
Top-Down Parameter-Free Clustering of
High-Dimensional Categorical Data

Eugenio Cesario, Giuseppe Manco, and Riccardo Ortale

Abstract—A parameter-free, fully-automatic approach to clustering high-dimensional categorical data is proposed. The technique is

based on a two-phase iterative procedure, which attempts to improve the overall quality of the whole partition. In the first phase, cluster

assignments are given, and a new cluster is added to the partition by identifying and splitting a low-quality cluster. In the second phase,

the number of clusters is fixed, and an attempt to optimize cluster assignments is done. On the basis of such features, the algorithm

attempts to improve the overall quality of the whole partition and finds clusters in the data, whose number is naturally established on

the basis of the inherent features of the underlying data set rather than being previously specified. Furthermore, the approach is

parametric to the notion of cluster quality: Here, a cluster is defined as a set of tuples exhibiting a sort of homogeneity. We show how a

suitable notion of cluster homogeneity can be defined in the context of high-dimensional categorical data, from which an effective

instance of the proposed clustering scheme immediately follows. Experiments on both synthetic and real data prove that the devised

algorithm scales linearly and achieves nearly optimal results in terms of compactness and separation.

Index Terms—Clustering, database applications, information search and retrieval.

Ç

1 INTRODUCTION

1.1 Motivations

CLUSTERING is an unsupervised classification technique
that aims at grouping a set of unlabeled objects into

meaningful clusters [19], [25], with the requirement that the
resulting groups are homogeneous (that is, pairs of objects in
the same cluster are highly similar) and neatly separated (that
is, objects within distinct clusters are very dissimilar).
Clustering techniques have been extensively studied in
several communities [1], [11], [20], [42]. Recently, increasing
attention has been paid to clustering categorical data [2], [3],
[14], [16], [21], [40], [41], where records are made up of
nonnumerical data, since this task is of great practical
relevance in several fields ranging from statistics to
psychology [3].

There are a number of challenges in clustering categorical
data. First, the lack of an inherent order on the domains of
the individual attributes prevents the definition of a notion
of similarity, which catches resemblance between categorical
data objects. Clearly, this imposes difficulties at devising a
suitable clustering quality that are not encountered in the
case of numeric attributes, where, instead, object similarity
naturally follows from the geometric properties of the data.
Furthermore, categorical data is often high dimensional,
thus requiring methods that are actually capable of scaling
with dimensionality.

High-dimensional categorical data such as market-basket
and Web usage data is a particular facet of categorical data.
Records in such data sets include a large number of

attributes, typically with Boolean values. Several emerging
application settings require clustering techniques that
provide an effective treatment of this kind of data, such as
text analysis, bioinformatics, e-commerce, astronomy, and
the insurance industry [1], [28], [33]. Unfortunately, most of
the conventional approaches for categorical data do not
properly scale to cluster volumes of high-dimensional data
in terms of effectiveness and efficiency. Moreover, concerns
related to data sparseness and/or skewness, as well as
attribute irrelevancy and/or redundancy, typically impose
looking for valuable clusters within several subsets of the
original attribute space. This inevitably penalizes the
effectiveness of clustering and further exacerbates its time
requirements, since high-dimensional categorical data tends
to exhibit different clusters on distinct attribute subsets.

In addition, the great majority of conventional clustering
algorithms generally require an appropriate model selection
strategy due to their dependency on multiple parameters,
which may be difficult to tune. In its simplest form, the
problem of model selection is concerned with the estimation
of the “optimal” number of clusters. Although optimality
can be difficult to pin down without some assumptions
being made, some pragmatical cross-validation methods
based on ad hoc quality criteria have been proposed in the
literature. However, most clustering algorithms require the
setting of many input parameters. Parameter-laden techni-
ques are critical in several aspects [26]. First, incorrect
settings may cause an algorithm to fail in finding the true
patterns. Also, a perhaps more insidious problem is that the
algorithm may report spurious patterns that do not really
exist or greatly overestimate the significance of the reported
patterns. This is especially likely when the user fails to
understand the role of parameters.

