
Knowl Inf Syst (2008) 15:285–320
DOI 10.1007/s10115-007-0085-3

REGULAR PAPER

Boosting text segmentation via progressive classification

Eugenio Cesario · Francesco Folino · Antonio Locane ·
Giuseppe Manco · Riccardo Ortale

Received: 29 November 2005 / Revised: 26 February 2007 / Accepted: 28 March 2007
Published online: 22 June 2007
© Springer-Verlag London Limited 2007

Abstract A novel approach for reconciling tuples stored as free text into an existing attribute
schema is proposed. The basic idea is to subject the available text to progressive classification,
i.e., a multi-stage classification scheme where, at each intermediate stage, a classifier is learnt
that analyzes the textual fragments not reconciled at the end of the previous steps. Classifica-
tion is accomplished by an ad hoc exploitation of traditional association mining algorithms,
and is supported by a data transformation scheme which takes advantage of domain-specific
dictionaries/ontologies. A key feature is the capability of progressively enriching the avail-
able ontology with the results of the previous stages of classification, thus significantly
improving the overall classification accuracy. An extensive experimental evaluation shows
the effectiveness of our approach.

Keywords Schema reconciliation · Text segmentation · Classification

1 Introduction

The wide exploitation of new techniques and systems for generating, collecting and storing
data has made available a huge amount of information. Large quantities of such data are
stored as continuous text. In many cases, this information has a latent schema consisting
of a set of attributes, that would in principle allow to fit such textual data into some field
structure, so that to exploit the mature relational technology for more effective information
management. For instance, personal demographic information typically comprises names,
addresses, zip codes and place names, which indicate a convenient organization for the these
kind of data. However, the extraction of structure from textual data poses several challenging
issues, since free text does not necessarily exhibit a uniform representation.

Foremost, the order of appearance of the attributes across the individual lines of text may
not be fixed. In addition, their recognition is further complicated by the absence of both

E. Cesario · F. Folino · A. Locane · G. Manco (B) · R. Ortale
ICAR-CNR, Via Bucci 41c, 87036 Rende (CS), Italy
e-mail: manco@icar.cnr.it

123

286 E. Cesario et al.

suitable field separators and a canonical encoding format, which is mainly due to erroneous
data-entry, misspelled terms, transposition oversights, inconsistent data collection and so
forth [11]. As a concrete example, common issues in personal demographic data are the
adoption of abbreviations for both proper names and common terms and the availability
of multiple schemes for formatting addresses, phone numbers and birth dates. Also, dis-
tinct records may lack different attribute values, which makes them appear with a variable
structure. Yet, the same data may be fragmented over disparate data sources, which further
exacerbates the aforementioned difficulties.

The notion of Entity Resolution [7,10,23], denotes a complex process for database manip-
ulation that embraces three primary tasks. Schema reconciliation consists in the identification
of a common field structure for the information in a data source. Data reconciliation is the act
of discovering synonymies in the data, i.e., apparently different records that, as a matter of
fact, refer to a same real-world entity. Identity definition groups tuples previously discovered
as synonymies, and extracts a representative tuple for each discovered group.

In this paper we propose RecBoost, a novel approach to schema reconciliation, that adopts
classification as an effective mechanism for fragmenting free text into tuples with a common
attributes structure. RecBoost works by performing two macro-steps, namely preprocessing
and reconciliation. The former step is primarily thought for formatting the individual lines
of text, with potentially-different encoding format, into a uniform representation. Domain-
specific ontologies and dictionaries are then exploited to associate each such a token with
a label denoting its ontological or syntactic category. Reconciliation is eventually accom-
plished in terms of progressive classification, i.e., a multi-stage classification scheme where,
at each intermediate stage, a classifier is learnt from the previous classification outcome, thus
being specifically targeted at handling with those textual fragments not reconciled yet.

The main contribution of this paper is thus a methodological approach in which a strict
cooperation between ontology-based generalization and rule-based classification is envis-
aged, which allows to reliably associate terms in a free text with a corresponding semantic
category. A key feature is the introduction of progressive classification, which iteratively
enriches the available ontology, thus allowing to incrementally achieve accurate schema rec-
onciliation. This ultimately differentiates our approach from previous works in the current
literature, which adopt schemes with fixed background knowledge, and hence hardly adapt
to capture the multi-faceted peculiarities of the data under investigation. Moreover, due to
the variable number of classification stages, RecBoost gives the user finer control over the
trade-off between accuracy (i.e., the proportion of correctly classified tokens w.r.t. the classi-
fication behavior of the overall RecBoost system) and recall (i.e., the proportion of correctly
classified tokens w.r.t. the actual tokens to reconcile). In practice, the user can choose a
classifier with a trade-off satisfying the requirements of the specific application.

Still, the approach is further strengthened by the adoption of local rule-based classifica-
tion models, i.e., patterns of term co-occurrence associated with specific class labels. Local
models work practically well in combination with progressive classification, since they only
handle the local specificities they are able to cope with, and postpone the unknown cases
to subsequent classification stages. By contrast, traditional approaches from the literature
exploit global classification models, which are more prone to overfitting when dealing with
the several contrasting specificities occurring across individual sequences. In addition, the
combination of rule-based classification models with domain-specific ontologies makes the
generic RecBoost classifier very intuitive, i.e., easier to interpret than state-of-the-art proba-
bilistic methods, such as DATAMOLD [3] and Mallet [18].

The outline of the paper is as follows. Section 2 introduces the basic notation for the
problem we face; next, it continues by covering details on the process adopted to learn a

123

Boosting text segmentation via progressive classification 287

(a)

(b)

Fig. 1 a Unstructured data. b Reconciled data

generic rule-based classifier and, then, proceeds to examine the RecBoost methodology. The
architecture of RecBoost is discussed in Sect. 3. The overall RecBoost methodology is then
elucidated in Section 4. Sect. 5 presents the results of an intensive experimental evaluation.
Section 6 overviews and evaluates works from the literature, that are most closely related to
our study. Finally, Sect. 7 draws some conclusions and highlights a number of interesting
directions, that are worth further research.

2 Text segmentation with RecBoost

To formalize the Schema Reconciliation problem, we assume the basic definitions in the
following section.

2.1 Notation and preliminaries

An item domain M = {a1, a2, . . . , aM } is a collection of items. Let s be a sequence
a1, . . . , am where ai ∈ M. The set of all possible sequences is denoted by M∗. In gen-
eral, an item ak belongs to a sequence s (denoted by ak∈s) if s = a1, a2, . . . , ak, . . . , an .
Moreover, we denote the subsequence a1, a2, . . . , ak−1 as pres(ak), and the subsequence
ak+1, ak+2, . . . , an as posts(ak).

A descriptor R = {A1, . . . , An} is a set of attribute labels. A descriptor corresponds to a
database schema, with the simplification that, for each attribute label Ai , domain information
is omitted. Thus, our specific problem can be viewed as follows: given a descriptor (database
relation) R = {A1, . . . , An}, and a data set of sequences (free text) S = {s1, . . . , sm} ⊆ M∗,
we want to segment each sequence si into subsequences s1

i , . . . , sn
i , such that each token

a∈sh
i is associated with the proper attribute A j .

For example we may want to fit an unstructured collection of personal demographic infor-
mation representing names, addresses, zip codes and cities, in a proper schema with specific
fields for each category, as exemplified in Fig. 1.

Text reconciliation can be profitably employed in several contexts. We briefly mention a
wide range of major applications, to provide a taste of the generality of our approach. The
harmonization of postal addresses affects large organizations like banks, telephone compa-
nies and universities, which typically collect millions of unformatted address records. Since
each address-record can, in principle, be retrieved from a different data source (designed with
different purposes), variations in the way such records are stored are far from unusual. Further

123

288 E. Cesario et al.

applicative scenarios requiring to deal with the schema reconciliation problem include pro-
cessing bibliographic records, collections of information about products, medical sheets, and
so forth.

A typical applicative setting which motivates our work is the mentioned entity resolution
problem, which roughly consists in discovering/disambiguating duplicate tuples [7,10,21].
When tuples consist of free text, which however contains a hidden structure, tuple disambig-
uation can be accomplished by exploiting either exact matching techniques, based on specific
segments of the strings, or simpler (fuzzy) techniques, that ignore segmentation. Clearly, ex-
act matching is more reliable, provided that the original text is correctly segmented. Consider,
e.g., the strings

s1 Jeff, Lynch, Maverick, Road, 181, Woodstock
s2 Jeff, Alf., Lynch, Maverick, Rd, Woodstock, NY

that clearly represent the same entity. A correct segmentation of the strings would eventually
ease the task of recognizing the similarity.

NAME ADDRESS CITY STATE
s1 Jeff, Lynch Maverick, Road, 181 Woodstock
s2 Jeff, Alf., Lynch Maverick, Rd Woodstock NY

In principle, various schemes may be followed to catch string resemblance. Without loss
of generality, we here focus on two basic approaches, namely Jaccard similarity and weighted
Jaccard similarity. The former measure catches resemblance between any two strings by mea-
suring their degree of overlap, i.e., the proportion of common tokens. Formally, the Jaccard
similarity between the above strings s1 and s2 is defined as

dJ (s1, s2) = |s1 ∩ s2|
|s1 ∪ s2|

The latter measure weights segment matches by the relevance of the corresponding attributes.
Let w1, w2, w3, w4 be four weights respectively denoting the relevance of segment matches
in correspondence of the attributes NAME, ADDRESS, CITY and STATE. The definition
of the weighted Jaccard similarity between the foresaid strings s1 and s2 is

d ′
J (s1, s2) =

∑4
i=1 wi dJ (ai , bi)

∑4
i=1 wi

where entities ai and bi denote two corresponding segments, respectively within s1 and s2.
It is easy to see that dJ (s1, s2) = 0.44. Such a result does not fully reflect the evident

similarity of s1 and s2, which may generally prevent their disambiguation. To overcome
such a limitation, it is sufficient to reasonably assume that a low degree of overlap between
string segments corresponding to the ADDRESS and STATE attributes should not heav-
ily penalize the overall similarity. Indeed, multiple addresses can be associated to an indi-
vidual in a same city, whereas the latter resides in only one state. By accordingly fixing
w1 = 0.5,w2 = 0.1,w3 = 0.35 and w4 = 0.05, it follows that d ′

J (s1, s2) = 0.71, which
more appropriately reflects the actual resemblance between the two strings under comparison.
This confirms that exact matching techniques enable more effective string de-duplication,
whenever the original strings can be accurately segmented.

