
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2008; 20:2049–2060
Published online 14March 2008 inWiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe.1304

The XtreemFS architecture—a
case for object-based file
systems in Grids

Felix Hupfeld1,∗,†, Toni Cortes2,3, Björn Kolbeck1, Jan Stender1,
Erich Focht4,Matthias Hess4, Jesus Malo2, Jonathan Marti2

and Eugenio Cesario5

1Zuse Institute Berlin (ZIB), Takustr. 7, 14195 Berlin, Germany
2Barcelona Supercomputing Center (BSC), Barcelona, Spain
3Universitat Politecnica de Catalunya (UPC), Spain
4NEC HPC Europe GmbH, Stuttgart, Germany
5Institute High Performance Computing and Networks of the National Research
Council of Italy (ICAR-CNR), Pisa, Italy

SUMMARY

In today’s Grids, files are usually managed by Grid data management systems that are superimposed on
existing file and storage systems. In this paper, we analyze this predominant approach and argue that
object-based file systems can be an alternative when adapted to the characteristics of a Grid environment.
We describe how we are solving the challenge of extending the object-based storage architecture for the
Grid in XtreemFS, an object-based file system for federated infrastructures. Copyright © 2008 John Wiley
& Sons, Ltd.

Received 31 October 2007; Accepted 5 December 2007

KEY WORDS: object-based file system; grid data management; distributed file system architecture

INTRODUCTION

The file abstraction is one of the success stories of system architecture, and the current computing
world is unthinkable without file systems. Files are the technology of choice for any unstructured
data and provide an efficient container for abstractions with more structure.

∗Correspondence to: Felix Hupfeld, Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany.
†E-mail: hupfeld@zib.de

Contract/grant sponsor: EU IST XtreemOS project; contract/grant number: FP6-033576
Contract/grant sponsor: Spanish Ministry of Science and Technology; contract/grant number: TIN2004-07739-C02-01

Copyright q 2008 John Wiley & Sons, Ltd.



2050 F. HUPFELD ET AL.

However, conventional network file systems are ill-adapted to Grid-like environments. These file
systems are usually heavily geared toward centralized installations in a single data center and lack
reliable support for remote access over wide-area networks (WANs) across multiple organizations.
For Grid data management, an approach was needed to compensate these weaknesses of installed
local, network or distributed file systems. Instead of extending file system architectures with the
necessary features, Grid data management systems are imposed on the existing file system. Remote
access protocols such as GridFTP [1] make files and namespaces remotely accessible, and replica
catalogs index the whereabouts of a file’s copies.
While this approach of superimposing Grid data management on file systems has proven to be

efficient and effective, it is not without drawbacks. Foremost, certain characteristics of the typical
Grid data management architecture prevent these systems from performing as well as other, more
integrated architectures. In addition, they cannot guarantee the consistency of file content across
replicas and force applications and users to adapt their usage of the system accordingly.
In this paper, we claim that an object-based file system architecture [2] can be extended to be

suitable for Grid environments and argue that it is a viable alternative architecture for file data
management in Grids for many-use cases. To illustrate this argument, we demonstrate how we
solve some of the relevant design issues in XtreemFS, a distributed object-based file system for
federated wide-area infrastructures.
We continue this paper with a detailed study of Grid data management from a system architecture

perspective with emphasis on its structural shortcomings. Then, we give an overview of distributed
file system architectures and describe how it can be extended for federated wide-area environments.
The following section presents the architecture of XtreemFS as an example of an object-based
Grid file system. We conclude our paper with references to existing file systems and Grid data
management solutions.

COMMON CHARACTERISTICS OF GRID DATA MANAGEMENT

Grid data management systems provide their clients with access to file data that is stored at remote
storage and file systems. They index files from storage resources and provide clients with a unified
interface for accessing files. Typically the system relies on a daemon on the storage resource that
mediates the remote access protocol with the heterogeneous local access interfaces.
A replica catalog stores the access locations for a file (sometimes called its physical file name)

and abstracts the Grid file itself from its replicas at various storage resources. It is often integrated
with a metadata catalog, which imposes a namespace on top of this Grid file abstraction and
structures the file space for later retrieval of particular files. Common structuring methods are hier-
archical name spaces (with logical file names, LFNs), database-like extended metadata attributes,
and collections of files.
In order to access a file, the application has to download or replicate the file to its local file system

first (Figure 1). When the file is on the application’s local disk, the application can access the file
normally. Similarly, newly created and modified files are uploaded to one of the storage resources
or the new local file is registered with the system as a replica.
While this architecture has considerably simplified access to data that is kept at heterogeneous

storage resources and integrates well with existing infrastructures, its architectural properties restrict
the evolution of the basic approach.