Parameters are useful in a mining algorithm when they
encode human-domain knowledge, thus allowing us to catch
the user’s explanation of the data under investigation. The

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 12, DECEMBER 2007 1607

. The authors are with the Institute of High Performance Computing and
Networks (ICAR-CNR), Via Bucci 41c, I87036 Rende (CS), Italy.
E-mail: {cesario, manco, ortale}@icar.cnr.it.

Manuscript received 12 Apr. 2006; revised 26 Mar. 2007; accepted 17 July
2007; published online 8 Aug. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0170-0406.
Digital Object Identifier no. 10.1109/TKDE.2007.190649.

1041-4347/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

knowledge discovery process is highly interactive in its
nature: The outcome of pattern discovery is a set of
suggested hypotheses, which still require that they be
further interpreted and tested according to the user’s beliefs
and presumptions. Under this perspective, parameters
should be solely used to ease the embedding of application
semantics within the pattern discovery task. Instead, para-
meters are often used for supporting different requirements
such as efficiency, scalability, and flexibility. In this respect,
they often introduce a bias within the algorithm, which
makes the identification of the true patterns problematic. As
a matter of fact, in many cases, parameters are tuned so that
the clustering scheme is highly effective on data sets with
certain properties while delivering poor performances with
even small changes in the underlying data characteristics.

Thus, the effort in identifying a proper tuning for
parameters may make it difficult to fully understand the
effectiveness of a mining scheme. Indeed, this would
conceptually require the investigation of the behavior of
the algorithm on any data set across all possible parameter
settings. Such an issue is even more evident when the
performances of multiple schemes are compared, which is
due to the requirement for intensively testing over as many
parameter spaces.

Data mining algorithms should have as few such
parameters as possible, ideally none. A parameter-free
algorithm would limit the human ability to impose pre-
judices, expectations, and presumptions on the problem at
hand and would let the data itself speak. These techniques
are particularly useful when the data is described by several
relevant attributes. As to the specific case of clustering, this
latter aspect is evenmore relevant due to the intrinsic human
inability of taking into account all possible meaningful
groupings of data attributes.

It is true that the high interactive nature of the structure
discovery process poses substantial limits to the effective-
ness of a fully automatic approach. Typically, the latter
involves strong assumptions about the underlying model,
which clearly enforce the results. If the hypothesized model
changes according to a user’s beliefs and/or expectations,
automatic methods may not work anymore, thus failing to
catch the user’s explanation of the data under investigation.

Notwithstanding, we believe that automatic techniques
are complementary to human abilities. Indeed, a structure
discovery method can help both in the first exploratory
approach to data analysis and in developing further in-
depth customized investigations on the resulting patterns.
Indeed, it can effectively and rapidly search huge amounts
of high-dimensional data in a way that is not possible for a
human expert, whereas the latter can explain data and
validate the results of autonomous methods in the light of
her/his background knowledge. In this respect, automatic
techniques are really useful, as long as they release the
human expert from explicitly dealing with data-specific
parameters (that is, those parameters that are inherently
related to the properties of the data at hand). Possibly, as a
reasonable trade-off between ease of use and flexibility,
autonomous approaches can be enhanced to somehow
embody human-domain knowledge by making them de-
pend on a strict number of application-specific parameters,

which permit different explanations of the data (according to
the pursued task), if any.

1.2 Objectives and Contributions

The aforementioned problems have been tackled separately,
and specific approaches have been proposed in the
literature, which hardly fit the whole framework. The main
objective of this paper is, instead, to face the three issues in a
unified framework. We look forward to an algorithmic
technique that is capable of automatically detecting the
underlying interesting structure (when available) on high-
dimensional categorical data. We are particularly interested
in devising solutions that are scalable both in the size and in
the dimensionality of the data and are simultaneously
capable of adopting themselves to the patterns underlying
the data.

In the following, we present Automatic Top-Down
Clustering (AT-DC), a new approach to clustering high-
dimensional categorical data, that scales to processing large
volumes of such data in terms of both effectiveness and
efficiency. The main idea of the approach is borrowed from
the classical top-down approach to decision-tree learning,
which recursively partitions the available data on the basis
of the gain in purity of the subsets with respect to the
original data set. AT-DC implements a similar strategy for
clustering high-dimensional categorical data. Given an
initial data set, it searches for a partition, which improves
the overall purity. The algorithm is independent of any
data-specific parameter (such as the number of clusters or
occurrence thresholds for frequent attribute values). By
contrast, it is deliberately left parametric to the notion of
purity, which allows for adopting the quality criterion that
best meets the specific applicative goal of clustering.