Thus, a deduplication system adopting a text segmentation methodology, as described in
the figure below, would effectively leverage its performance, provided that the embedded

123

Boosting text segmentation via progressive classification 289

Input sequence
Can be

segmented?
Reconciled sequence

YES

NO

Reconcile via exact matching

Reconcile via some looser scheme

Fig. 2 Example reconciliation

segmentation methodology is reliable.

Input
Sequences

Segmentation Reconciliation
Reconciled
Sequences

Reliability here has a strict meaning: strings should be correctly segmented, and errors in
segmenting should be absolutely avoided. Indeed, a wrong segmentation would likely result
in a worsening of the deduplication effectiveness, even when compared to simpler schemes.
As an example, let us consider the following wrong segmentation of the above strings:

NAME ADDRESS CITY STATE
s1 Jeff, Lynch Maverick Road 181 Woodstock
s2 Jeff, Alf. Lynch Maverick, Rd Woodstock NY

In such a case, it still holds that dJ (s1, s2) = 0.44, whereas d ′
J (s1, s2) = 0.125. In other

words, though previously shown more effective, weighted Jaccard similarity now reveals
unreliable. Instead, simpler schemes disregarding segmentation, such as basic Jaccard simi-
larity, could still somehow enable string disambiguation in an acceptable way.

The point is the trade-off between precision (i.e., the capability of correctly segmenting
a tuple) and recall (i.e., the capability of segmenting a whole). It is clear that classification
systems exhibiting high precision, even at the cost of low recall, can be safely embedded into
a deduplication system, according to the scenario described in Fig. 2.

In this scenario, a text segmentation system has two choices: either a sequence can be
safely segmented, and the result of the segmentation is reliable, or the segmentation result is
not affordable. In the former case, exact matching techniques based e.g., on weighted Jaccard
similarity can be applied, whereas the latter case can still provide a reconciliation, which is
however based on fuzzier schemes. Unfortunately, the state-of-the-art approaches from cur-
rent literature, based on probabilistic modeling, do not properly fit the above scheme, since
they foresee a segmentation even in presence of high uncertainty.

In this paper we discuss RecBoost, an approach for contextualized reconciliation, that
moves away from probabilistic modeling. The idea is to first foresee a segmentation of textual
sequences into tokens and, then, to perform a token-by-token classification, that involves the
analysis of the surrounding context. This basic task is at the heart of progressive classification,
i.e., a strategy for text reconciliation, consisting in the exploitation of multiple, consecutive
stages of classification. At each intermediate stage, a classifier learns from the outcome of its

123

290 E. Cesario et al.

Fig. 3 A concept hierarchy for personal information in a banking scenario

antecedent how to deal with those tokens, that were not reconciled at the end of the previous
stage. This ensures reconciliation effectiveness even on unknown terms.

2.2 The RecBoost methodology

The reconciliation of a set S = {s1, . . . , sm} of sequences with an attribute schema R =
{A1, . . . , An} consists in the association of each token a within the generic sequence s ∈ S
with an appropriate attribute of R.

RecBoost pursues text reconciliation via term generalization. Precisely, two types of gener-
alizations are involved, namely syntactic and ontological analysis, and contextual
generalization. The former aims at labeling textual tokens with their syntactic or ontolog-
ical categories. The latter employs knowledge of the relationships among textual tokens,
ontological categories and schema attributes, for assigning each token to a proper schema
attribute.

As an example, a token a composed by multiple consecutive digits may be ontologically
denoted as a number. Subsequently, the contextual presence on the same sequence contain-
ing a of two further ontological labels, such as city and street (respectively following and
preceding a), may determine the reconciliation of a with an attribute address of the schema
descriptor.

2.2.1 Syntactic and ontological analysis

RecBoost exploits a user-defined domain ontology, in the style of the ones employed in
[2,3], to preprocess sequences within S. In practice, a domain ontology is specified as
G = 〈L, �, A〉, where L is a set of categories, � is a precedence relation defined on L,
and A is a set of rules whose structure is sketched below:

L represents a set of ontological concepts, which can be exploited in order to generalize tokens
within a sequence. Such concepts are structured in a concept hierarchy, specified by the �
relation. Figure 3 shows an exhaustive set of concepts and their hierarchical relationships.
A = {r1, . . . , rh} is a set of rules, that are useful to specify background knowledge about
the domain under consideration, and are meant to provide a transformation of a set of tokens
appearing in a sequence. Formally, the generic rule ri ∈ A relates a basic textual token

123

Boosting text segmentation via progressive classification 291

with some corresponding ontological concept in L, i.e., ri : M∗ → L. Generally, the prior
definition of a number of rules allows to properly deal with several tokens in a wide variety
of applicative settings, with no substantial human effort.

As to the interpretation of ontological rules, Condition specifies a pattern-matching expres-
sion defined over the tokens of a sequence, and Action specifies some actions to take on such
tokens. We here focus on two main actions, exemplified in the context of the ontological
rules A = {r1, r2, r3} adopted for the concept hierarchy of Fig. 3. As shown in the following
illustration, rules r1 and r2 involve both type of actions:

In general, relabeling actions, such as r1, substitute a token (or a set of tokens) with a con-
cept in L. Restructuring actions, such as r2, operate on a set of tokens, by applying basic
transformation operations (such as deleting, merging or segmenting).

Rules can also exploit user-defined dictionaries. As an example, the below rule r3 specifies
that each token appearing in the set Dictionary of all known toponyms (which comprises,
e.g., street, road, blvd, etc.) can be generalized by the category TOPONYM in L.

By exploiting G, syntactic generalization performs two steps. First, it transforms the orig-
inal sequences in S = {s1, . . . , sn} into a new set S′ = {s′

1, . . . , s′
n}, where each sequence s′

i
is obtained from si by applying the rules in A. Notice that multiple matching preconditions
can hold for the same set of tokens. This potential ambiguity is solved via a user-defined
order over the rules in A: when multiple rules can be applied, the first rule is chosen, and
the others are ignored. In the above example, both rules r1 and r2 can be potentially applied
to a sequence of digits. However, a token containing four digits can be interpreted as a zip
code if and only if it is not followed by a new number (in which case, the former token has to
be interpreted as an area code within a phone number). Thus, in order to disambiguate rule
selection, r2 is given a precedence on r1, so that to initially favor the attempt at generalizing
longer digit sequences. Second, the available tokens in each sequence are further generalized
by an ad-hoc exploitation of the hierarchy described by the � relation. The exploitation is
a direct result of a cooperation with contextual analysis, which reconciles tokens in S′ as
described in the next subsection.

2.2.2 Contextual analysis

This step is meant to associate tokens in S with their corresponding attributes in R. We
approach the problem from a supervised learning perspective. Formally, we assume that
there exists a partial function λ : M∗ �→ M �→ R that, for each sequence s ∈ M∗, labels
a token a into a schema attribute A j , namely λs(a) = A j ∈ R. Hence, the problem can be
stated as learning λ from a training set T such that, for each sequence s ∈ T and for each
token ai ∈ s, the label λs(ai) is known.

In order to correctly classify each token ai∈s, we exploit information about its context.
More specifically, the context features(ai) of a generic token ai ∈ s, is the set of all the items
preceding and following ai in s and is formally defined as follows:

features(ai) = 〈pres(ai), ai , posts(ai)〉

123

292 E. Cesario et al.

In the above notation, pres(ai) is the fragment of features(ai) that precedes ai . Dually,
posts(ai) indicates the context segment that follows ai .

The set T = {〈features(a), λs(a)〉|s ∈ T, a∈s} represents the training set for our classi-
fication problem.

The idea beyond contextual analysis is to examine the context features(a) of each token
a within any sequence s, in order to learn meaningful associations among groups of tokens
of S. These associations can be then exploited to learn a rule-based classifier, that associ-
ates each individual token in S with an attribute in R. In practice, our objective is to build a
classifier C : (M ∪ L ∪ R)∗ �→ M �→ R, specified by rules such as the one sketched below:

Here, a and s represent, respectively, token and sequence variables. Moreover, Condition
represents a conjunction of terms, and Class represents an attribute in R. Terms in Condition
can be specified in three different forms: either as a = v, v ∈ pres(a) or v ∈ posts(a), where
v is any constant in M ∪ L ∪ R. The latter two conditions strictly relate token reconciliation
with context inspection. Indeed, condition v ∈ pres(a) (risp. v ∈ posts(a)) narrows context
analysis to what actually precedes (risp. follows) token a.

In the process of distilling a rule-based classifier from a training set T , a holdout approach
is adopted to partition T into a validation set V and an actual training set D = T −V . The goal
is learning a classifier from D that has highest accuracy on V . In principle, any rule-based
classifier could be used here. However, we found that classification based on association
rules is more effective in this setting than, e.g., traditional algorithms based on decision-tree
learning. The intuition behind the above statement is that association rules are better suited
to detect local patterns which hold locally on small subsets of D. This is especially true
when D is large, and contains many contrasting specificities across individual sequences.
By contrast, decision trees represent global models, which are hardly able to capture such
specificities without incurring into the overfitting phenomenon. In addition, the intrinsic
unstructured nature of the feature space to analyze does not allow an immediate application
of decision-tree learning techniques, whereas association rule mining techniques naturally
fit the domains under consideration.

A variant of the Apriori algorithm [22] is exploited in order to extract from the explicit
representation of token contexts, D = {〈features(a), A〉|s ∈ D, a ∈ s, A ∈ R}, a set of
association rules that meet pre-specified requirements on their support and confidence values
and whose consequents are narrowed to individual schema attributes. A classifier can hence
be built on the basis of such discovered rules, by selecting the most promising subset, i.e.,
the subset of rules which guarantees the maximal accuracy. To this purpose, we adopted
the CBA-CB method [15], which allows an effective heuristic search for the most accurate
association rules. Succinctly, its basic idea is to sort the extracted associations by exploiting
a precedence operator ≺. Given any two rules ri and r j , ri is said to have a higher precedence
than r j , which is denoted by ri ≺ r j , if (i) the confidence of ri is greater than that of r j , or
(ii) their confidences are the same, but the support of ri is greater than that of r j , or (iii) both
confidences and supports are the same, but ri is shorter than r j . Hence, a classifier can be
formed by choosing a set of high precedence rules such that

1. each case in the training set D is covered by the rule with the highest precedence among
those that can actually cover the case;

2. every rule in the classifier correctly classifies at least one case in D, when it is chosen.

