means algorithm fits very well our service-oriented archi-
tecture, where the GlobalMiner-WS works as coordinator and the LocalMiner-WSs are miners on
local sites. The integration of the k-means in the framework is performed by the implementation of
the k-means-GlobalAlgorithm and k-means-LocalAlgorithm instances (implement-
ing the interfaces reported in Figure 5), as described in the previous section. For completeness, the
distributed k-means algorithm [11] is reported in Figure 6. To better clarify the way such an algo-
rithm has been integrated in the proposed framework, some steps are labeled by the name of the
methods (among those reported in Figure 5) implementing them.

3.2. Distributed expectation maximization

Expectation maximization is a well-known clustering algorithm belonging to the model-based cate-
gory. Such methods, based on the assumption that the data to be clustered are generated by one of
several distributions (i.e., Gaussian), attempt to optimize the fit between the given data and a mathe-
matical model. A mixture model is a set of K probability distributions, representing K clusters that
govern the attribute values for members of that cluster.

Given the input dataset and a prespecified number K of clusters, EM learns, for each instance,
the membership probability of each cluster and, for each cluster, its descriptive model (i.e., the
parameters that govern its generative process). In the EM framework, neither the parameters of the
distribution that each instance comes from nor the parameter of the mixture models are known. Both

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1751–1774
DOI: 10.1002/cpe

DISTRIBUTED DATA MINING PATTERNS AND SERVICES: AN ARCHITECTURE 1759

Figure 6. Distributed k-means algorithm.

are estimated from data. The classic EM algorithm requires initial random mixture model parame-
ters as input. Given such parameters, a single EM iteration provides new parameter estimates, which
are proven not to decrease the likelihood of the model, P erfEM . The process is repeated until con-
vergence, that is, the P erfEM at the previous iteration is sufficiently close to the likelihood of the
current model.

The distributed EM algorithm has been presented in various references [11, 22]. The integration
of the EM in the framework is performed by the implementation of the EM-GlobalAlgorithm
and EM-LocalAlgorithm instances. The distributed EM algorithm [11] is reported in Figure 7.
As previously performed, some labels are used to specify the methods (among those reported in
Figure 5) implementing the various steps of the algorithm.

4. EXPERIMENTAL EVALUATION

To evaluate the execution time and scalability of the architectural model, we carried out a per-
formance analysis by executing different experiments in various scenarios. We have implemented
the distributed k-means and the distributed EM as composition of grid services according to the
architectural model described in Section 2 and the algorithms presented in Section 3. The services
development has been performed by using the Java WSRF library provided by the WS-Core, a com-
ponent of the Globus Toolkit 4 [23]. The services implementing such algorithms have been deployed
in a real grid composed of 18 nodes. For both algorithms, we have deployed the GlobalMiner-WS
(working as coordinator) on a single node and the LocalMiner-WS on each of the other 16 nodes.
The experiments were run on Intel Pentium 4 processors, CPU frequency 1.36 GHz and with 2-GB
RAM.

We have performed the experiments in a scenario where a user wants to submit a clustering task
to the framework on the dataset D. To do that, she/he can decide the number n of local miners and
the computing nodes to be involved during the clustering process. Moreover, if the local datasets

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1751–1774
DOI: 10.1002/cpe

1760 E. CESARIO AND D. TALIA

Figure 7. Distributed expectation maximization algorithm.

are not yet present on the local nodes, the user can firstly ask the system to split the whole dataset
D in n (horizontal) partitions fD1, : : : , Dng (whose size is jDj=n), then send and store them on
the local nodes. At this point, the GlobalMiner-WS is invoked by passing suitable parameters. The
GlobalMiner-WS in turn contacts the n LocalMiner-WSs. In case of n D 1, the whole data set D is
processed on the single node.

Experiments were carried out with a twofold goal. The first one consisted of a quantitative perfor-
mance analysis aimed at evaluating the efficiency of the framework (Section 4.1). The second one
aims at a qualitative analysis of the results by pointing out how the execution of the algorithms on
this distributed environment affects the quality of the results (Section 4.2). The performance of the
framework was tested on various datasets from the UCI Machine Learning Repository‡.

4.1. Quantitative analysis and speedup

A first set of experiments was aimed at evaluating the scalability of the framework and the overhead
introduced by the WSRF mechanisms used by it (with respect to the overall execution time). In order
to achieve such a goal, we have chosen two large datasets, CoverType§ and Internet Advertisements¶,
as data sources for the algorithms.

‡http://kdd.ics.uci.edu
§http://archive.ics.uci.edu/ml/datasets/Covertype
¶http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1751–1774
DOI: 10.1002/cpe

DISTRIBUTED DATA MINING PATTERNS AND SERVICES: AN ARCHITECTURE 1761

The CoverType dataset contains information about forest cover type for 581,012 sites in the
USA; each instance corresponds to a site observation and is described by 54 attributes giving infor-
mation about the main features of a site (e.g., elevation, aspect, slope, etc.). The whole dataset has
a size of about 72 MB. The Internet Advertisements dataset contains a set of possible
advertisements on Internet pages; each record represents a Web page, the features encoding phrases
occurring in the URL, the images URL and alt text, the anchor text, and words occurring near the
anchor text. Such dataset contains 3279 records and 1558 attributes. The whole dataset has a size of
about 10 MB. We point out that the two datasets were chosen in order to investigate the behavior of
the framework (and of the algorithms exploiting it) in two transversal scenarios. The first one is a
large dataset, characterized by a huge number of tuples and a relatively low number of attributes. The
second one is an high-dimensional dataset, typified by a limited cardinality (number of tuples) and a
great number of attributes. In the following, we will describe the tests executed on both algorithms
as well as an evaluation of their performances.