In this paper, we deal with a specific clustering
requirement, that is, the discovery of syntactically homo-
geneous groups of categorical data. To this purpose, the
frequency of attribute values is suitably employed to
measure the extent of purity of the discovered clusters.
This is a quite natural clustering model when dealing with
categorical data. Notice that, in principle, the exploitation of
a frequency-based quality criterion suffers from the same
limitations that affect exact match similarity schemes.
However, this aspect is not a concern at all, as long as
syntactic similarity remains the required cluster property.
In addition, we briefly discuss an idea for plugging a
different quality criterion into the AT-DC framework, which
would enable the identification of semantic similarity,
another major clustering requirement, that typically arises
when distinct values of an attribute are used for denoting
the same concept.

AT-DC implements a parameter-free, fully-automatic
approach. Starting from the basic assumption that clusters
are groups of tuples exhibiting a high degree of overlap, the
search for syntactically homogeneous clusters is exclusively
guided by a quality criterion that is capable of evaluating
the aforementioned property. In practice, the algorithm
autonomously tries to improve the current partition by
looking for a convenient cluster split, which isolates clusters
of transactions with mostly frequent attribute values. AT-
DC halts only when such a split is not available. This allows
a true exploratory strategy, which does not impose any

1608 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 12, DECEMBER 2007

presumptions on the data. In addition, the accuracy of our
approach is comparable (actually, in most cases, even
superior) to those of parameter-laden algorithms, even if we
allow these algorithms to search exhaustively over their
parameter spaces.

Interestingly, the AT-DC algorithmic scheme can be
further customized, as it is decoupled from the underlying
notion of quality, which governs the cluster generation
process. In this paper, we instantiated it to clustering that
are specific of high-dimensional categorical data. However,
alternative instantiations can be obtained by adopting
different measures, which encode specific application
requirements.

1.3 Plan of the Paper

The rest of this paper is organized as follows: We start by
critically reviewing in Section 2 the approaches available in
the literature. Section 3 provides a detailed description of
the AT-DC approach to clustering high-dimensional cate-
gorical data. The behavior of the algorithm, both on real-life
and on synthesized data sets, is then analyzed in Section 4.
Finally, Section 5 draws conclusions and highlights exten-
sions to AT-DC, which are worth further research.

2 RELATED WORKS

Several approaches have been proposed in the current
literature for clustering categorical data. However, the
majority of these techniques typically suffer from two main
limitations, namely, their dependency on a set of para-
meters that need to be properly tuned and their lack of
scalability to large values of n and m. In particular, for this
latter aspect, we remark that several effective approaches to
clustering both categorical data and high-dimensional data
exist. However, most of these approaches are inadequate
both in dealing with the above features in a unified
framework and in providing smart strategies for the correct
estimation of parameters.

In principle, several distance-based clustering algorithms
[10], [25], [31] can be adapted to transactional data.
However, traditional clustering techniques are faced with
the curse of dimensionality and the associated sparsity
issues when dealing with very high-dimensional data such
as market-basket data or Web sessions. For example, the
K-Means algorithm has been adopted by replacing the
cluster mean with the more robust notion of cluster medoid
[31] (that is, the object within the cluster with the minimal
distance from the other points) or the attribute mode [24].
However, the proposed extensions are inadequate for large
values of m: Gozzi et al. [18] describe such inadequacies in
detail and propose further extensions to the K-Means
scheme, which fit transactional data. Unfortunately, this
approach reveals to be parameter laden.

The point is that distance-based algorithms do not
perform well when the number of dimensions is high.
Indeed, several irrelevant attributes might distort the
dissimilarity between tuples. Although standard dimension
reduction techniques [9] can be used for detecting the
relevant dimensions, these can be different for different
clusters, thus invalidating such a preprocessing task.
Recently, several clustering techniques have been proposed,

which identify clusters in subspaces of maximum dimen-
sionality (see [33] for a survey). Although most of these
approaches were defined for numerical data, some recent
works [13], [41] also consider subspace clustering for
categorical data.