Copyright q 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:2049–2060
DOI: 10.1002/cpe



THE XTREEMFS ARCHITECTURE 2051

Figure 1. Components and their relationships of a typical Grid data management system. Typically, files are
fetched from a storage resource before they can be accessed.

Typical Grid data management systems do not exercise control over data access beyond what is
necessary for security purposes. The daemon that is running on the storage resources only mediates
remote access to its files and has no notion about the system’s state. It neither knows where other
replicas for its files exist nor does it know in which state its files are. Also, Grid data management
systems do not control client access to downloaded file copies.
Owing to this lack of control and information, Grid data management systems cannot make

guarantees about the consistency of a file’s replicas; thus applications are generally restricted to
write-once usage patterns of files. Applications download read-only input files, process them to
generate output files, and upload the latter to the data management system. In addition, storage
resources are unaware of the state of their files and cannot oversee the replica creation process
themselves. Thus, an extra service is usually needed for the reliable creation of replicas.
The architecture also has implications for performance. Typical Grid data management systems

only operate on complete files, which increases the latency to first access of the file, because the
client’s access to the data has to be deferred until the file is fully recreated in the local file system.
The data management system can neither automatically prioritize parts of the data that would be
accessed first nor can it make partial replicas that skip downloading parts that are not required.
It can also be preferable to avoid downloading any data at all. Today, access to a remote file

server can be much faster than the access to the application’s local hard disk. With the fast network
connection commonly found in today’s computing systems, the application can exploit the aggregate
bandwidth of many remote disks or profit from a large file cache in the server.

DISTRIBUTED FILE SYSTEM ARCHITECTURES

Similar to a Grid data management system, a distributed file system makes use of multiple net-
worked devices to store and manage its entrusted data. In contrast, however, distributed file systems

Copyright q 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:2049–2060
DOI: 10.1002/cpe



2052 F. HUPFELD ET AL.

implement a file system interface that mimics the semantics of a local file system as closely as pos-
sible and can therefore support applications without requiring changes to their code. By exploiting
the inherent parallelism and redundancy of file system resources, a distributed file system can be
made scalable, fast, and fault-tolerant.
When designing a distributed file system, a choice has to be made about how to distribute the

elements of the file system. A file system consists of a hierarchy of directories (the namespace),
metadata of individual files (such as size and ownership), and the file contents themselves. The latter
can be further subdivided into storage units such as disk or file system blocks. Earlier distributed
file systems such as AFS/DFS [3] chose to make the ‘distribution cut’ at the namespace level and
provided a global namespace that subsumes the contents of individual storage servers, which held
complete files.
Today’s predominant architecture, the block-based file system (such as GPFS [4]) makes the

cut within a file and distributes file contents as fixed-size blocks to storage devices. The storage
devices of a block-based file system are agnostic of the association between blocks and files, and
the devices only answer a client’s requests for individual blocks. The mapping between files and
block addresses, the list of free blocks, and file metadata are kept in a centralized file system
server.
While block-based distributed file systems can exploit parallel access to block stores, the file

system server must be queried frequently to retrieve block addresses, a potential performance
bottleneck. The storage devices, however, only have to provide access to fixed-size blocks and
are therefore simple enough to be implemented in hardware. Block-based file systems are usually
bound to a specific block size and therefore lack the flexibility to support heterogeneous content
that would profit from block sizes that are adapted to file size and access patterns.
Recently, technology trends have encouraged storage architects to revisit the interface to storage

devices [2] and augment it with logic that was previously in the file server in order to alleviate the
file server’s load. This technology step resulted in object-based file systems [5] that distribute the
contents of a file as objects to storage servers (called object storage devices, OSDs). The size of a
particular file’s objects is fixed, resembling blocks of a block-based file system, but the size of the
objects can differ between files. Also, the objects keep the association with the file they constitute.
A prototypical object-based file system relies on a metadata server to maintain the file namespace