4.1.1. Distributed k-means. As it is known, each run of the k-means algorithm depends on the
choice of the starting cluster centroids. In fact, the initial choice defines the specific local minimum
that will be found by the algorithm, and it determines the number of the k-means iterations. In order
to avoid the impact of the initial choice of the centroids on our timing measurements, for a fixed
dataset, identical starting cluster centroids as well as a common maximum number of iterations are
used.

We evaluated how the WSRF overhead contributes to the total execution time of the algorithms
exploiting it. The WSRF overhead comes from all the steps to be executed to provide the algorithms
as WSRF services, that is, resource creation, notification subscription, task submission, results noti-
fication, and resource destruction steps. In order to make a complete picture of the performances,
we explored three experimental parameters. In fact, we evaluated the performance varying: (i) the
number of nodes n; (ii) the number of attributes d ; and (iii) the number of clusters k.

First, let us show the performance of the k-means algorithm by using a different number of nodes
n. In order to perform such kind of experiments, we used the dataset CoverType as data source for
the algorithm by fixing a common number of iterations (maxIterations D 50) and a common number
of clusters (numClusters D 7) for all the experiments. Figure 8(a) shows two curves: the total execu-
tion time and the total notification time. The first one is the total time taken by the execution of the
distributed algorithm, that is, the time elapsed from the submission of the task by the client (to the
GlobalMiner-WS) until the final result is returned to it (by notification). The second one is the total
time spent for the delivery of the results by the notification; in particular, it is the sum of the times
spent for the local model notifications to the GlobalMiner-WS (summed up on all the iterations)
and the time spent for the delivery of the global model notification (one time, containing the final
result) to the client. As it will be described in the following, the other WSRF-overhead contributions
resulted so low that, we guess, it is not interesting to report them in this plot. By observing the figure,
we can notice an appreciable improvement in the performance when the number of nodes involved
in the mining process increases: the total time execution decreases from 8379 s (obtained with one
node) to 647 s (obtained with 16 nodes). Moreover, it is interesting to notice that the notification
time is very low with respect to the execution time. This means that the portion of the time spent
for the delivery of the computed models affects the total execution time in a very limited way. In
addition to the execution time, another interesting evaluation index is the relative speedup that is
the ratio of the execution time on one node to the execution time on n nodes. Figure 8(b) shows
the achieved execution speedup: it ranges from 1.49 (using two nodes) to 12.95 (using 16 nodes).
Finally, the efficiency is another metric to evaluate the scalability of the system. It is formally defined
as the ratio of the relative speedup to the number of nodes used [24,25]. In a few words, it is a value,
between 0 and 1, estimating how well-utilized the nodes are in solving the problem, compared with
the effort wasted in communication and synchronization. Table I reports the efficiency measured for
the distributed k-means in the experiments. The 0.8 value for the efficiency on 16 nodes shows that
all 16 computing nodes are exploited very well.

As anticipated earlier, another interesting issue is to evaluate how much the WSRF overhead
contributes to the total execution time. In Figure 9(a), in addition to the computation time (that is,

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1751–1774
DOI: 10.1002/cpe

1762 E. CESARIO AND D. TALIA

2 4 6 8 10 12 14 16
0

1000

2000

3000

4000

5000

6000

7000

8000

9000
8379

5620

2940

2249
1819

1537
1285 1128 1034 923 815 761 714 694 666 647

Number of Nodes

T
im

e
(s

ec
)

(a) Execution and notification results time for
different number of local nodes.

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Number of Nodes

S
pe

ed
up

Distributed K−Means
Linear

(b) Speedup values for different number
of local nodes.

Execution Time
Notification Time

Figure 8. Distributed k-means performance.

Table I. Distributed k-means efficiency.

Number of nodes Efficiency

1 1
2 0.75
3 0.95
4 0.93
5 0.92
6 0.91
7 0.93
8 0.92
9 0.90
10 0.91
11 0.93
12 0.91
13 0.90
14 0.86
15 0.83
16 0.80

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1751–1774
DOI: 10.1002/cpe

DISTRIBUTED DATA MINING PATTERNS AND SERVICES: AN ARCHITECTURE 1763

1 2 3 4 5 6 7 8 9 1010−2

100

102

104

106

Number of Nodes

T
im

e
(s

ec
)

(a) Execution time of the different steps for different
number of local nodes, logarithmic scale.

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

180

Number of Nodes

A
ve

ra
ge

 It
er

at
io

n
T

im
e

(s
ec

)

GlobalMiner−WS
LocalMiner−WS

(b) Average execution time of an iteration for
different number of local nodes.

Resource creation
Notification subscription
Task submission
Mining computation
Results notification
Resource destruction

Figure 9. Distributed k-means performance.

the time spent for only mining computation), the execution times of the WSRF specific steps are
reported. It is clearly shown that the computation time and results notification time are the two most
time-consuming steps, whereas all the other WSRF steps (resource creation, notification subscrip-
tion, task submission, resource destruction) need short execution time. From the plot in a logarithmic
scale, results show that all the WSRF steps, with the exception of the notification, are negligible
with respect to the computation time. Moreover, focusing on the computation time, we notice that it
decreases as the number of the local nodes involved in the computation increases. This can be bet-
ter appreciated by observing Figure 9(b), where the average computation time for a single iteration
(on a local node and the coordinator node, respectively) is shown. Whereas execution time of the
coordinator (the GlobalMiner-WS) seems to be unaffected by the number of local nodes involved,
time of a single iteration on a local node (the LocalMiner-WS) decreases as the number of local
nodes involved increases. This is justified by the fact that, in order to compute the local statistics at
the current iteration, the local node has to compute the distance from each element (stored on the
local dataset) to each cluster centroid, whose time complexity is O.K � jDj

n
/ (or O.K � jDi j/, where

jDi j D jDj=n is the size of the dataset stored on the i � th local site). Indeed, in the specific case,
to calculate the local statistics on each local site, the LocalMiner-WSs process datasets whose sizes
range from 72 MB (when n D 1 and the dataset contains 581 K tuples) to 7.2 MB (when n D 10 and
the dataset stores 58.1 K tuples), and this strongly reduces the computational time of each iteration.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1751–1774
DOI: 10.1002/cpe