123

Boosting text segmentation via progressive classification 293

The resulting classifier can be modeled as 〈r1, r2, . . . , rn〉, where ri ∈ D, ra ≺ rb if b > a.
While considering an unseen case of D, the first rule that covers the case also classifies it.
Clearly, if no rule applies to a given case, the case is unclassified.

We revised the scheme of [15] by implementing a post-processing strategy, which aims at
(1) further improving the classification accuracy of the discovered rules, and at (2) reducing
the complexity of the discovered rules. The postprocessing is mainly composed by attribute
and rule pruning. The idea behind attribute pruning consists in removing items from clas-
sification rules, whenever this does not worsen the error rate of the resulting classifier. The
validation set V is exploited to assess classification accuracy.

Precisely, let r be a generic classification rule containing at least two terms in the ante-
cedent. Also, assume that s denotes a generic sequence in V and that x represents a token
within s. The error rx of rule r on x is a random variable

rx =
{

1 if r misclassifies x
0 otherwise

Hence, the overall error of r on V can be defined as follows,

E(r) = 1

nV

∑

x,s/x∈s,s∈V

rx

where nV indicates the overall number of tokens within V . A new rule r ′ can now be gen-
erated by removing from the antecedent of r any of its terms. We replace r by r ′ if two
conditions hold, namely E(r ′) < E(r) and the discrepancy E(r) − E(r)′ is statistically
relevant. To verify this latter condition, we exploit the fact that for nV large, the distribution
of E(r) approaches the normal distribution. Hence, we compute a τ% confidence interval
[α, β], whose lower and upper bounds are, respectively, given by

α = E(r) − cτ

√
E(r)[1 − E(r)]

nV

and

β = E(r) + cτ

√
E(r)[1 − E(r)]

nV

where, constant cτ depends on the confidence threshold τ . The above interval represents
an estimate for the actual error of rule r . Finally, we retain r ′ instead of r , if it holds that
E(r ′) < α. In such a case, we analogously proceed to attempt at pruning further items from
the antecedent of r ′. Otherwise, we reject r ′.

Rule pruning instead aims at reducing the number of rules in a classifier. As in the case
of attribute pruning, the idea consists in removing rules from a classifier, whenever this does
not worsen the accuracy of the resulting classifier.

To this purpose, all rules in a classifier are individually evaluated on the basis of their
precedence order. A generic rule r is removed, if one of the following conditions holds:

– r does not cover a minimum number of cases in V ;
– the accuracy of r on V is below a minimum threshold;
– the removal of r from the classifier increases its overall accuracy on V .

123

294 E. Cesario et al.

3 RecBoost anatomy

Association rules for classification allow to tune the underlying classification model to a
local sensitivity. However, in principle their adoption can yield a high number of unclassified
tokens, i.e., tokens for which no rule precondition holds. In a reconciliation scenario, this is
due to the presence of unknown or rare tokens, as well as errors in the text to segment. The
adoption of a concept hierarchy mitigates such a drawback and, indeed, it has already been
adopted in traditional approaches based on HMM [2,3]. The novelty in the RecBoost recon-
ciliation methodology relies on a finer cooperation between synthactic/ontological analysis
and contextual analysis. The reiteration of the process of transforming tokens and learning a
rule-based classifier allows progressive classification, i.e., the adoption of multiple stages of
classification for more effective text reconciliation. Precisely, a pipeline P = {C1, . . . , Ck}
of rule-based classifiers is exploited to this purpose. At the generic step i , i = 2, . . . , k, a clas-
sifier Ci is specifically learnt to classify all those tokens, that were not reconciled at the end
of step i − 1. The length k of the classification pipeline is chosen so that to achieve accurate
and exhaustive classification. Conceptually, this requires to minimize the overall number
of both misclassified and unclassified tokens. In practice, a further classification stage is
added to P whenever such values do not meet application-specific requirements, such as in
the case where the misclassification rate is acceptable, but the unclassification rate is not
satisfactory.

The generic classifier Ci can be formally described as a partial mapping Ci : (M ∪ L ∪ R)∗
�→ M �→ R, and its construction relies on a specific training set Ti , that is obtained from
Ti−1 by adding domain information provided by Ci−1. Given any sequence s ∈ Ti−1, Ci is
learnt from the evaluation of the set Xs of unknown tokens, i.e., the set of those tokens in
s, that are not covered by any rule of Ci−1. This is accomplished by enriching the domain
information in G with a new set of rules directly extracted from the set of classification rules
in Ci−1. Specifically, each classification rule r ∈ Ci−1 such as the one below:

is transformed into a labeling rule r ′, having the following structure:

The new rule r ′ is then added to the set A of rules available for syntactic analysis. Then,
syntactic analysis is applied to each sequence s in Ti−1, and the resulting transformed se-
quences are collected in Ti . A new training set Ti is then generated by collecting, for each
sequence s ∈ Ti and each token a ∈ Xs , the tuples 〈features(a), λs(a)〉. Notice that there
is a direct correspondence between the context features(a) computed at step i and the con-
text computed at step i − 1. Indeed, the new context features(a) follows from the context
of a within Ti−1 by replacing each token b ∈ Xs of s with its corresponding attribute
Ci−1(b).

The above detailed methodology is supported by three main components, namely a pre-
processor (tokenizer), a classifier learner and a postprocessor. The components cooperate
both in the training and in the classification phases, as detailed in Fig. 4. In the following,
we explain the role played by each of the aforementioned modules.

123

Boosting text segmentation via progressive classification 295

(a)

(b)

Fig. 4 Training a and classification b phases in the RecBoost methodology

3.1 Preprocessor

A cleaning step is initially performed by this component, to the purpose of encoding the ini-
tial data sequences of a free text S into a uniform representation. This phase involves typical
text-processing operations, such as the removal of stop-words, extra blank spaces, superflu-
ous hyphens and so forth. The preprocessor then proceeds to split free text into tokens. The
main goal of this phase is to recognize domain-dependent symbol-aggregates (e.g., acro-
nyms, telephone numbers, phrasal construction, and so on) as single tokens. As an example,
aggregates such as ‘I B M’, ‘G. m. b. H.’ or ‘as well as’ are more significant as a whole, rather
than as sequences of characters in the text. The identification of symbol aggregates as well
as domain/specific cleaning steps are accomplished by using domain-specific transformation
rules suitably defined in G.

3.2 Classifier learner

The classifier learner is responsible for producing an optimal set of classification rules, as
shown in Fig. 4a. It consists of four main elements: a generalizer, an association rule miner,
a filter for classification rules and a classifier pruner. In particular, the generalizer performs
ontological generalization, by exploiting the labeling rules and the � relationship defined in
G. Its role is mainly to enable the discovery of accurate association/classification rules, by
providing an adequate degree of generalization among the data. To accomplish this task, the
generalizer employs the labeling rules in A. Next, for each label replacing a token somewhere
in a textual sequence, the related concept hierarchy is inspected and the textual sequence is
extended to also include the ancestors of the specific label. The latter operation is performed

123

296 E. Cesario et al.

by the association rule miner, that extracts generalized association rules from the above
extended sequences. The classification rules filtered by the classification rules filter, which
in principle could contain several redundancies (due to the exploitation of the hierarchy in
the association mining step), are further postprocessed by the classifier pruner. The latter
attempts to reduce the overall size of the discovered rules by exploiting the aforementioned
attribute and rule pruning techniques.

3.3 Postprocessor

The postprocessor rebuilds the sequences reconciled by a rule-based classifier, at any stage
of progressive classification, by fitting them into a relational structure with schema R, as
shown in Fig. 4b. This is accomplished by interpreting each (partially) reconciled sequence
as a structured tuple, and organizing the tokens that have been so far reconciled as values of
corresponding schema attributes.

Postprocessing enables progressive reconciliation: at any stage, a classifier is specifically
learnt for dealing with those sequence tokens, that were not reconciliated at the end of the
previous stage. The postprocessor is also exploited during the training phase, as shown in
Fig. 4, to yield the i-th training set Ti , by generalizing the tokens in each sequence s ∈ Ti−1

via the application of the rules in Ci−1.

4 An illustrative example

We elucidate the overall RecBoost methodology, by exemplifying the reconciliation of a col-
lection of personal demographic information, shown below, in compliance with the attribute
descriptor R = {NAME, ADDRESS, ZIP, CITY}.

In particular, we assume to exploit a dictionary containing all known toponyms, and a domain-
specific ontology G = 〈L, �, A〉, where L= { PHONE-NUMBER, SSN, TOPONYM, ZIP-
CODE } and A consists of the following ontological rules:

123

Boosting text segmentation via progressive classification 297

The example data collection is corrupted by noise, i.e., by the absence of a uniform represen-
tation for all of its constituting sequences. Indeed, a comparative analysis of their formatting
encodings reveals that:

– there is a telephone number in sequence s1 that has to be discarded, since it is not expected
by the descriptor R;

– character ‘-’ is employed in sequence s1 as a separator between the words Northern and
Boulevard, that are in turn delimited by double quotes;

– brackets are exploited to separate the zip-code information in sequence s1;
– three non-relevant dots precede the address information in sequence s2;
– two hyphens in sequence s3 demarcate the word Brooklyn;
– there is a social security number (SSN) in sequence s3 that has to be discarded, since it

is not expected by the descriptor R.

The identification of a uniform representation format for all of the individual sequences
in the textual database enables an effective segmentation of such sequences into tokens and,
hence, a reliable reconciliation. A preprocessing step is performed to this purpose.

4.1 Preprocessing

The input textual sequences are suitably tokenized. This is accomplished by exploiting the
presence in the original text of domain-specific delimiters such as single or double quotes,
hyphens, dots, brackets and blanks. After segmentation, such delimiters become spurious
characters, i.e., play no further role in the reconciliation process, and are hence ignored.

The output of this step, with respect to the hypothesized data, is represented below:

The fragmented text is now subjected to a pipeline of rule-based classifiers, that reconciliate
groups of tokens across the individual sequences s1, s2, s3 with the attributes in R.

For the sake of convenience, we assume that two stages of classification allow the accom-
plishment of an actual reconciliation. Furthermore, since progressive classification involves
a similar processing for each sequence in the tokenized text, we proceed to exemplify the
sole reconciliation of s1.