and POSIX [6] metadata and to enforce access control policies (see Figure 2). In contrast to block-
based file systems, OSDs manage data layout and free space themselves without the metadata
server. When accessing a file, a file system client first contacts the metadata server to retrieve the
locations of a file’s objects along with an access capability that represents the client’s access rights
as a signed entity. All subsequent read and write operations on the file are performed directly on
the respective OSDs. This basic protocol avoids the potential bottleneck of the metadata server and
enables parallelization of all file I/O.
At first sight the object-based architecture bears many structural similarities to the typical ar-

chitecture of Grid data management systems. Both architectures typically separate file metadata
from file data and expose the notion of a file to their storage resources. In addition, however,
object-based file systems mediate the operations of their clients and can exercise full control over
the operations where necessary. Object-based file systems also treat their storage resources as pure
storage devices for file content and do not offer additional functionality that could restrict the
architecture.

Copyright q 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:2049–2060
DOI: 10.1002/cpe



THE XTREEMFS ARCHITECTURE 2053

Figure 2. Components and their relationships in an object-based file system. The metadata server
authenticates and authorizes the client on open() and issues a ticket. Subsequently, all I/O operations

are directly performed at the object storage devices.

EXTENDING OBJECT-BASED STORAGE FOR THE GRID

Existing object-based file systems are designed as parallel file systems for clusters or enterprise file
systems with centralized IT infrastructures. They have all the amenities of a file system and can
exploit the resources of today’s hardware in an economic manner. A typical installation includes
a rack of metadata servers and many OSDs with a number of hard disks. In this homogeneous
environment, all OSDs are equal from a latency and bandwidth perspective, and objects can be
assigned to disks in a deterministic way. The predominant source of failure is the hard disks and
disk failures are handled by introducing redundancy via RAID. Users of these file systems are
part of the locally controlled administration domain. All these assumptions about a local homoge-
neous and controlled environment cannot readily be transferred to the dynamic and heterogeneous
environment of Grids. The task of adapting the object-based approach to Grid environments
opens up research challenges in system architecture, distributed algorithms, and administration and
security infrastructures.
In contrast to the common single-site setup of file systems, Grid installations typically encom-

pass multiple sites, organizations, and administration domains. In order to be useful in such an
environment, the file system must have a structure that supports a multi-organization view of ad-
ministration, management, and security. These multi-domain virtual organizations (VOs) are the

Copyright q 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:2049–2060
DOI: 10.1002/cpe



2054 F. HUPFELD ET AL.

basic unit of authentication and authorization mechanisms in a Grid environment. VO systems have
to be supported by the file system as well, although they might also need to be adapted to fit the
well-defined semantics of file access.
In a Grid that spans multiple organizations and sites, it is essential for the file system to be

prepared at any time for the case that parts of its installation join, leave, or fail. It needs a federated
structure, where no part is preferred to the others and partial absence due to failure or downtimes
can be tolerated. For instance, a local file system installation should continue to work if the network
connection to the Internet fails. The file system should also remain operational if the site decides
to leave the federation for good. In turn, the overall file system operation should not be affected
if parts of the installation fail, leave, or become temporarily disconnected. This federation may be
partially achieved by provisions in the system structure but might also need support from replication
mechanisms.
The primary targets for replication mechanisms are the metadata servers and the OSDs. Apart

from supporting federated installations, replication can improve availability within a site as well
as general access performance. Also, it is often better to replicate data closer to the consumers so
that file system clients can enjoy shorter network latencies and higher bandwidth. Generally, the
replication mechanisms for file data and metadata should not place functional restrictions on the
placement of their replicas so that replicas can be created where and when they are most needed.
However, non-functional restrictions such as security must also be considered.
The major challenge with replicated data is to maintain its consistency. When multiple replicas

are changed concurrently, the system must ensure that the file replicas are consistent and that the
clients see the expected semantics of a POSIX interface. These guarantees must not be weakened
by any failures in the environment, including temporary network failures and network partitions.
Replication algorithms can be categorized into mechanisms that elect a primary to control the
consistency [7] and mechanisms that implement a replicated state machine [8–11] that consistently
executes operations on all replicas. These replication algorithms have to be checked for the suitability
for replicating file data and metadata.
Once these challenges are addressed, users can benefit from all the advantages of a general file

system. Because all operations of an application go through the controlled file system interface,
the application is decoupled from any internal aspects of the system. The file system can see and
influence any operation of the application and act accordingly to provide the client with the best
possible performance. In turn, the application can simply mount and access the file system’s data
transparently.