1764 E. CESARIO AND D. TALIA

As a second evaluation criterion, we studied the system behavior when the number of attributes
changes. For such kind of experiments, we used the dataset Internet Advertising as data source for
the algorithm. Starting from the original dataset, six different datasets were built for different num-
ber of attributes. In particular, the values d D 300, 600, 900, 1200, 1500, and1554 are used, where
the last one refers to the dataset composed of the original number of attributes. We fixed the num-
ber of iterations (maxIterations D 10) and the number of clusters (numClusters D 2) for all the
experiments. Figure 10(a) shows the execution time and notification time with different numbers of
attributes. As expected, the execution time linearly increases with respect to the number of attributes
(because the number of floating point operations to be computed for the distance calculations are
directly proportional to the dimensionality of the dataset). On the contrary, we want to point out
that the notification time increases very slowly with the increment of the attributes. This shows that,
even though high-dimensional datasets are processed, the notification step takes a relatively low and
constant time.

In a third evaluation, we studied the performance of the k-means exploiting the framework when
the number of clusters changes. We used the dataset CoverType as data source for the algorithm by
fixing the number of iterations (maxIterations D 50) and executed the tests by using eight nodes.
Figure 10(b) shows how the execution time and notification time vary when the number of clusters

300 600 900 1.200 1.500
0

10

20

30

40

50

60

Number of Attributes

T
im

e
(s

ec
)

(a) Execution time and Notification time fo
different number of attributes, on 3 Nodes.

0 4 8 16 32 64
0

2000

4000

6000

8000

10000

12000

Number of Clusters

T
im

e
(s

ec
)

Execution Time
Notification Time

(b) Execution time and Notification time fo
different number of clusters, on 8 Nodes.

Execution Time
Notification Time

Figure 10. Distributed k-means performance for different number of attributes and clusters.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1751–1774
DOI: 10.1002/cpe

DISTRIBUTED DATA MINING PATTERNS AND SERVICES: AN ARCHITECTURE 1765

increases. Also in this case, the notification time increases very slowly when the number of clusters
grows and contributes to the total execution time in a very limited amount.

4.1.2. Distributed expectation maximization. Similarly, to the tests performed on the distributed
k-means, various experiments have been carried out by executing the distributed EM exploiting
the proposed framework. Also in this case, because the initial choice of the model parameters and
mixing probabilities could influence the behavior of the computation, identical centers, covariance
matrices, and mixing probabilities (as well as a common maximum number of iterations) for a fixed
dataset have been chosen.

The first goal of such experiments was the evaluation of the framework scalability and the WSRF
overhead introduced by the framework. For such tests, the CoverType dataset has been fixed as data
source for the algorithm, as well as a common number of iterations (maxIterations D 10) and clus-
ters (numClusters D 7) have been used. The execution time and notification time trends are shown in
Figure 11(a), where an appreciable improvement can be noticed when the number of local nodes is
increased. In particular, the total execution time decreases from 21,246 s (obtained using one local
node) to 2551 s (obtained with 16 nodes). Also the speedup, plotted in the Figure 11(b), shows a
good shape, ranging from 1.94 (using two nodes) to 11.19 (using 16 nodes). Finally, Table II reports
the efficiency, which is 93% on eight nodes and 69% on 16 nodes.

2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

21246

10605

7433

5562
4843

3828
3131 2861 2713 2551 2351 2119 2055 1972 1937 1897

Number of Nodes

T
im

e
(s

ec
)

(a) Execution and notification results time fo
different number of local nodes.

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Number of Nodes

S
pe

ed
up

(b) Speedup values for different number
of local nodes.

x 104

Execution Time
Notification Time

Distributed EM
Linear

Figure 11. Distributed EM performance.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1751–1774
DOI: 10.1002/cpe

1766 E. CESARIO AND D. TALIA

Table II. Distributed EM efficiency.

Number of nodes Efficiency

1 1
2 0.97
3 0.95
4 0.96
5 0.91
6 0.92
7 0.97
8 0.93
9 0.87
10 0.83
11 0.82
12 0.83
13 0.79
14 0.76
15 0.73
16 0.69

As we have carried out in the evaluation of the k-means, we have compared the elapsed time for
data mining computation and that spent as WSRF overhead. In Figure 12(a), such different times are
reported for increasing values of the number of nodes. As it is clear, the time spent for the execution
of all the WSRF steps is a minimal part with respect to that spent in the mining computation.

As a final step, we show the performance (on Internet Advertising dataset) when the number of
attributes varies. Figure 12(b) shows how the execution time and notification time vary when the
number of attributes increases. Also in this case, the notification time grows very slowly when the
number of attributes increases and contributes to the total execution time in a very limited amount.

4.2. Qualitative analysis

In this subsection, we discuss, from a qualitative viewpoint, the results obtained by evaluating the
framework. As a preliminary consideration, it is worth noting that the two algorithms exploited in
the experiments build the same models that could be extracted by sequential (centralized) algo-
rithms; in other words, the framework has produced the same data mining models when a different
number of nodes is used.