4.2 Progressive classification

Progressive classification divides into syntactic and contextual analysis.

4.2.1 Syntactic analysis

This step performs token generalization. Here, the exploitation of the above ontological rules
allow the generalization of a number of tokens in s1 as shown below, where labels denoting
ontological categories are enclosed between stars.

123

298 E. Cesario et al.

To this point, s1 undergoes two levels of contextual analysis, where at each level a suitable
set of rules is applied.

4.2.2 First-level classifier

A classifier is generally distilled from the analysis of the relationships among textual tokens,
ontological categories and, also, attributes in the context of each token within the generalized
sequences at hand. In particular, we suppose that the classifier resulting from the learning
phase includes the classification rules listed below:

The first-level classification hence starts by classifying the tokens of s1, according to their
features. In particular, being s1 composed of six tokens, a first-level classifier is applied
against the six context representations features1

(a) = 〈pres1
(a), a , posts1

(a)〉, shown be-
low, where a is any token of s1.

Notice that, at this stage of contextual analysis, s1 does not include attribute labels. Hence,
reconciliation takes into account relationships among ontological labels and textual tokens.
These enable the reconciliation of the entities *TOPONYM*, Boulevard, London and *ZIP*, but fail
in dealing with *PHONE* and Hacker. In particular, this latter token is not covered by the rule
that classified Harry, since pres1

(Hacker) = {Harry} = ∅. At the end of this step of classification,
sequence s1 assumes the following form,

where reconciliated tokens are replaced by their corresponding attribute labels, enclosed
between square brackets.

123

Boosting text segmentation via progressive classification 299

4.2.3 Second-level classifier

To this point, as a consequence of progressive classification, the original domain information
in G is updated to yield an enriched ontology G′ = 〈L, �, A′〉. The set A′ of ontological
rules is obtained by augmenting the original one, A, with the classification rules learnt at the
end of the previous reconciliation step. Formally, A′ = A ∪ {r5, r6, r7, r8, r9}. Recall that
first-level classification rules are transformed into labeling rules before being added to A′.

Contextual analysis is then reiterated to reconciliate those tokens that were not associated
with a schema attribute at the end of the previous step. Again, we assume that a second-level
classifier is learnt from the training data and, and it is composed by the following individual
rule:

There are only two tokens in s1 that were not associated with a schema attribute and, hence,
the above classifier is applied against two context representations:

As a result, the classifier further generalizes s1 into the following sequence:

Notice that *PHONE* is still not reconciliated, since no classification rule applies to it.

4.3 Postprocessor

The postprocessor rebuilds the original sequence s1, by fitting its corresponding tokens in a
suitable structure defined by the descriptor R = {NAME, ADDRESS, ZIP, CITY}:

Notice that the structure above exactly complies with R. However, in some cases, it may
be useful to add an extra column NOISE, to the purpose of tracing all the original tokens.
This would correspond to the following tuple:

123

300 E. Cesario et al.

5 Experimental evaluation

In this section, we describe the experimental evaluation we performed on the proposed meth-
odology. Experiments were mainly aimed at evaluating the effectiveness of the proposed
methodology in segmenting strings. To this purpose, we accomplish the following tasks:

1. We evaluate the effectiveness of the basic rule-based classifier systems proposed in
Sect. 2.2.2. Since the classification methodology represents the basic infrastructure upon
which the RecBoost system bases, it is important to assess its effectiveness in the domain
at hand. In particular, we evaluate two main aspects: (i) its dependency from the parame-
ters which are needed to tune the system, and (ii) the effectiveness of the pruning strategy
introduced.

2. Next, we evaluate classification accuracy obtained by the progressive classification meth-
odology nested in the RecBoost approach, as described in Sect. 3. Our aim here is to
investigate in which respect the envisaged pipeline boosts the performance of a basic
classifier. We also compare our results with other state-of-the art text segmentation
systems.

5.1 Experimental setup

In order to accomplish the above tasks, we considered the following datasets:

– Addresses, a real-life demographic database consisting of information about the issue-
holders of credit situations in a banking scenario. Such a dataset is of particular interest,
since it contains several fragments of noisy data. The dataset consisted of 24,000 se-
quences, with an average of eight tokens per sequence. The schema to reconcile consisted
of the fields Name, Address, Zip, State/Province, and City.

– BigBook, a publicy-available dataset1 consisting of a set of business addresses. Each
business description consists of the six items Name, Address, City, State, AreaCode,
and Phone. The dataset consists of 4,224 sequences, with ten tokens per sequence in
the average. The dataset is of particular interest, since the relatively small size of the
available dataset allows us to evaluate whether RecBoost is sensitive to the number of
training tuples.

– dblp, a collection of articles extracted from the DBLP website2. Each entry refers to an
article appeared in a Computer Science Journal, and contains information about author,
title, journal, volume, year. We extracted 19,401 sequences, with an average sequence
length of 20 tokens.

The evaluation of Recboost effectiveness requires the design of a domain-specific ontol-
ogy for each of the aforementioned datasets. Specifically, the concept hierarchy devised for
the Addresses dataset is shown in Fig. 3. This consists of 11 concepts for token gen-
eralization, suitably organized into a compact hierarchical structure. The ontological rules
include rules r1, r2, r3 and r4 at Sect. 4 (as relabelling rules) and rule r2 at Sect. 2.2.1 (as a
restructuring rule).

The ontology employed for the BigBook dataset, shown in Fig. 5, embraces nine con-
cepts.

1 http://www.isi.edu/info-agents/RISE/repository.html.
2 http://www.informatik.uni-trier.de/~ley/db/.

123

http://www.isi.edu/info-agents/RISE/repository.html
http://www.informatik.uni-trier.de/~ley/db/

Boosting text segmentation via progressive classification 301

In such a context, no use is made of restructuring actions, so that background knowledge
reduces to the relabeling rules shown next:

LOCATION

STREET NUMBERTOPONYM AREA CODE

NUMBER

PHONE

BUSINESS

NAME

ANY

Fig. 5 The concept hierarchy for the BigBook dataset

DELIMITER

ARTICLE PREPOSITION

AUTHOR

VOLUME

TITLE

YEAR

ANY

NUMBER JOURNAL

Fig. 6 The concept hierarchy for the dblp dataset

123

302 E. Cesario et al.

Finally, the ontology for the dblp dataset is shown in Fig. 6.
Again, background knowledge only involves relabeling rules, that are reported below:

Notice that the definition of the above rules relies on a number of domain-specific dictionar-
ies. In particular, JOURNAL DICTIONARY includes several alternative ways of denoting
a journal article, such as j., journal, trans. and transaction. GRAMMATICAL- ARTICLE
DICTIONARY groups English-language articles a, an and the. Similarly, PREPOSITION
DICTIONARY collects commonly used prepositions, such as by, to, with and via. DELIM-
ITER DICTIONARY is a set of token delimiters, that comprises ’, ”, ;, ,, -, ., and *.

It is worth noticing that the analysis of the above domain-specific ontologies reveals a key
feature of RecBoost methodology. Roughly speaking, it can be easily employed for pursuing
text reconciliation in a wide variety of applicative settings, by simply providing a domain-
specific concept hierarchy along with a corresponding compact set of ontological rules. The
overall process of ontology design is rather intuitive and does not require substantial effort
by the end user.

The evaluation of the results relies on the following standard measures which are custom-
ized to our scenario. Given a set N of tokens to classify, we define:

– the number of tokens, which were classified correctly, TP;
– the number of tokens, which were misclassified, FP;
– the number of tokens, which were not classified, FN — notice that this is a different

meaning with respect to the standard literature.

In the following, we shall report and illustrate the above measures over the mentioned data-
sets. Two further important measures, however, can give an immediate and summarizing
perception of the capabilities of our classification system. In particular, Precision (or Accu-
racy) can be defined as the number of correctly classified tokens, w.r.t. the classification
behavior of the system:

P = TP

TP + FP

123

Boosting text segmentation via progressive classification 303

Analogously, Recall can be defined as the number of correctly classified tokens, w.r.t. the
tokens to classify:

R = TP

TP + FN

Intuitively, Recall describes the locality issues, that affect the system: if a classifier contains
rules which can cover all the examples, then it has 100% recall (i.e., no locality effect).
Precision, by the converse, describes the accuracy of the rules contained: the higher is the
error rate of a rule, the lower is its precision.

A measure which summarizes both precision and recall is the F measure, defined as

F = (β2 + 1)P R

P + β2 R

The F measure represents the harmonic mean between Precision and Recall. The β term in
the formula assigns different weights to the components: when β = 1 both the components
have the same importance. The tuning of the β parameter is application-dependent. Here,
we are interested in the cases where β > 1 (which assigns higher importance to Precision
than to Recall). This is a crucial requirement of many application domains, such as the one
described in Sect. 2. Hence, in the following we shall study the situations where β > 1, and
in particular we are interested in the cases where β ranges into the interval (1, 10].
5.2 Evaluating the basic classifier system

In an initial set of experiments, we classified the data without exploiting ontologies and
multiple classification stages. In these trials, support was fixed to 0.5%, with ranging values
of confidence. Figure 7 shows the outcome of classification for the three datasets. Each bar
in the graph describes the percentage of correctly classified tokens, together with the per-
centages of misclassified and unclassified tokens. As we can see, the effectiveness of the
classifiers strongly relies on the confidence value. In particular, low confidence values (up to
40% in both Addresses and dblp, and 60% in BigBook) to classify all the tokens, but
the percentage of misclassified is considerably high. This is somehow expected, since low
confidence values induce rules exhibiting a weak correlation between the antecedent and the
consequent.

By contrast, higher confidence levels lower the misclassification rate, but the degree of
unclassified tokens raises considerably. It is worth noticing that, in all the examined cases a
confidence rate of 100% guarantees a percentage of misclassified data which is nearly zero.
This is the locality effect: high confidence values produce extremely accurate rules that, as a
side effect, apply only to a limited number of tokens. By lowering the confidence, we relax
the locality effect (the resulting rules apply to a larger number of tokens), but the resulting
rules are less accurate.

The dblp dataset is particularly interesting to investigate in this context, since it exhibits
the worst performances. The best we can obtain in this dataset is with confidence set to 40%,
which guarantees a significantly high percentage (30.52%) of misclassified tokens. A “safer”
confidence value leverages the number of unclassified tokens considerably.