THE ARCHITECTURE OF XtreemFS

The XtreemFS file system architecture addresses many of the problems described above. XtreemFS
has been specifically designed to support file replication and federated setups in Grid environments.
XtreemFS organizes its file systems in the file system volumes, each of which represents a mountable
file system with a separate directory structure and configuration. A volume’s files and directories
share certain default policies for replication and access.
Similar to other object-based file systems, XtreemFS consists of clients, OSDs, and metadata

servers. The metadata servers of XtreemFS also track the locations of file replicas and are called

Copyright q 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:2049–2060
DOI: 10.1002/cpe



THE XTREEMFS ARCHITECTURE 2055

Figure 3. Components and their relationships in XtreemFS. While supporting striping over a group of OSDs,
XtreemFS allows files to be replicated to different locations.

metadata and replica catalogs (MRCs, see Figure 3). In addition to these three main components,
a directory service acts as a registry for servers and file system volumes.

XtreemFS metadata servers

An XtreemFS MRC is able to host multiple file system volumes and acts as a metadata server for
clients that mount and access one of the volumes. Clients are not tied to a particular MRC, and given
proper access rights, a client can mount volumes from anyMRC on the Grid. To authenticate, a client
presents the user’s credentials (usually X.509 certificates) obtained from one of the common VO
infrastructures. After successful authentication, the operations of a client are subject to pluggable
access policies. These access policies can implement normal file system policies such as Unix
user/group rights or full POSIX ACLs, although the MRC can also support access policies that are
better suited to a particular organization structure.
An MRC stores all of the information about its hosted volumes in an embedded database, which

has a mechanism to replicate its data across hosts. Thus, volumes can be hosted by multiple
MRCs, which increases volume availability and access performance. We have chosen to implement
the replication mechanism on the operation level instead of replicating data on the storage level
because it allows us to support online access to all volume replicas. With replication on the storage
level, only a fail-over mechanism would be possible. We have already implemented a fault-tolerant

Copyright q 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:2049–2060
DOI: 10.1002/cpe



2056 F. HUPFELD ET AL.

lease-based master–slave replication algorithm, and we are currently working on a replication
algorithm that coordinates full read–write access to all volume replicas.
Apart from standard file metadata, the MRC also keeps a list of replica locations for each file,

along with striping information for the file, such as the striping pattern and stride on RAID devices.
In a federated environment, replication policies restrict the range of OSDs to which an MRC will
replicate files or the set of MRCs from which an OSD will accept replicas. Apart from these policy
restrictions, our design allows files to be replicated to any OSD.

XtreemFS directory service

The directory service of XtreemFS connects all of the components of the file system. The directory
service allows clients to locate the MRCs that are responsible for a certain volume, registers all
servers and allows them to exchange dynamic information, and acts as a shared store between
MRCs and OSDs.
When a client first accesses a file, the client is authenticated and authorized by the MRC that hosts

the file’s volume. The directory service supports this process by storing a shared secret between a
protected area that allows MRCs and OSDs to generate and verify the signature on the capability
token submitted by the client. These capabilities also carry an absolute timeout that acts as a built-in
revocation mechanism. Apart from this use case, absolute timeouts are part of several algorithms in
other components. For all these distributed components, the directory service acts as central time
source so that timeouts can be interpreted in a consistent manner.
Generally, we have tried to avoid introducing direct communication dependencies betweenMRCs

and OSDs. This can decrease the load onMRCs and also helps when private subnets make it difficult
to set up direct connections between servers. Where shared information between MRCs and OSDs
is required, the directory service acts as a proxy. For example, the directory service retains dynamic
information such as load and capacity information for OSDs, which MRCs can periodically query.
The XtreemFS directory server is currently centralized and does not support a federated fault-

tolerant setup. To fully support the federation aspect, the directory server would need to be replicated
or follow a hierarchical design that is able to tolerate failure of parts of its hierarchy.