An important aspect that we want to deal with is that the framework is general enough to perform
preliminary initialization steps (if needed) in addition to mining processes. In particular, for the k-
means, we have implemented different techniques for the initialization of the centroids, and we will
show the obtained results in terms of accuracy. In order to do that, we adopt two external criteria,
the error rate and the F-index. The error rate is an index aimed at evaluating the inaccuracy (impre-
cision) of the classification performed by the clustering process, whereas the F-index quantifies the
compactness of the discovered model. Clearly, low values of the first index and high values of the
second one are evidence of good-quality clustering. The experiments have been performed on the
Sonar||, Vehicle** and Iris†† datasets of the UCI Repository.

It is well known that the k-means algorithm suffers from initial starting conditions effects (initial-
ization and instance order effects). In order to achieve better results in terms of quality of the final
result and number of iterations, various initialization techniques have been proposed in the literature
[26–29]. In this section, we do not propose a new technique for centroid initialization, but we want
to show that the proposed framework is sufficiently general to let the user use different initialization
methods, if they are implemented. To this purpose, we have chosen three initialization methods for

||http://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Sonar2C+Mines+vs.+Rocks)
**http://archive.ics.uci.edu/ml/datasets/Statlog+(Vehicle+Silhouettes)
††http://archive.ics.uci.edu/ml/datasets/Iris

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1751–1774
DOI: 10.1002/cpe

DISTRIBUTED DATA MINING PATTERNS AND SERVICES: AN ARCHITECTURE 1767

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

Number of Nodes

E
xe

cu
tio

n
T

im
e

(s
ec

)

(a) Computation time and WSRF overhead for
different number of nodes.

0 50 100 150 200 250 300
0

200

400

600

800

1000

1200

1400

1600

1800

Number of Attributes

T
im

e
(s

ec
)

(b) Execution time and Notification time for
different number of attributes, on 3 Nodes.

x 104

Execution Time
Notification Time

WSRF overhead
Mining computation

Figure 12. Distributed EM performance.

the k-means, and we have exploited them in our implementation. In the following, a brief description
of such techniques is reported. For more details, the reader could refer to [29].

The R-SEL adopts uniformly random input samples as the seed clusters by choosing the first ran-
domly selected K input instances (where K is the number of clusters); it was one of the earliest
methods proposed in the literature, and it is roughly known as random initialization. The KKZ is
a method that utilizes the sorted pairwise distances for initialization. Initially, the data object with
the maximal norm is chosen to be the center of the cluster C1. Then, the rest of the representative
instances are selected according to the heuristic rule of collecting the closest element to ck , for each
centroid ck yet chosen, and setting as new centroid the element with the maximum distance. The
method terminates when K centroids have been selected. The R-MEAN, based on a Gaussian dis-
tribution of a given mean and variance, generates an array of K indices identifying the K elements
selected from the dataset as initial centroids.

We have implemented all three of these initialization methods of the k-means, and we have also
performed experiments on some datasets by varying the initialization technique. Figure 13 shows
some qualitative results by exploiting three local nodes. In particular, we are interested in the evalu-
ation of the convergence rate, that is, the number of iterations needed for the algorithm termination
and the quality of the results, that is, the error rate and the F-Index. We have noticed that the KKZ

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1751–1774
DOI: 10.1002/cpe

1768 E. CESARIO AND D. TALIA

iris vehicle sonar
0

5

10

15

20

25

Datasets

N
um

be
r

of
 it

er
at

io
ns

KKZ
RMean
RSel

(a) Number of iterations.

iris vehicle sonar
0

0.1

0.2

0.3

0.4

0.5

0.6

Datasets

E
rr

or
 r

at
e

(b) Error rate.

iris vehicle sonar
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Datasets

F
 In

de
x

KKZ
RMean
RSel

(c) F Index.

KKZ
RMean
RSel

Figure 13. Distributed k-means quality.

initialization obtains better results with respect to both the R-SEL and R-MEAN. In fact, on all of
the three datasets, the KKZ induces the algorithm to achieve the convergence in the lowest number
of iterations, as well as to obtain low error rate and high values of F-index.

4.3. Prototype implementation: technical details

This section provides some technical details about the implementation of the framework and some
low-level specifications on its usage.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1751–1774
DOI: 10.1002/cpe

DISTRIBUTED DATA MINING PATTERNS AND SERVICES: AN ARCHITECTURE 1769

The framework prototype has been implemented in Java. The two grid services have been devel-
oped by using the Java WSRF library provided by the WS-Core, a component of the Globus Toolkit
4 [23]. SOAP over HTTP have been used as default message format and transport protocol. All ser-
vices are fully OGSA 1.0 compliant and can be deployed on pre-installed Globus Toolkit 4.0.x
(GT4) stand-alone containers. As it can be seen in Figure 2, the deployment and usage of the
framework contemplate the presence of various nodes distributed in the grid. These nodes are dis-
tinguished in two categories: the global node that performs coordination tasks, and the local nodes
that execute the local mining tasks on the datasets that are located on them. The usage of the frame-
work needs the deployment of a GlobalMiner-WS on the central node and a certain number of
LocalMiner-WS on the local nodes.

From the implementation viewpoint, each service can be ideally distinguished in two compo-
nents: the Web service component and the algorithm library component. In both types of nodes,
the Web service component acts as a WSRF-compliant interface for the invocation of the opera-
tions, whereas the algorithm library is a code library providing the algorithms to be executed (at the
global and local level). In other words, the Web service components take care of the WSRF-specific
stuff and mechanisms, (i.e., the resource creation/destruction, notification subscription and delivery,
operation invocation, etc.) and execute the mining tasks by invoking the corresponding algorithms
provided in the GAL/LAL. We point out that the components are completely decoupled and indepen-
dent; whenever a new algorithm is added to the library, it just needs the update of the code library
(e.g., it does not need to redeploy the service on the GT4 container).