Figure 8 describes the accuracy of the classifier with the adoption of domain-specific
concept hierarchies. We exploited the hierarchies described in Figs. 3, 5 and 6, respectively.
The benefits connected with the exploitation of such simple ontologies are evident: the gen-
eralization capabilities of the classification rules are higher, thus lowering the number of
unclassified tokens. Notice how the dblp dataset still exhibits unacceptable performances.

123

304 E. Cesario et al.

10095 90 85 80 75 70 65 60 55 50 45 40
0

10

20

30

40

50

60

70

80

90

100

Confidence rate

P
er

ce
nt

ag
e

TP
FP
FN

(a)

100 95 90 85 80 75 70 65 60
0

10

20

30

40

50

60

70

80

90

100

Confidence rate

P
er

ce
nt

ag
e

(b)

TP
FP
FN

100 95 90 85 80 75 70 65 60 50 40
0

10

20

30

40

50

60

70

80

90

100

Confidence rate

P
er

ce
nt

ag
e

(c)

TP
FP
FN

Fig. 7 Classification results, single stage of classification a Addresses b BigBook c dblp

Table 1 Pruning effectiveness

Confidence 100 90 80 70 60 50 40

FP Addresses Unpruned 0.11% 1.73% 3.93% 5.52% 6.45% 7.69% 8.05%

Pruned 0.09% 1.53% 3.77% 5.32% 5.94% 6.47% 6.24%

BigBook Unpruned 0.25% 1.47% 1.50% 1.53% 1.94% 1.94% 1.95%

Pruned 0.21% 0.70% 0.70% 0.72% 0.98% 0.98% 0.98%

Dblp Unpruned 0.01% 3.30% 3.81% 7.13% 14.55% 17.02% 17.12%

Pruned 0.01% 3.26% 3.77% 7.09% 14.38% 16.06% 16.20%

Results in the above figures were obtained by exploiting the pruning steps detailed in
Sect. 2.2.2. Indeed, the contribution of the classifier pruner to the misclassification rate is
investigated in Table 1, which describes how the error rate changes if pruning is not applied.
The effectiveness of the classifier pruner can be appreciated at lower confidence values: there,
the classifier produces weaker rules, which clearly benefit of a re-examination.

5.3 Evaluating multiple classification stages

The above analysis allows us to test the effectiveness of the progressive classification meth-
odology. We recall the underlying philosophy: starting from the following observations,

123

Boosting text segmentation via progressive classification 305

100 95 90 85 80 75 70 65 60 50 40
0

10

20

30

40

50

60

70

80

90

100

Confidence rate

P
er

ce
nt

an
ge

(a)

100 95 90 85 80 75 70 65 60
0

10

20

30

40

50

60

70

80

90

100

Confidence rate

P
er

ce
nt

ag
e

(b)

TP
FP
FN

TP
FP
FN

100 95 90 85 80 75 70 65 60 50 400

10

20

30

40

50

60

70

80

90

100

Confidence Rate

P
er

ce
nt

ag
e

TP
FP
FN

(c)

Fig. 8 Classification results with the exploitation of concept hierarchy. a Addresses b BigBook c dblp

– ontological analysis eases the classification task (as testified by the comparison between
graphs in Figs. 7 and 8);

– a richer set of relabeling rules should in principle boost the results of classification;

the adoption of multiple classification stages, where at each stage the relabeling rules of the
previous stage are enriched by exploiting the results of classification at earlier stages, should
boost the performance of the overall classification process.

And indeed, Fig. 9 describes the results obtained by applying a second-level classifier to
the unclassified cases of the first stage of classification. In detail, the input to the second-
level classifier is the output of the first-level classifier, built by fixing support to 0.5% and a
confidence to 100% (described by the first bar of each graph in Fig. 8). Again, support was
set to 0.5% and confidence was ranged between 100 and 80%.

As shown in the figure, the second-level classifier is in general able to correctly classify
a portion of the data, that were unlabeled at the end of the previous stage. For example, in
the Addresses dataset, a 95% threshold allows to classify a further 62% of the (originally
unclassified) data. By combining such a result with the outcome of the first-level classifier,
we obtain nearly 91% of correctly classified data, less than 1% of misclassified data and
nearly 8% of unclassified data. Table 2 summarizes the the cumulative results achieved by
two levels of classification over the employed datasets.

The effectiveness of the second stage of classification is even more evident in the graphs
of Fig. 10. The graphs depict the trend of F for different values of β. The graphs compare a
selection of 2-level classifiers with the single-level classifier (among those shown in Fig. 8)

123

306 E. Cesario et al.

100 95 90 85 80
0

20

40

60

80

100

Confidence rate

P
er

ce
nt

ag
e

(a)

100 95 90 85 80
0

20

40

60

80

100

Confidence rate

P
er

ce
nt

ag
e

(b)

100 95 90 85 80
0

20

40

60

80

100

Confidence rate

P
er

ce
nt

ag
e

(c)

Fig. 9 Classification results at the second stage of classification a Addresses b BigBook c dblp

Table 2 Precision and recall at varying degrees of confidence over the selected datasets

Confidence Addresses BigBook dblp

P(%) R(%) P(%) R(%) P(%) R(%)

100 99.13 87.87 99.78 94.95 99.73 41.40

95 99.06 91.44 99.68 96.30 97.51 55.52

90 98.74 92.96 99.57 97.13 94.59 66.75

85 97.95 95.26 99.56 97.17 93.92 69.72

80 97.24 97.45 99.39 97.93 91.89 76.80

exhibiting the best performance in terms of TP. In all the cases shown, the 2-level classifiers
exhibit better performances for β > 2.

Since each classification level boosts the performance of the system, two important ques-
tions raise, that are worth further investigation in the following:

1. how many levels allow to achieve an adequate performance?
2. how should the parameters at each level be tuned?

The dblp dataset is particularly interesting in this context, since the accuracy of RecBoost
is still low after two classification levels. We start our study by investigating the number
of needed classifiers. Figure 11a, b describe an experiment performed by allowing a hypo-
thetical infinite number of levels, where at each level support was set to 1% and confidence

123

Boosting text segmentation via progressive classification 307

Fig. 10 Trends of F -measures
compared. a Addresses b
BigBook c dblp

1 2 3 4 5 6 7 8 9 10
93

94

95

96

97

98

99

100

β

F

2 levels, C=100%
2 levels, C=90%
2 levels, C=80%
1 level, C=60%

(a)

1 2 3 4 5 6 7 8 9 10
97

97.5

98

98.5

99

99.5

100

β

F

2 levels, C=100%
2 levels, C=90%
2 levels, C=80%
1 level, C=60%

(b)

1 2 3 4 5 6 7 8 9 10
55

60

65

70

75

80

85

90

95

100

β

F

2 levels, C=100%
2 levels, C=90%
2 levels, C=80%
1 level, C=40%

(c)

to 100%. Roughly, the strategy implemented is the following: since high confidence values
bound the number of misclassified tokens, and further levels allow to recover unclassified
tokens, just allow any number of levels, until the number of unclassified tokens is nearly 0.

As we can see from Fig. 11b, however, this strategy does not necessarily work: although
the number of misclassified tokens is kept low, the capability of each classifier to recover
tokens unclassified in the previous stages decreases. The 5th level looses the capability to
further classify tokens, thus ending de-facto the classification procedure. Figure 11a shows
the cumulative results at each level.

123

308 E. Cesario et al.

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100a

d

e f

g h

c

b

Levels

1st (C=100) 2nd (C=100) 3rd (C=100) 4th (C=100) 5th (C=100)0

10

20

30

40

50

60

70

80

90

100

Level

P
er

ce
nt

ag
e

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Levels

P
er

ce
nt

ag
e

P
er

ce
nt

ag
e

1st (C=100) 2nd (C=95) 3rd (C=100) 4th (C=80) 5th (C=75)
0

10

20

30

40

50

60

70

80

90

100

Level

P
er

ce
nt

ag
e

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Levels

P
er

ce
nt

ag
e

1st (C=100) 2nd (C=95) 3rd (C=100) 4th (C=90) 5th (C=80)
0

10

20

30

40

50

60

70

80

90

100

Level

P
er

ce
nt

ag
e

1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

Levels

P
er

ce
nt

ag
e

1st (C=100) 2nd (C=95) 3rd (C=90) 4th (C=60)
0

10

20

30

40

50

60

70

80

90

100

Level

P
er

ce
nt

ag
e

Fig. 11 Effects of multiple classification levels on dblp. a Cumulative performance, 5 levels, b 5 levels,
Performance of single stages. c Cumulative performance, 5 levels, d 5 levels, Performance of single stages.
e Cumulative performance, 5 levels, f 5 levels, Performance of single stages. g Cumulative performance, 4
levels, h 4 levels, Performance of single stages

123

Boosting text segmentation via progressive classification 309

60 70 80 90 100
80

82

84

86

88

90

92

94

96

98

100

Confidence

P
er

ce
nt

ag
e

(a)

60 70 80 90 100
90

91

92

93

94

95

96

97

98

99

100

Confidence

P
er

ce
nt

ag
e

(b)

Fig. 12 Effects of multiple classification levels. a Addresses, b BigBook

Thus, an upper bound in the number of stages can be set by the classification capability
of the stages themselves. A smarter tuning of the parameters which rule the performance
of each single stage, allows to achieve best classification accuracy. Figure 11c, d report a
different classifier, generated by fixing the following constraints: each classification stage
should classify at least 30% of the available tokens, and should misclassify at most 10% (if
possible). The methodology adopted for achieving this was to perform several tuning trials
at each stage, by starting from the value 100% of confidence and progressively lowering
it until the criterion is met. Figure 11d describes the tuning occurred at each classification
stage. The constraint over the classification percentage clearly boosts the performance of
each single classification stage: as a result, the overall number of classified tokens is 86.7%,
with a misclassification rate of 10.2 and 3.1% unclassified tokens.

Notice that further effective strategies can be employed, by fixing e.g., different con-
straints: in Fig. 11e, for example, each classification stage should classify at least 20% of the
available tokens, and should misclassify at most 5% of them. Figure 11g, reports a differ-
ent experiment, where the number of stages is fixed to 4: here, confidence is progressively
lowered, and the last stage is tuned to minimize the number of unclassified. Again, Fig. 11h
describes the tuning occurred at each stage.