XtreemFS OSDs

XtreemFS OSDs provide clients with high-performance access to the objects they store. OSDs are
responsible for the actual storage layout on their attached disks and they maintain a cache of recently
accessed objects. Apart from these tasks, the majority of OSD logic is dedicated to ensuring the
consistency of a file’s replicas.
Consistency maintenance is solely the responsibility of the OSDs that store a replica of a particular

file. When a client accesses data on an OSD for the first time, its request includes information for the
OSD about the locations of other replicas of the file, which allows the OSD to coordinate operations
in a peer-to-peer manner. No central component is involved in this process, which makes it scalable
and fault tolerant. In order to coordinate operations on file data, OSDs negotiate leases [12] that
allow their holder to define the latest version of the particular data without further communication
efforts. Also, each OSD maintains a version number for each file object it stores, which allows
the OSD to determine whether its local data are current. With the help of this lease coordination

Copyright q 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:2049–2060
DOI: 10.1002/cpe



THE XTREEMFS ARCHITECTURE 2057

algorithm, XtreemFS can guarantee POSIX semantics even in the presence of concurrent accesses
to the replicas.
The version number that an OSD stores along with each object allows the OSD to keep outdated

objects or even to not store the object locally at all. Thus, anOSD can keep partial or outdated replicas
under certain circumstances without compromising consistency. By exploiting this mechanism,
XtreemFS can choose to update only those replicas that are currently accessed by clients and let
the other replicas fall behind. As soon as a client asks an OSD for a part of a file that it has not
previously accessed, the OSD checks the validity of the locally available data and retrieves the
newest version if necessary.
The consistency of the replicas of a particular file is controlled by policies. These policies dictate

how many replicas an OSD forwards changes to before acknowledging the write operation of the
client. The user can, for example, choose a strict policy that always keeps at least three replicas
up-to-date at different sites or select a looser policy that updates other replicas lazily or on demand.
The awareness of OSDs about replicas also allows us to logically create new replicas very quickly

and reliably. From an external perspective, a new replica is created as soon as the added OSD has
learned about that the new replica. The OSD then marks the versions of the replica’s objects as
obsolete. Subsequently, the replica is physically created using the described consistency protocols,
either on demand by a client’s accesses or automatically when a policy instructs the replica to do
so. Replicas are therefore always created reliably as a decentralized interaction between the OSDs.
There is no need for extra services to initiate, control, or monitor the transfer of the data.
In order to be able to create replicas in the presence of failures of some of the OSDs and to

be able to remove unreachable replicas, we have designed a replica set coordination protocol that
integrates with the lease coordination protocol. The replica set protocols ensure that even in the
worst failure case, replicated data can never become inconsistent, while still allowing replicas to
be added or removed in many failure scenarios.
Because it involves a distributed consensus process that is inherently expensive, the replica lease

coordination process does not scale well. When too many OSDs per file are involved, the necessary
communication increases excessively. Fortunately, a moderate number of replicas are sufficient
for most purposes. If a large number of replicas are required, XtreemFS can switch the file to a
read-only mode and allow an unlimited number of read-only file replicas, which fits many common
Grid data management scenarios.

Common Grid use cases and file systems

XtreemFS’s object-based file system enables many features that current Grid applications can take
advantage of. The objective of this section is to present some use cases that would clearly benefit
from the ability to access data through a file system.
We first consider scientific applications that access large files routinely. For example, the large

hadron collider at CERN generates large files that are read (but not written) from many nodes in a
Grid. The current way of using these huge files is to copy them to the node where the file will be
processed and to remove the file some time after processing has finished (traditional stage-in).
Being a file system, XtreemFS is able to control where and how its clients access a file’s replicas.