The proposed architecture is able to execute different classes of mining algorithms and not just
clustering tasks. The framework is easily extensible, that is, other mining algorithms could be sim-
ply added by providing the algorithmic logic of the coordinator and the local worker to the algorithm
library. For example, whereas a developer wants to add an X-algorithm to the framework, it has to
develop the X-GlobalAlgorithm and the X-LocalAlgorithm by implementing the generic GlobalAl-
gorithm and LocalAlgorithm interfaces provided in the libraries (see Figure 5). Such software will
integrate the GAL and LAL.

In order to guarantee generality to the framework, all the resource properties used in the ser-
vices are string-based. Actually, whereas a new algorithm has to be added to the framework, it
is desirable to utilize a standard representation (such as PMML) to reduce implementation com-
plexity (even though the discovered structures and models could be stored in every representation
the developer wants). As a consequence of this, the information delivered by notification (mining
models, statistics, etc.) is serialized as strings. Moreover, in order to minimize the delivery time of
notifications (in some cases carrying large amount of information), the messages are compressed
before their delivery and are decompressed at destination. This is carried out both for the local-
global and for global-client notification by using the Java Zip library: it reduces the delivery time by
more than 35%.

Finally, the parameters passed to the submitGlobalTask and submitLocalTask opera-
tions are generic TaskDescriptor objects containing the task parameters (algorithm name and param-
eters, initialization requests, etc.) needed for the task execution. Currently, the datasets on the local
nodes must be stored in the file system as flat file. Adding support for retrieving data from a database
could be carried out by OGSA-DAI without adding particular technical difficulties to the developer.

5. RELATED WORK

Recently, several DDM systems exploiting the grid infrastructure have been designed and imple-
mented [30]. Some of them (FAEHIM [31], GridWeka [32], Weka4WS) have been designed as
modifications/extensions of Weka [33], a well-known toolkit for machine learning and data mining.
In Weka, the overall data mining process takes place on a single machine, whereas in distributed
extensions, a data mining process can be executed concurrently in a distributed environment. Other
grid-based data mining frameworks have been designed and implemented from scratch, such as the
Knowledge Grid, GridMiner, Discovery Net, and DataMiningGrid.

Weka4WS [34] is a framework that extends the Weka toolkit for supporting DDM on grid envi-
ronments through WSRF Web services. In such a way, DDM tasks can be concurrently executed

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1751–1774
DOI: 10.1002/cpe

1770 E. CESARIO AND D. TALIA

on decentralized grid nodes by exploiting data distribution and improving application performance.
In Weka4WS, the data mining algorithms for classification, clustering and association rules can be
also executed on remote grid resources. To enable remote invocation, all the data mining algorithms
provided by the Weka library are exposed as Web services, which can be easily deployed on the
available grid nodes. To achieve integration and interoperability with standard grid environments,
Weka4WS has been developed by using the WSRF Java library provided by GT4 [23].

Discovery Net [35] is a system allowing users to integrate data analysis software and data sources
made available by third parties. The building blocks are the so-called knowledge discovery services,
distinguished in computation services and data services. Discovery Net provides services, mech-
anisms, and tools for specifying knowledge discovery processes. The functionalities of Discovery
Net can be accessed through an interface exposed as an OGSA-compliant grid service. However,
Discovery Net currently uses an early implementation of OGSA (namely, the Open Grid Services
Infrastructure (OGSI)), which has been replaced by WSRF because of lack of compatibility with
standard Web service technologies.

The GridMiner-Core [36] is a framework that supports development and runtime execution of
data mining and data preprocessing applications running in grid environments. It aims at data min-
ing application developers that want an easy-to-use framework supporting them in either porting
their existing applications or developing new applications that run in grid environments, without the
necessity to handle grid-specific stuff. In other words, it provides the core data mining functional-
ity, that is in fact, delegated to external toolkits, and, in this way plugged homogeneously into the
system. More in detail, the system allows the user: (i) to collect and aggregate information about
available services and provides querying interfaces for resource discovery and monitoring; (ii) to
submit jobs described by activity description (modeled as XML document) and monitor their exe-
cution status; and (iii) to access and manipulate various kinds of data sources and allocate/assign
resources to grid application.

The Knowledge Grid [37] is an environment providing knowledge discovery services for a wide
range of high performance distributed applications. Such a framework makes use of basic grid ser-
vices to build more specific services supporting distributed knowledge discovery in databases on the
grid. Such services allow users to implement knowledge discovery applications that involve data,
software, and computational resources available from distributed grid sites. The Knowledge Grid
supports data mining activities by providing mechanisms and higher level services for searching
resources, representing, creating, and managing knowledge discovery processes, and for composing
existing data transfer services and data mining services in a structured manner, allowing design-
ers to plan, store, document, verify, share, and re-execute their workflows as well as manage their
output results. Previous work on the Knowledge Grid has been focused on the development of the
system by using early grid middleware [38], as well as the design and evaluation of distributed KDD
applications [39]. The WSRF has been adopted for reimplementing the Knowledge Grid services
following the SOA approach [40].

The DataMiningGrid [41] software is an environment suitable for executing data analysis and
knowledge discovery tasks in a wide range of different application sectors, including the automo-
tive, biological and medical, environmental and ICT sectors. Based on open-source grid middleware,
it provides functionality for tasks such as data manipulation, resource brokering and application
searching according to different data mining tasks and methodologies, and supporting different types
of functionality for parameter sweeps. The result is a grid software with all the generic functionality
of its component middleware, but with additional features that ease the development and execution
of complex data mining tasks.