Similar conclusions can be drawn with the other datasets: Fig. 12, e.g., describes the results
on both BigBook and Addresses. In particular, we adopted three levels (with confidence
fixed to 100% in the first two levels) for BigBook and four levels (with thresholds 100, 100,
85% in the first three levels) for Addresses. The bars report the cumulative classification
results when different confidence levels are applied in the last classification level.

The adoption of multiple classification stages over BigBook deserves further discussion
about the relation between the size of the labeled data and the number of classification levels
which can be defined. Each classification level should build on a separate training set (pre-
processed by the preceding levels). Clearly, given a dataset D, the amount of unclassified
tokens of D diminishes at subsequent levels. Hence, the size of the training set Ti required
for learning rules at level i should be large enough to guarantee that an adequate number of
unclassified tokens are available at that level.

Thus, the size of the training has an influence over the number of classification levels
which can be defined: the larger the training set, the higher the number of significant levels.
In other words, a small dataset saturates the potential of progressive classification within few
levels, and adding further levels does not yield any improvements. This is what happens in
the case of the BigBook dataset. As already mentioned, the available training set here is
quite small. Thus, a classifier exhibiting 100% confidence in the last level, would produce at

123

310 E. Cesario et al.

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

Support at 1st stage

P
re

ci
si

on

1 level
2 levels
3 levels

(a)

0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

0.984

0.986

0.988

0.99

0.992

0.994

0.996

Confidence at 1st stage

P
re

ci
si

on

1 level
2 levels
3 levels

(b)

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

0.7

0.75

0.8

0.85

0.9

0.95

1

Support at 1st stage

R
ec

al
l

1 level
2 levels
3 levels

(c)

0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

Confidence at 1st level

R
ec

al
l

1 level
2 levels
3 levels

(d)

Fig. 13 Stability of Precision and Recall with variable parameter values a Precision vs. support threshold.
b Precision vs. confidence threshold. c Recall vs. support threshold. d Recall vs. confidence threshold

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

50

100

150

200

250

300

350

400

Support at 1st stage

N
um

be
r

of
 r

ul
es

total 1 level
total 2 levels
total 3 levels
average 3 levels

(a)

0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
50

100

150

200

250

300

350

400

Confidence at 1st stage

N
um

be
r

of
 r

ul
es

total 1 level
total 2 levels
total 3 levels
average 3 levels

(b)

Fig. 14 Size of classifiers and average number of rules applied. a Number of rules vs. support. b Number of
rules vs. confidence

most 2,500 unclassified tokens. This amount would not allow to learn a further meaningful
set of rules, since such tokens distribute over different sequences and different attributes.

The conclusion we can draw is that the adoption of multi-stage classification allows to
increase recall, by contemporarily controlling the decrease in the overall classification accu-
racy. The above figures show how a proper manipulation of the confidence threshold value
over each classification stage allows to achieve this. The contribution of the support threshold
is less restrictive for two main reasons: first, it should anyway be kept at very low levels, in
order to enable a significant amount of rules; second, small variations are of little signifi-
cance, and at most at the first level. We here provide details on a set of tests performed on a
pipeline of three classifiers, over the Addresses dataset. In particular, for brevity sake, we
investigate the effects of varying support and confidence for the first-level classifier, whereas
the remaining two stages have instead both parameters fixed to respectively 0.5 and 98%.

123

Boosting text segmentation via progressive classification 311

Specifically, in Fig. 13a, c confidence is fixed to 98% and support varies, whereas in Fig. 13b,
d support is set to 0.5% and confidence varies. Figure 13a, c shows that classification accu-
racy and recall do not significantly change, especially at higher levels. By the converse, even
small variations in the confidence cause significant changes, as testified by Fig. 13b, d.

It is interesting to see that, in the above described experiments, the average number of
rules which are exploited is nearly stable even on different values of support and confidence
(which instead affect the number of discovered rules). Fig. 14a,b depict such a situation.
In general, a decrease in support or confidence causes an increase in the overall number of
discovered classification rules. However, from experimental evaluations, it emerges that the
average number of rules actually applied in the classification process does not significantly
vary. This is testified by the bold hatched line in both subfigures, which represents such an
average value. As we can see, the number of rules applied fluctuates around 50% of the
total number of rules obtained in correspondence of the maximum values of support and
confidence.

5.4 Comparative analysis

The exploitation of the “recursive boosting” strategy proposed in this paper is quite new, as
it relies on the capability of recovering unclassified tokens in the next stages. To this pur-
pose, the former experiments aimed essentially at checking whether this strategy is effective.
In order to asses the practical effectiveness of RecBoost, we here compare the behavior of
the RecBoost methodology with consolidated approaches from the literature. To this end
we preliminarily observe that, although many results are available in the literature, a direct
comparison is often difficult, as different data collections and/or different ways of tuning the
algorithm parameters have been used. For example, although bibliographic citations extracted
from the DBLP database have been extensively used in the literature, the datasets used for
the analysis were not made publicly available.

In the following we provide a comparison by exploiting the datasets described in the
previous sections. We compare our system with the Mallet system [18], which provides the
implementation of Conditional Random Fields [14] and with the DataMold system [3]. We
refer the reader to Sect. 6 for a detailed description of the techniques underlying such sys-
tems. Both Mallet and DataMold are equipped with the same ontology and preprocessing
used in RecBoost. In addition, contextual information in the CRF implemented by Mallet
was provided by resorting to the Pre/Post information.

An overall comparison is shown in the graphs of Fig. 15, which plot the F values obtained
by Mallet, DataMold, and several different instantiations of the RecBoost system. In partic-
ular, we consider the classifiers of Figs. 11 and 12, and choose, for each dataset, the three
instantiations which guarantee the lowest (constrained) value of FN , the lowest (constrained)
value of FP, and a “middle” value. The constraint refers to the possibility of maintaining an
acceptable value of TP. For the dblp dataset, we also show an instantiation

As we can see from the figure, the gain in the F value is evident for β > 2. Table 3 details
the results. Here we compare with Mallet, DataMold and the version of RecBoost (RecBoost1

in the tables), relative to a single stage of classification which achieves the highest value of
TP in Fig. 8. Mallet (and in some cases even Datamold) typically achieves a high rate of
correctly classified tokens at the expense of a higher misclassification rate. Also, RecBoost1

may achieve a higher TP than the approaches with multiple classification stages. However,
the latter exhibit a higher affordability (which is even higher than that of Mallet and Data-
Mold). In practice, the adoption of multiple stages allows to achieve a higher precision, at
the expense of a lower recall. Clearly, a proper tuning at the higher levels makes the Rec-

123

312 E. Cesario et al.

Fig. 15 Trends of F -measures
compared. a Addresses b
BigBook c dblp

1 2 3 4 5 6 7 8 9 10
95.5

96

96.5

97

97.5

98

98.5

99

β

F

Datamold
Mallet
RB 100 100 85 60
RB 100 100 85 80
RB 100 100 85 100

(a)

1 2 3 4 5 6 7 8 9 10
97.8

98

98.2

98.4

98.6

98.8

99

99.2

99.4

99.6

99.8

β

F

Datamold
Mallet
RB 100 100 60
RB 100 100 80
RB 100 100 90

(b)

1 2 3 4 5 6 7 8 9 10
80

85

90

95

β

F Datamold
Mallet
RB 100 95 90 60
RB 100 95 100 80 75
RB 100 95 100 90 80

(c)

Boost system highly competitive: in Addresses, for example, the performance of the more
conservative classifier (the one which tries to minimize FN) is even better than Mallet.

In practice, the recursive boosting offered by progressive classification allows to maintain
a higher control over the overall misclassification rate, by forcing stronger rules which, as

123

Boosting text segmentation via progressive classification 313

Table 3 Comparison against Mallet and DataMold

Methods Addresses

TP(%) FP(%) FN(%) P(%) R(%) F1(%) F2(%) F3(%)

DataMold 96.23 3.77 0 96.23 100 98.08 96.96 96.59

Mallet 96.96 3.04 0 96.96 100 98.45 97.55 97.25

RecBoost1 93.74 6.24 0.02 93.76 99.98 96.77 94.94 94.34

RecBoost� 96.96 2.86 0.18 97.14 99.81 98.45 97.66 97.40

RecBoost+ 95.53 1.95 2.52 98.00 97.43 97.71 97.88 97.94

RecBoost◦ 92.21 1.09 6.70 98.83 93.23 95.95 97.65 98.24

Methods BigBook

TP(%) FP(%) FN(%) P(%) R(%) F1(%) F2(%) F3(%)

DataMold 97.97 2.03 0 97.97 100 98.97 98.36 98.16

Mallet 99.37 0.63 0 99.37 100 99.68 99.49 99.43

RecBoost1 99.01 0.98 0.01 99.02 99.99 99.50 99.21 99.11

RecBoost� 99.21 0.65 0.14 99.35 99.83 99.59 99.44 99.40

RecBoost+ 97.55 0.28 2.17 99.71 97.82 98.75 99.32 99.51

RecBoost◦ 96.31 0.25 3.44 99.74 96.55 98.11 99.08 99.41

Methods dblp

TP(%) FP(%) FN(%) P(%) R(%) F1(%) F2(%) F3(%)

DataMold 81.55 18.45 0 81.55 100 89.83 84.67 83.08

Mallet 89.83 10.17 0 89.83 100 94.64 91.69 90.75

RecBoost1 83.80 16.20 0 83.80 100 91.18 86.60 85.18

RecBoost� 88.20 10.66 1.14 89.22 98.73 93.73 90.97 90.09

RecBoost+ 85.69 9.74 4.57 89.80 94.94 92.30 90.78 90.29

RecBoost◦ 81.53 7.10 11.37 91.98 87.76 89.82 91.10 91.54

a side effect, exhibit a higher locality. Thus, RecBoost is more reliable in scenarios where
misclassifying is worst than avoiding to classify.

Finally, two major arguments emerge in favor of Recboost as a further result of our com-
parative analysis.

– Due to the variable number of classification stages, RecBoost gives the user better control
over the trade-off between accuracy and recall. In practice, the user can choose a classifier
with a trade-off satisfying the requirements of the specific application.

– The generic RecBoost classifier is easier to interpret than existing methods such as DA-
TAMOLD [3] and Mallet [18], since it produces symbolic rules using vocabulary from
a domain-specific ontology.