If there is a replica close enough to the client, applications can access this replica directly in a
transparent way. Also, if only parts of a large file are accessed, the file system can replicate these

Copyright q 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:2049–2060
DOI: 10.1002/cpe



2058 F. HUPFELD ET AL.

parts and avoid transferring the whole file. A file system can also reduce the latency to first access
considerably by creating the replica in the background and redirecting the client to local data as
they become available.
Database management systems (DBMS) would also benefit from automatic and partial replica

creation in our file system. Given that databases are normally huge files that are frequently accessed
only partially, a file system could replicate only the parts of the database that are being used, reducing
the amount of replicated data and the time and resources consumed for creating the replica.
As XtreemFS allows replicas to be physically desynchronized, we can allow MPI applications

to work on different replicas of the same file when the different processes of the application are
very far apart. XtreemFS assigns these processes a nearby replica for writing. Depending on the
replication policy, the written data may be lazily synchronized to other replicas over time or later
on demand. In either case, XtreemFS guarantees that replicas appear consistent for any subsequent
read operation. Current Grid data management systems are not able to support this kind of access
pattern.

RELATED WORK

While many Grid projects have developed custom solutions for their data management problems,
a couple of software products for Grid data management have emerged and been widely adopted.
Each of these systems is similar in architectural spirit to the general scheme we presented in the
section but targets different applications domains.
Among the most prominent systems are the data management services of the Globus toolkit

[13,14]. Globus users install GridFTP [1] daemons on their storage resources that export the host
file system and enable it for remote access. A replica catalog (RLS) indexes these storage locations
and implements additional naming facilities on top of it. Globus integrates well with the local
structure and access rights management of the local system and is able to preserve file naming across
replicas. Its GridFTP framework [1] allows high-performance parallel transfer of files between the
resources.
SDSC’s storage resource broker (SRB) [15] provides a complete data management solution.

Unlike Globus, it does not focus on preserving a storage host’s file system name space and stores
its files under their file identifiers. It also provides support for federated installations inmultiple sites.
dCache [16] makes a strong emphasis on archiving data with the help of tertiary storage systems

such as tape robots. It can act as a front end to these resources and allows clients to access files via
a file system-like interface over NFS.
The AMGA metadata catalog [17] of the EGEE project provides support for fine-grained access

control on extended metadata and features powerful replication capabilities. It can partially and
fully replicate metadata on multiple sites and supports federation of metadata by a master–slave-
like replication semantics.
Grid datafarm (Gfarm) is a system for managing files in Grids which follows a file system-like

approach. It is specialized for workloads in which applications create a large amount of data that
are consumed by other applications later on. While the first version of Gfarm allows files to be
written only once [18], Gfarm v2 [19] aims to offer full file system functionality. There is also an
effort under way to standardize Grid file system at the Grid File System Working Group (GFS-WG)
of the open grid forum (OGF).

Copyright q 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:2049–2060
DOI: 10.1002/cpe



THE XTREEMFS ARCHITECTURE 2059

While distributed file systems are recently shifting from block-based architectures to object-based
storage, most file systems are still based on the block-based approach. Traditional block-based
parallel file systems such as RedHat’s global file system (GFS) and Oracle’s cluster file system
(OCFS2) rely on the capability of every computer to access the block devices over a storage area
network (SAN) and parallelize the file system code to enable coordinated concurrent access to the
storage devices. The direct access to the block devices is usually realized using fiber channel or
iSCSI. GPFS [4] is a proprietary representative of the block-based file systems which has off-loaded
a part of the block management from the clients to network storage device (NSD) servers and shows
improved scaling behavior.
Existing object-based file systems are designed for single-site installations and for high-perfor-

mance parallel access to the storage resources. Commercial (Panasas’ ActiveScale, [20]), open-
source (Lustre [21]), and research systems (Ceph [20]) are available.

CONCLUSION

In this paper, we have analyzed where the typical architecture of Grid data management systems
has deficiencies and argued that a Grid-aware adaptation of the object-based file system architecture
is able to address them. As an example, we have shown how some of the challenges of adapting
object-based storage to wide-area federated infrastructures are solved in XtreemFS.
Object-based file systems for Grids will not be able to support the full range of application

domains of Grid data management systems. For example, it could be difficult to integrate them
with existing legacy installations that depend on interfacing with a Grid data management system.
Nevertheless, we think that there are enough use cases, especially in new Grid installations, where
applications could considerably benefit from running on a real file system that is designed for the
environment.