Recently, in [42], the Data Mining and Integration (DMI) architecture has been proposed, even
though not yet implemented. It is a framework to perform both data mining and data integra-
tion tasks‡‡. It supports enactment of DMI processes across heterogeneous and distributed data
resources and data mining services. It posits that a useful division can be made between the facil-
ities established to support the definition of DMI processes and the computational infrastructure

‡‡Such combined activity is referred to as DMI activity.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1751–1774
DOI: 10.1002/cpe

DISTRIBUTED DATA MINING PATTERNS AND SERVICES: AN ARCHITECTURE 1771

provided to enact DMI processes. Moreover, the communication between those two divisions is
restricted to requests submitted to gateway services in a canonical DMI language. Autonomous
changes/evolution of data resources and services are supported by types and descriptions, which
will support detection of inconsistencies and semi-automatic insertion of adaptations.

Differently from the systems discussed earlier, the architecture presented here implements a
service-oriented approach that provides a suitable WSRF-compliant infrastructure for executing
some specific prearranged patterns of DDM in a grid environment. As described in the Sections 2.3
and 4.3, any process exploiting the master/worker distributed architecture reported in Figure 1 could
be easily integrated in our framework. Moreover, the experimental evaluation has shown that the
architecture is efficient, in the sense that the WSRF overhead§§ is very low with respect to the
total computation time. This guarantees also a good scalability, as evicted from the experiments
conducted in a real grid.

Here, we point out some specific differences among the presented frameworks and some systems
discussed in the section. Weka4WS exploits the grid for executing DDM tasks as single services or
composing tasks in workflows that are not prearranged for meta-learning. If a user needs to imple-
ment a DDM algorithm exploiting a master/worker schema, he/she needs to design from scratch the
workflow implementing it. Thus, in this case, our framework seems to be more suitable because it
provides such a prearranged pattern. A different observation has to be carried out for the Knowledge-
Grid that is a framework for composing (and executing) workflows by arranging existing services
(data transfer, data mining) available on the grid. In this sense, the proposed architecture could be
used by the KnowledgeGrid as complex mining service (e.g., a meta-learning service) available on
the grid, and that can be easily integrated in larger mining workflows. It is evident that, in such
a scenario, the KnowledgeGrid can act as a client of the GlobalMiner-WS, which will execute the
whole mining process by “delegating”, in turn, partial processes to the available LocalMiner-WS
services. A similar exploitation of the framework proposed in this paper could be performed by the
GridMiner and DataMiningGrid systems.

Finally, in order to provide the reader with a quantitative comparison of the system proposed in
the paper and the others cited here, in the following, we report a brief description of the performance
results obtained by them.

Experiments of the DataMiningGrid framework are presented in its descriptive paper [41]. In a
first scenario, the framework was employed: (i) to induce models of aquatic ecosystems from mod-
eling knowledge and measurement data; and (ii) to simulate these models under changing different
environmental conditions. The test bed includes 18 servers with the Globus Toolkit 4 and Con-
dor installations. The experiments show that, by changing the number of machines from 1 to 10,
a speedup of 6.7 was obtained. Furthermore, by increasing the number of machines by a factor of
2.5 and the workload by a factor of 2.0, a scale-up of 1.8 has been achieved. The second scenario
concerns a classification of millions of documents to be labeled according to a subject. Authors state
that, for a central file server with Gigabit Ethernet, a linear speedup was measured only for up to
five machines.

The experimental results of the GridMiner-Core framework are described in [36]. In particular,
the authors show the dataset size-up behavior for a single client, during a C4.5 algorithm execution
on a synthetic dataset (the Weather dataset filled with synthetic records): the algorithm execution
time grows linearly with the dataset size by 4.2 from 10,000 to 100,000 and by 7.6 from 25,000 to
250,000 records in the dataset. This was a local experiment aimed at evaluating the size-up behav-
ior of the system. More interesting is a distributed classification algorithm denoted as DIGIDT
that has been designed and implemented as pilot application to demonstrate the functionality of
GridMiner-Core. In particular, DIGIDT builds a decision tree classifier from datasets that are dis-
tributed over several sites, and its schema contemplates the presence of one master and n slave
nodes. The experiment environment was a workstation cluster whose nodes were interconnected via
a 100-Mbit Ethernet. The scale-up results show a reduction of the response time from about 10,329 s
(with a single worker node) to 7472 (with two worker nodes) and to 7076 s (with four worker nodes)

§§The whole set of steps needed to make usable the algorithms, such as WSRF service.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1751–1774
DOI: 10.1002/cpe

1772 E. CESARIO AND D. TALIA

Table III. Performance comparison among some systems.

Framework Applicative scenario Test bed hardware Speedup
configuration

System proposed
in the paper

Distributed clustering Grid composed of 18
heterogeneous nodes

1.5 (2 nodes)
7.4 (8 nodes)
9.1 (10 nodes)

12.9 (16 nodes)
DataMiningGrid Ecosystem modeling Grid composed of 18

heterogeneous nodes
6.7 (10 nodes)

GridMiner-Core Distributed
classification

workstation cluster of 4
nodes

1.4 (2 nodes)
1.5 (4 nodes)

KnowledgeGrid Classification task for
intrusion detection of
network data

Grid composed of 8
heterogeneous nodes

2.0 (3 nodes)
4.9 (8 nodes)

Weka4WS Parameter sweeping on
clustering task

Grid composed of 6
heterogeneous nodes

1.8 (2 nodes)
4.5 (6 nodes)

when totally 10 million records have been classified. From these values, we can deduce a speed-up
of 1.4 and 1.5 when two and four nodes are exploited, respectively. No results on a higher number
of nodes are reported.

A performance analysis of the Knowledge Grid is reported in [38], where a classification task
for intrusion detection of network data has been described. In particular, a number of independent
classifiers are first computed by applying in parallel the same learning algorithm (i.e., C4.5) over a
set of distributed training sets and, finally, the best classifier has been chosen by means of a voting
operation based on the error rate and confusion matrix. The experiments were performed on a grid
composed of eight heterogenous machine nodes. The paper reports the execution times and speedup
achieved with a different number of nodes. In particular, a speedup factor of 2.0 has been achieved
on three nodes, and a speedup of 4.9 was obtained by using eight nodes.