123

314 E. Cesario et al.

6 Related work

Text reconciliation is clearly related with Part Of Speech (POS) Tagging and Shallow
Parsing, Wrapping and, in general, with the problem of extracting structure from free text.
The aim of POS Tagging is to assign labels to speech words that reflect their syntactic cat-
egory. To this purpose, both statistical and rule-based techniques [4,13,16,17] have been
proposed in the literature. In practice, the basic idea behind POS tagging consists in disam-
biguating phrases by exploiting dictionaries and analyzing the textual context surrounding
each candidate entity. However, the approach fails at treating exceptions, i.e., words that are
not included in a dictionary, such as proper names, cities, or addresses. By contrast, these are
exactly the features which characterize our scenario.

As far as wrapping is concerned, most algorithms considerably rely on HTML separator
tags, and on the fact that data represent a regular multi-attribute list [8]. Such approaches
are not effective in domains where data do not necessarily adhere to a fixed schema. Indeed,
instances in our problem are more irregular, since the order of fields is not fixed, not all
attributes are present, etc. The classification of an item is better performed according to its
neighboring words, absolute/relative position in the string, numeric/alphanumeric charac-
ters, and so on. To our knowledge, few exception are capable of effectively dealing with such
features [1,5,21]. For example, WHISK [21] can deal with missing values and permutations
of fields, but it requires a “complete” training set, i.e., a set of examples including all the
possible occurrences of values.

ILP provides a solid framework for designing rule-based systems aimed at text categori-
zation and information extraction [6,9]. In particular, a divide-and-conquer approach to the
problem of learning rules for accomplishing both these latter tasks is proposed in [12]. In
principle, such a technique can be employed for text reconciliation, since it allows the extrac-
tion of focussed textual fragments and their subsequent labeling. However, its exploitation
for practical applications is problematic, due to the fact that rules have to explicitly locate
fragment boundaries. This imposes a non-trivial learning phase, that requires two distinct
sets of training examples, respectively necessary for denoting what specific (aggregates of)
words can be taken into account as possible boundaries within the underlying textual data
and for specifying how to label their intermediate fragments. Also, fragment extraction relies
on tests on the occurrences of domain-specific words, that are either learnt from the train-
ing examples, or exhibit some degree of positive correlation to such examples. However,
locating all relevant fragments determined by meaningful combinations of these words is
computationally unfeasible. This imposes the exploitation of various indexing structures to
accelerate the evaluation of rule predicates on the underlying text. By contrast, RecBoost
pursues token-by-token reconciliation, thus overcoming all of the above issues related to
fragment boundaries.

Several recent approaches to schema reconciliation rely on Hidden Markov Models
(HMM) [2,3,14,19,20]. Schema reconciliation with HMM can be accomplished by learning
the structure of a HMM, and applying the discovered structure to unknown examples. As an
example, DATAMOLD [3] employs a training phase to learn a HMM, that consists of a set
of states and directed edges among such states. Two particular states are the initial and the
final states. The former has no incoming edges, whereas the latter has no outgoing edges.
Every state of the HMM, except from the initial and final ones, represents a class label and
is associated with a dictionary, grouping all the terms in the training set that belong to the
class. Edges among states are associated with transition probabilities. A textual sequence
can be classified if its constituting terms can be associated to states of the HMM, that form
a path between the initial and final states. Precisely, DATAMOLD pursuits classification by

123

Boosting text segmentation via progressive classification 315

I.S.

Harry

Hacker F.S.

Hacker

London

London

HackerHarry

Fig. 16 Unreliable token reconciliation due to HMM topology

associating a single term to all those states, whose corresponding dictionaries include the
term. Hence, a sequence of textual terms is mapped to multiple paths throughout the HMM.
Transition probabilities are then exploited to identify the most probable path and, hence, to
accordingly classify the terms in the sequence at hand. Clearly, those sequence, whose tokens
do not form any path between the initial and final states, cannot be classified.

The effectiveness of the approaches based on HMMs strongly depends on the number of
distinct terms occurring in the training set. Indeed, in order to associate terms that do not
appear in the training set with a corresponding state, DATAMOLD relies on smoothing, i.e.,
on the exploitation of ad hoc probabilistic strategies.

Furthermore, the classification of individual term sequences in one step, i.e., subjected
to the existence of corresponding paths throughout the automaton, is a major limitation of
HMMs. Indeed, depending on the outcome of the training phase, these cannot undertake the
reconciliation process, whenever a path for the sequence at hand does not exist. Also, the
existence of one or more paths for a given input sequence may not determine a proper recon-
ciliation. This latter aspect is clarified in Fig. 16, where it is shown that the HMM topology
prevents the correct reconciliation of the input sequence Harry Hacker London. Notice that
node labels indicate input tokens for the automaton. Moreover, the internal shape surrounding
node labels corresponds to actual token classes (i.e., name/rhombus, surname/rectangle and
city/circle), whereas the external shape of a node denotes the class assigned by that node
to its label. Clearly, discrepancies between internal and external shapes represent reconcil-
iation errors. The illustration shows that four paths exist in the automaton and, hence, as
many alternatives to reconcile the input sequence. However, all such paths lead to erroneous
reconciliations. The only sequence of states in the automaton, that would lead to a correct
reconciliation, does not form a path between the ending states I.S. and F.S., thus being
unemployable to reconciliation purposes.

Worst, HMMs represent “global classification models”, since they tend to classify each
term of the sequence under consideration, and hence are quite sensitive to unknown tokens.
Consider the sequence Harry 348.2598781 London, where the second token represents a
phone number. Although the correct label is unknown to the model shown in Fig. 16, the
latter will still try to assign a known label to the token. As a consequence, the whole sequence
will result in a low fitting. It is worth noticing, however, that some regularities in the structure
(e.g., the high probability that a sequence starts with a name) would allow to correctly classify
the “known part” of the sequence, by avoiding to classify the “unlikely” term.

123

316 E. Cesario et al.

Recently, emphasis has been paid to the analysis of token context (i.e., of the tokens
following and preceding the one at hand) for more accurate reconciliation. In particular,
Maximum Entropy Markov Models (MEMMs) [19], i.e., conditional models that represent
the probability of reaching a state given an observation and the previous state, can be seen as
an attempt at contextualizing token reconciliation. However, MEMMs suffer from the well
known label-bias problem [14].

Conditional random fields (CRFs) [14,18] are a probabilistic framework, that can be
employed for text labeling and segmentation. The underlying idea is to define a condi-
tional probability distribution over label sequences, given a particular observation sequence,
rather than a joint distribution over both label and observation sequences. CRFs provide two
major advantages. First, their conditional nature relaxes the strict independence assumptions
required by HMMs to guarantee tractable inference. Second, CRFs avoid the label bias prob-
lem. Still, such improvements in the HMM technology represent global classification models,
since they tend to classify each term into the sequence under consideration, and hence do not
prevent the problem of misclassifying unknown tokens.

An unsupervised approach to text reconciliation is introduced in [2]. The basic idea here
is to exploit reference relations for building segmentation models. The notion of reference
relation denotes a collection of structured tuples, that are specific to a domain of interest
and exemplify clean records for that domain. The approach consists of a two-step process.
Assume that R is a reference relation with an attribute schema A1, . . . , An . Each column
of R is considered as a dictionary of basic values for the corresponding attribute. Initially,
a preprocessing step is performed for building an attribute recognition model (ARM) for
each attribute of the reference relation schema. The generic ARMi is a HMM that allows the
evaluation of the probability with which a subsequence of tokens in an input string belongs
to the domain of the corresponding schema attribute Ai . The ARMs of all attributes can be
exploited to determine the best segmentation of an input string at the second (run-time) step.
This involves to first learn the total order of attributes from a batch of input strings and to
subsequently segment the individual input strings with respect to the detected attribute order.
More specifically, the identification of a total attribute order requires the previous computa-
tion of pairwise precedence probabilities. These are probabilistic estimates of precedences
between all pairs of attributes, that are provided by their corresponding ARMs. A total order-
ing among all of the attributes is hence discovered by choosing the best sequence of attributes,
i.e., the sequence that maximizes the product of precedence probabilities of consecutive attri-
butes with respect to the given order. Finally, an exhaustive search is employed to determine
the best segmentation of an input string s into n token subsequences s1, . . . , sn , such that the
reconciliation of each si with the corresponding schema attribute Asi maximizes the overall
reconciliation quality

∏n
i=1 ARMsi (si) among all possible segmentations.

Notice that the exploitation of reference tables is a natural way of automatically building
training sets for the text reconciliation problem described beforehand. And indeed, although
declared as an unsupervised approach, this technique suffers from two general weaknesses,
that are inherent of supervised methods. Foremost, a reference relation may not exist for a
particular applicative scenario. Also, whenever the overall number of tuples involved is not
sufficiently large, the columns of the employed relations may not be adequately rich dictio-
naries of basic domain tokens. This would affect the construction of ARMs and, hence, the
overall segmentation effectiveness.

As to a more specific comparison with our contribution, the reference table approach [2]
requires to initially learn the order with which attributes appear within the input data. By
contrast, though being a supervised approach, RecBoost does not rely on learning attribute
order from training data. This is due to the adoption of classification rules, that allow the

123

Boosting text segmentation via progressive classification 317

reconciliation of a given token on the sole basis of the relationships among the entities (i.e.,
further textual tokens, ontological categories and attributes) in the context surrounding the
token at hand. Moreover, segmentation with respect to a given attribute order relies on the
underlying assumption that such an ordering is fixed across input sequences. This may make
reconciliation problematic when, instead, the tokens of two or more attribute values are
interleaved (rather than being concatenated) in the data to segment.

Furthermore, the reference table approach adopts ARMs for reconciliating individual
attribute values. However, ARMs are basically HMMs and, hence, suffer from the aforemen-
tioned limitations. Roughly speaking, ARMs are global classification models and, hence,
overly specific in attribute recognition as far as three aspects are concerned, namely posi-
tional, sequential and token specificity. These aspects impose suitable generalizations for the
ARMs: the adoption of a fixed three-layered topology capable of dealing with positional and
sequential specificities and the exploitation of token hierarchies for mitigating token specific-
ity. On the contrary, RecBoost relies on association rules for attribute value reconciliations.
Association rules are better suited at detecting local patterns, especially when the underlying
data to segment contain many contrasting specificities. Moreover, a natural generalization
of classifiers, i.e., the improvement of their classification accuracy, is trivially obtained by
attempting to reduce classifier complexity, via attribute and rule pruning.