REFERENCES

1. Allcock W, Bresnahan J, Kettimuthu R, Link M. The Globus striped GridFTP framework and server. SC ’05: Proceedings
of the 2005 ACM/IEEE Conference on Supercomputing. IEEE Computer Society: Washington, DC, U.S.A., 2005; 54.

2. Mesnier M, Ganger G, Riedel E. Object-based storage. IEEE Communications Magazine 2003; 8:84–90.
3. Satyanarayanan M. Scalable, secure, and highly available distributed file access. Computer 1990; 23(5):9–18, 20–21.
4. Schmuck F, Haskin R. GPFS: A shared-disk file system for large computing clusters. FAST ’02: Proceedings of the 1st

USENIX Conference on File and Storage Technologies. USENIX Association: Berkeley, CA, U.S.A., 2002; 19.
5. Factor M, Meth K, Naor D, Rodeh O, Satran J. Object storage: The future building block for storage systems. Local to

Global Data Interoperability—Challenges and Technologies, Sardinia, Italy. IEEE Computer Society: Washington, DC,
2005.

6. The Open Group. The Single Unix Specification, Version 3.
7. Jiménez-Peris R, Patiño-Martı́nez M, Alonso G, Kemme B. Are quorums an alternative for data replication? ACM

Transactions on Database Systems 2003; 28(3):257–294.
8. Lamport L. Time, clocks, and the ordering of events in a distributed system. Communications of the ACM 1978;

21(7):558–565.
9. Burrows M. Chubby distributed lock service. Proceedings of the 7th Symposium on Operating System Design and

Implementation, OSDI’06, Seattle, WA, 2006.
10. Lorch JR, Adya A, Bolosky WJ, Chaiken R, Douceur JR, Howell J. The SMART way to migrate replicated stateful

services. EuroSys ’06: Proceedings of the 2006 EuroSys Conference. ACM Press: New York, NY, U.S.A., 2006; 103–115.

Copyright q 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:2049–2060
DOI: 10.1002/cpe



2060 F. HUPFELD ET AL.

11. Chandra TD, Griesemer R, Redstone J. Paxos made live: An engineering perspective. PODC ’07: Proceedings of the
Twenty-sixth Annual ACM Symposium on Principles of Distributed Computing. ACM Press: New York, NY, U.S.A.,
2007; 398–407.

12. Lampson BW. How to build a highly available system using consensus. Tenth International Workshop on Distributed
Algorithms (WDAG 96), vol. 1151, Babaoglu O, Marzullo K (eds.). Springer: Berlin, Germany, 1996; 1–17.

13. Foster I, Kesselman C. Globussss: A metacomputing infrastructure toolkit. International Journal of Supercomputer
Applications 1997; 11(2):115–128.

14. Foster I. Globus toolkit version 4: Software for service-oriented systems. IFIP International Conference on Network and
Parallel Computing (Lecture Notes in Computer Science, vol. 3779). Springer: Berlin, 2005; 2–13.

15. Baru CK, Moore RW, Rajasekar A, Wan M. The SDSC storage resource broker. CASCON 1998; 5.
16. Fuhrmann P, Gülzow V. dCache, storage system for the future. Euro-Par, 2006; 1106–1113.
17. Santos N, Koblitz B. Distributed metadata with the AMGA metadata catalog. Proceedings of the Workshop on Next-

Generation Distributed Data Management—HPDC-15, 2006.
18. Tatebe O, Morita Y, Matsuoka S, Soda N, Sekiguchi S. Grid datafarm architecture for petascale data intensive computing.

CCGRID ’02: Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid. IEEE
Computer Society: Washington, DC, U.S.A., 2002; 102.

19. Tatebe O, Sekiguchi S, Soda N, Morita Y, Matsuoka S. Gfarm v2: A grid file system that supports high-performance
distributed and parallel data computing. Proceedings of the International Conference on Computing in High Energy and
Nuclear Physics (CHEP 2004), 2004.

20. Panasas ActiveScale File System (PanFS). Whitepaper.
21. Lustre: A Scalable, High-Performance File System. Whitepaper.

Copyright q 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:2049–2060
DOI: 10.1002/cpe