Two different papers [34, 43] describe the experimental evaluation of Weka4WS. In [34], the
framework is exploited to analyze the Covertype dataset by running multiple instances of the same
clustering algorithm, with the goal of obtaining multiple clustering models from the same data
source. In particular, Weka4WS has been used to run an application in which six independent
instances of the k-means algorithm (each one typified by a different number of clusters) perform
a different clustering task on the given data set. The same application has been executed using a
number of computing nodes ranging from 1 to 6. The paper points out an appreciable execution
time decreasing the number of computing nodes increases, and the achieved execution speedup
ranged from 1.8 (using two nodes) to 4.5 (using six nodes). In a second experimental evaluation,
described in [43], a dataset is analyzed in parallel on multiple grid nodes using different data min-
ing classification algorithms. In particular, the KDDCup99 dataset is analyzed in parallel using four
different classification algorithms, that is, Decision Stump, Naive Bayes, J48, and Random Forest,
with the aim of finding the “best” classifier on the basis of some evaluation criteria. The experiments
that run on four nodes show that, for the largest dataset used (1000-k instances), the system achieves
a speedup of 2.1 when four nodes are used. The authors observe that the speedup is not particularly
high (as might be expected) because of the diversity of the classification algorithms used in the
example, coupled with the heterogeneity of computing nodes.

Table III summarizes the results obtained by all these systems, by reporting for each one the
applicative scenario, the environment (i.e., number of nodes), and the achieved speedup. If a system
has been exploited in more experiments, the table reports the most significant result.

6. CONCLUDING REMARKS

In this paper, we have described how some DDM patterns can be implemented as mining services
by exploiting the grid infrastructure. We have defined a distributed architectural model that can be
exploited for different distributed mining algorithms deployed as grid services, for the analysis of

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1751–1774
DOI: 10.1002/cpe

DISTRIBUTED DATA MINING PATTERNS AND SERVICES: AN ARCHITECTURE 1773

dispersed data sources. The implementation of two distributed clustering algorithms, k-means and
expectation maximization, on the proposed architecture, as well as an experimental evaluation on
real data sets have been presented. Such algorithms have been implemented and deployed as WSRF
services on the Globus Toolkit, and intensive experimental evaluation on a real grid has shown good
performance. In fact, experiments performed on large and high-dimensional datasets have shown
good scalability of the framework in various test scenarios. Moreover, it is pointed out that the
WSRF overhead contributes to the total execution time in a very limited amount.

The framework described in the paper has various peculiarities, as sketched in the following:

1. If a user needs to exploit a master/worker schema implementing DDM algorithms, the frame-
work provides a specific prearranged pattern; thus, the design of an ad hoc structure (or script)
modeling the application to be executed is not requested to the user.

2. The integration of a new algorithm is very easy; in fact, it is sufficient to implement two
program interfaces, the GlobalAlgorithm and LocalAlgorithm (see Figure 5). Such
software will integrate the two code libraries GAL and LAL that automatically make the new
algorithm available in the system.

3. The algorithms are available as WSRF services, guaranteeing standard access and managing
of stateful resources in a grid environment, allowing their invocation from Web and Cloud
applications.

4. The experiments have shown that the framework achieves good scalability and efficiency; so,
its usage is convenient also from the performance viewpoint.

As a future work, our further research work will investigate some additional issues. In partic-
ular, we would like to deploy other distributed mining algorithms (clustering, frequent itemsets,
association rule), in order to make it more complete from an algorithmic viewpoint. Moreover,
fault-tolerant strategies will be designed to handle possible disconnections of the coordinator or
local nodes. Finally, a technique for the automatic choice both of the optimal value of distribution
degree (number of local miners) and of the involved nodes (with respect to their hardware/software
status) will be studied.

REFERENCES

1. Tan PN, Steinbach M, et al. Introduction to Data Mining. Addison-Wesley: Boston, Massachusetts, 2006.
2. Fu Y. Distributed data mining: an overview. IEEE TCDP Newsletter, 2001.
3. Johnson E, Kargupta H. Collective, hierarchical clustering from distributed, heterogeneous data. In Large-Scale

Parallel KDD Systems, Zaki M, Ho C (eds). Springer–Verlag: San Diego, CA, 2000; 217–249.
4. Zaki M. Parallel and distributed association mining: a survey. IEEE Concurrency 1999; 7:14–25.
5. Distributed Data Mining Bibliography. (Available from: http://www.csee.umbc.edu/~hillol/DDMBIB/ [16 July

2008]).
6. Prodromidis AL, Chan PK, et al. Meta-learning in distributed data mining systems: issues and approaches. In

Advances in Distributed and Parallel Knowledge Discovery, Kargupta H, Chan P (eds). AAAI/MIT Press: Menlo
Park, 2000; 81–87.

7. Kargupta H, Park B, et al. A new perspective toward distributed data mining. In Advances in Distributed and Parallel
Knowledge Discovery, Kargupta H, Chan P (eds). AAAI/MIT Press: Menlo Park, 2000; 133–184.

8. Foster I, Kesselman C, et al. The physiology of the grid. In Grid Computing: Making the Global Infrastructure a
Reality, Berman F, Fox G, Hey A (eds). Wiley: New York, 2003; 217–249.

9. Samatova NF, Ostrouchov G, et al. RACHET: an efficient cover-based merging of clustering hierarchies from
distributed datasets. Distributed and Parallel Databases 2002; 11:157–180.

10. Januzaj E, Kriegel HP, et al. Scalable density-based distributed clustering. Proc. 8th European Conference on
Principles and Practice of Knowledge Discovery, 2004.