7 Discussion and future works

The contribution of this paper was RecBoost, a novel approach to schema reconciliation,
that fragments free text into tuples of a relational structure with a specified attribute schema.
Within RecBoost, the most salient features are the combination of ontology-based general-
ization with rule-based classification for more accurate reconciliation, and the adoption of
progressive classification, as a major avenue towards exhaustive text reconciliation. An inten-
sive experimental evaluation on real-world data confirms the effectiveness of our approach.
Also, from a comparative analysis with state-of-the-art alternative approaches reveals the
following two main arguments in favor of Recboost.

– Due to the variable number of classification stages, RecBoost gives the user better control
over the trade-off between accuracy (i.e., the proportion of correctly classified tokens
w.r.t. the classification behaviour of the overall RecBoost system) and recall (i.e., the
proportion of correctly classified tokens w.r.t. the actual tokens to reconcile). In practice,
the user can choose a classifier with a trade-off satisfying the requirements of the specific
application.

– The generic RecBoost classifier is easier to interpret than existing methods such as
DATAMOLD [3] and Mallet [18], since it produces symbolic rules using vocabulary
from a domain-specific ontology.

There are some directions that are worth further research. First, notice that the proposed
methodology is, in some sense, independent from the underlying rule-generation strategy. In
this respect, it is interesting to investigate the adoption of alternative strategies for learning
local classification models. This line is also , is a correlated with the effort for identifying a
fully-automated technique for setting the parameters of progressive classification, in terms of
required classification stages. Since parameters are model-dependent, two alternate strategies
can be either to investigate different, parameter-free models, or to detect ways to enable a
natural way of fixing the parameters of the system, on the basis of the inherent features of the
text at hand, rather than relying on pre-specified estimates. The experimental section already

123

318 E. Cesario et al.

contains some pointers in the latter direction: however, more robust methods need in-depth
investigation.

In addition, we plan to investigate the development of an unsupervised approach to the
induction of an attribute descriptor from a free text. This would still allow reconciliation,
even in the absence of any actual knowledge about the textual information at hand. Finally,
we intend to examine the exploitation of RecBoost in the context of the Entity Resolution
process, to the purpose of properly filling in missing fields and rectifying both erroneous
data-entry and transpositions oversights.

References

1. Adelberg B (1998) NoDoSE: A tool for semi-automatically extracting semistructured data from text doc-
uments. In: Haas LM, Tiwary A (eds) Proceedings of 1998 ACM SIGMOD conference on management
of data. ACM Press, Seattle, WA, USA, June 1998, pp 283–294

2. Agichtein E, Ganti V (2004) Mining reference tables for automatic text segmentation. In: Kim W,
Kohavi R, Gehrke J, DuMouchel W (eds) Proceedings of 2004 ACM SIGKDD conference on knowledge
discovery and data mining. ACM Press, Seattle, WA, USA, August 2004, pp 20–29

3. Borkar VR, Deshmukh K, Sarawagi S (2001) Automatic segmentation of text into structured records. In:
Aref WG (ed) Proceedings of 2001 ACM SIGMOD conference on management of Data. ACM Press,
Santa Barbara, CA, USA, May 2001, pp 175–186

4. Brill E (1995) Transformation-based error-driven learning and natural language processing: a cased study
in POS tagging. Comput Linguist 21(4):543–565

5. Califf ME, Mooney RJ (1999) Relational learning of pattern-match rules for information extraction. In:
Proceedings of 16th national conference on artificial intelligence. AAAI/MIT Press, Madison, WI, USA,
July 1999, pp 328–334

6. Cohen WW (1995) Learning to classify english text with ILP methods. In: De Raedt L (ed). Proceed-
ings of the 5th international Workshop on inductive logic programming. Katholieke Universiteit Leuven,
Haverlee, Belgium, pp 3–24

7. Elmagarmid AK, Panagiotis GI, Verykios VS (2007) Duplicate Record Dectection: A Survey. IEEE Trans
Knowl Data Eng 19(1):1–16

8. Flesca F, Manco G, Masciari E (2004) Web wrapper induction: a brief survey.. AI Commun 17(2):57–61
9. Freitag D (1998) Toward general-purpose learning for information extraction. In: Proceedings of 17th

national conference on computational linguistics. ACL/Morgan Kaufmann Publishers, Universit de
Montral, Montreal, Quebec, Canada, August 1998, pp 404–408

10. Gu L, Baxter RA, Vickers D et al (2003) Record linkage: current practice and future directions. Technical
report. CSIRO Mathematical and Information Sciences, Australia

11. Hernández MA, Stolfo J (1998) Real-world data is dirty: data cleansing and the merge/purge problem.
Data Mining Knowl Discov 2(1):9–37

12. Junker M, Sintek M, Rinck M (1999) Learning for text categorization and information Extraction with
ILP. In: Cussens J, Dzeroski S (eds) Learning language in logic. Springer Heidelberg, pp 247–258

13. Kupiec J (1992) Robust part-of-speech tagging using a hidden Markov model. Comput Speech Lang
6(3):225–242

14. Lafferty JD, McCallum A, Pereira FCN (2001) Conditional random fields: probabilistic models for seg-
menting and labeling sequence data. In: Brodley CE, Pohoreckyj Danyluk A (eds). Proceedings of 18th
international conference on machine learning. Morgan Kaufmann, Williamstown, MA, USA, June 2001,
pp 282–289

15. Liu B, Hsu W, Ma Y (1998) Integrating classification and association rule mining. In: Agrawal R, Stolorz
PE, Piatetsky-Shapiro G (eds) Proceedings of 4th ACM SIGKDD international conference on knowledge
discovery and data mining. AAAI Press, New York City, NY, USA, August 1998, pp 80–86

16. Manning CD, Schultze C (1999) Foundations of statistical natural language processing. MIT Press,
Cambridge

17. Marquez L, Padro L, Rodriguez H (2000) A machine learning approach to POS tagging. Mach Learn
39(1):59–91

18. McCallum A (2002) MALLET: a machine learning for language toolkit. http://mallet.cs.umass.edu
19. McCallum A, Freitag D, Pereira F (2000) Maximum entropy Markov models for information extraction

and segmentation. In: Langley P (ed) Proceedings of 17th international conference on machine learning.
Morgan Kaufmann, Standford University, Standord, CA, USA, June 2000, pp 591–598

123

http://mallet.cs.umass.edu

Boosting text segmentation via progressive classification 319

20. Mukherjee S, Ramakrishnan IV (2004) Taming the unstructured: creating structured content from par-
tially labeled schematic text sequences. In: Meersman R, Tari Z (eds) Proceedings of 12th CoopIS/DOA/
ODBASE international conference. Springer, Agia Napa, Cyprus, October 2004, pp 909–926

21. Soderland S (1999) Learning information extraction rules for semi/structured and free text. Mach Learn
34:233–272

22. Srikant R, Agrawal R (1995) Mining generalized association rules. In: Dayal U, Gray PMD, Nishio S
(eds) Proceedings of 21th international conference on Very large databases. Morgan Kaufmann, Zurich,
Switzerland, September 1995, pp 407–419

23. Winkler WE (1999) The state of record linkage and current research problems. Technical report. Statistical
Research Division, U.S. Census Bureau, Wachington, DC

Authors Biography

Eugenio Cesario is a temporary researcher at the Institute of
High Performance Computing and Networks (ICAR-CNR) of the
National Research Council of Italy. He received his Ph.D. in Sys-
tems and Computer Engineering from the University of Calabria
in 2006. From 2003 to 2006 he was a research fellow, at ICAR-
CNR, working on data mining systems and applications. His re-
search interests are currently focused on distributed data mining,
Grid programming environments and Grid services architectures.

Francesco Folino is currently research fellow at the Institute of High
Performance Computing and Networks (ICAR-CNR) of the National
Research Council of Italy. He graduated in Computer Science Engi-
neering in 2003, and holds a Ph.D. in Computer Science Engineer-
ing from the University of Calabria (Italy) in 2006. From 2003 to
2006 he was a Ph.D. student at University of Calabria. His research
interests are focused on knowledge discovery and data mining; Data
Warehousing and OLAP. He is involved in several projects at ICAR-
CNR, concerning applications of data mining and knowledge discovery.

Antonio Locane currently works at Exeura, a spin-off company
of the University of Calabria (Italy) operating in the Knowledge
Management area. He graduated in Computer Science Engineer-
ing in 2004 and, since October 2005, he is a Ph.D. Student
at University of Calabria. He was research fellow at the Insti-
tute of High Performance Computing and Networks (ICAR-CNR)
of the National Research Council of Italy from 2004 to 2006.
His research activity mainly concerns with data mining query lan-
guages and schema reconciliation for warehousing and mining.

123

320 E. Cesario et al.

Giuseppe Manco is currently senior researcher at the Institute of High
Performance Computing and Networks (ICAR-CNR) of the National
Research Council of Italy, and contract professor at University of Cala-
bria, Italy. He graduated in Computer Science summa cum laude, in
1994, and holds a Ph.D. in Computer Science from the University of
Pisa. He has been contract researcher at the CNUCE Institute in Pisa,
Italy, and visiting fellow at the CWI Institute in Amsterdam, Neder-
lands. His current research interests include deductive databases; knowl-
edge discovery and data mining; Web databases and semistructured data.

Riccardo Ortale is researcher at the Institute of High Performance Com-
puting and Networks (ICAR-CNR) of the National Research Council of
Italy, and contract professor at University of Calabria. He graduated in
Computer Science Engineering summa cum laude from the University
of Calabria. He has a master’s degree in Internet Software Design from
Cefriel-Politecnico di Milano in collaboration with Siemens SBS and
holds a Ph.D. in Computer Science and System Engineering from the
University of Calabria. His current research interests include knowledge
discovery and data mining; Web databases and semistructured data; Web
personalization.

123

	Boosting text segmentation via progressive classification
	Abstract
	Introduction
	Text segmentation with RecBoost
	Notation and preliminaries
	The RecBoost methodology
	Syntactic and ontological analysis
	Contextual analysis
	RecBoost anatomy
	Preprocessor
	Classifier learner
	Postprocessor
	An illustrative example
	Preprocessing
	Progressive classification
	Syntactic analysis
	First-level classifier
	Second-level classifier
	Postprocessor
	Experimental evaluation
	Experimental setup
	Evaluating the basic classifier system
	Evaluating multiple classification stages
	Comparative analysis
	Related work
	Discussion and future works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