11. Zhang B, Hsu M, et al. Accurate recasting of parameter estimation algorithms using sufficient statistics for effi-
cient parallel speed-up: demonstrated for center-based data clustering algorithms. Proc. 4th European Conference on
Principles and Practices of Knowledge Discovery in Databases, 2000.

12. Dhillon I, Modha D. A data-clustering on distributed memory processors. Proc. KDD Workshop on High
Performance Knowledge Discovery, 1999.

13. Hall L, Chawla N, et al. Combining decision trees learned in parallel. In Working Notes of the KDD-97 Workshop on
Distributed Data Mining, 1997.

14. Agrawal R, Shafer JC. Parallel mining of association rules. IEEE Transactions on Knowledge and Data Engineering
1996; 8(6):962–969.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1751–1774
DOI: 10.1002/cpe

1774 E. CESARIO AND D. TALIA

15. Zaiane OR, El-Hajj M, et al. Fast parallel association rule mining without candidacy generation. Proc. IEEE
International Conference on Data Mining, 2001.

16. Taniar MZ, Smith D, et al. ODAM: an optimized distributed association rule mining algorithm. IEEE Distributed
Systems Online 2004; 5(3):1541–4922.

17. Cesario E, Talia D. Distributed data mining models as services on the grid. Proc. 10th International Workshop on
High Performance Data Mining, 2008.

18. Czajkowski K, Ferguson DF, et al. The WS-Resource Framework Version 1.0 2004. (Available from: http://www.
ibm.com/developerworks/library/ws-resource/ws-wsrf.pdf [16 July 2008]).

19. Sotomayor B, Childers L. Globus Toolkit 4: Programming Java Services. Morgan Kaufmann: San Francisco, CA,
2006.

20. McConnell SM, Skillicorn DB. Building predictors from vertically distributed data. Proc. 2004 Conference of the
Centre for Advanced Studies on Collaborative Research, 2004.

21. Sayal M, Scheuermann P. A distributed clustering algorithm for Web based access patterns. Proc. KDD Workshop
on Distributed and Parallel Knowledge Discovery, 2000.

22. Gu D. Distributed EM algorithm for Gaussian mixtures in sensor networks. IEEE Transactions on Neural Networks
2008; 19(7):1154–1166.

23. The Globus Toolkit. (Available from: http://www.globus.org/toolkit/ [16 July 2008]).
24. Grama A, Gupta A, et al. Isoefficiency: measuring the scalability of parallel algorithms and architectures. IEEE

Journal of Parallel and Distributed Technology: Systems and Technology 1993; 1(3):12–21.
25. Kumar V, Gupta A. Analyzing scalability of parallel algorithms and architectures. Journal of Parallel and Distributed

Computing 1994; 22(3):379–391.
26. Bradley PS, Fayyad UM. Refining initial points for k-means clustering. Proc. International Conference on Machine

Learning, 1998.
27. Pizzuti C, Talia D, et al. A divise initialisation method for clustering algorithms. Proc. European Conference on

Principles of Data Mining and Knowledge Discovery, 1999.
28. Pena JM, Lozano JA, et al. An empirical comparison of four initialization methods for the k-means algorithm. Pattern

Recognition Letters 1999; 20(10):1027–1040.
29. He J, Lan M, et al. Initialization of cluster refinement algorithms: a review and comparative study. Proc. IEEE

International Joint Conference on Neural Networks, 2004.
30. Talia D, Trunfio P. How distributed data mining tasks can thrive as knowledge services. Communications of the ACM

2010; 53(7):132–137.
31. Shaikh AA, Rana OF, et al. Web services composition for distributed data mining. Proc. Workshop on Web and Grid

Services for Scientific Data Analysis, 2005.
32. Khoussainov R, Zuo X, et al. Grid-enabled Weka: a toolkit for machine learning on the grid. ERCIM News 2004; 59.
33. Witten IH, Frank E. Data Mining: Practical Machine Learning Tools with Java Implementations. Morgan Kaufmann:

New York, NY, 2000.
34. Talia D, Trunfio P, et al. The Weka4WS framework for distributed data mining in service-oriented grids. Concurrency

and Computation: Practice and Experience 2008; 20(16):1933–1951.
35. AlSairafi S, Emmanouil FS, et al. The design of Discovery Net: towards open grid services for knowledge discovery.

International Journal of High Performance Computing Applications 2003; 17(3):297–315.
36. Hofer J, Brezany P. DIGIDT: distributed classifier construction in the grid data mining framework GridMiner-Core.

Proc. Workshop on Data Mining and the Grid, 2004.
37. Cannataro M, Talia D. The Knowledge Grid. Communications of the ACM 2003; 46(1):89–93.
38. Cannataro M, Congiusta A, et al. Distributed data mining on grids: services, tools, and applications. IEEE

Transactions on Systems, Man, and Cybernetics Part B 2004; 34(6):2451–2465.
39. Bueti G, Congiusta A, et al. Developing distributed data mining applications in the Knowledge Grid framework.

Proc. International Meeting on High Performance Computing for Computational Science, 2004.
40. Congiusta A, Talia D, et al. Distributed data mining services leveraging WSRF. Future Generation Computer Systems

2007; 23(1):34–41.
41. Stankovskia V, Swainb M, et al. Grid-enabling data mining applications with DataMiningGrid: an architectural

perspective. Future Generation Computer Systems 2008; 24(4):259–279.
42. Atkinson MP, van Hemert JI, et al. A distributed architecture for data mining and integration. Proc. 2nd International

Workshop on Data-Aware Distributed Computing, 2009.
43. Lackovic M, Talia D, et al. Service oriented KDD: a framework for grid data mining workflows. Proc. 10th

International Workshop on High Performance Data Mining (HPDM 2008), In Conjunction with ICDM’08, 2008.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1751–1774
DOI: 10.1002/cpe