A different perspective in exploiting (dis)similarity is
provided by the ROCK algorithm [21]. The core of the
approach is an agglomerative hierarchical clustering pro-
cedure based on the concepts of neighbors and links. For a
given tuple x, a tuple y is a neighbor of x if the Jaccard
similarity Jðx; yÞ between them exceeds a prespecified
threshold �. Hence, the algorithm starts by assigning each
tuple to a singleton cluster and merges clusters on the basis
of the number of neighbors (links) that they share until the
desired number of clusters is reached. ROCK is robust to
high-dimensional data. However, the dependency of the
algorithm to the parameter � makes proper tuning difficult.
This is further by the high computational complexity
ðOðn2 lognÞÞ needed to compute links between objects.

Beyond the concept of (dis)similarity, clusters of catego-
rical data can informally be understood as especially dense
interval regions within the data set. The density notion is
related to the frequency of specific groups of attribute
values: The higher the frequency of such groups, the
stronger the clustering. In a sense, this corresponds to
preprocessing the data set by extracting relevant features
(frequent patterns) and discovering clusters on the basis of
these features. There are several approaches accounting for
frequencies. As an example, Yang et al. [40] propose an
approach based on histograms: The goodness of a cluster is
higher if the average frequency of an item is high, as
compared to the number of items appearing within a
transaction. The algorithm is particularly suitable for large
high-dimensional databases, but it is sensitive to a user-
defined parameter (the repulsion factor), which weights the
importance of the compactness/sparseness of a cluster.
Other approaches [23], [32], [39], [41] extend the computa-
tion of frequencies to frequent patterns in the underlying
data set. In particular, in [23], [32], each transaction is seen
as a relation over some sets of items, and a hypergraph
model is used for representing these relations. Hypergraph
partitioning algorithms can hence be used for obtaining
item/transaction clusters.

In general, approaches based on graph/hypergraph
partitioning are common in the literature [14], [16], [41].
The key intuition here is to encode the data set into
weighted summarization structures such as graphs, where
individual attribute values correspond to weighted vertices.
Thus, significant patterns are mapped into a hypergraph
structure, and the exploitation of ad hoc hypergraph
partitioning algorithms allows one to obtain a suitable
clustering. The cost of clustering on the basis of such
structures is acceptable, provided that the underlying data
is low dimensional. Otherwise, one has to resort to
abstractions, which reduce the dimensionality of the data.

Paradigmatic is the CLICKS algorithm, recently pro-
posed in [41]. The algorithm encodes a data set into a
weighted graph structure G ¼ ðN;EÞ, where the individual
attribute values correspond to weighted vertices in N , and
two nodes are connected by an edge if there is a tuple where

CESARIO ET AL.: TOP-DOWN PARAMETER-FREE CLUSTERING OF HIGH-DIMENSIONAL CATEGORICAL DATA 1609

the corresponding attribute values co-occur. The algorithm
starts from the observation that clusters correspond to
dense (that is, with frequency higher than a user-specified
threshold) maximal k-partite cliques and proceeds by
enumerating all maximal k-partite cliques and checking
their frequency. A crucial step is the computation of
strongly connected components, that is, pairs of attribute
values whose co-occurrence is above the specified thresh-
old. For large values of m (or, more generally, when the
number of dimensions or the cardinality of each dimension
is high), this is an expensive task, which invalidates the
efficiency of the approaches. In addition, technique de-
pends upon a set of parameters, whose tuning can be
problematic in practical cases. The experimental section in
this paper describes such the inherent difficulties in detail.

Categorical clustering can also be tackled by using
information-theoretic principles and the notion of entropy
to measure closeness between objects. The basic intuition is
that groups of similar objects have lower entropy than those
of dissimilar ones. Thus, the COOLCAT algorithm [3]
proposes a scheme where data objects are processed
incrementally, and a suitable cluster is chosen for each tuple
such that at each step, the entropy of the resulting clustering
is minimized. The scaLable InforMation BOttleneck (LIM-
BO) algorithm [2] also exploits a notion of entropy to catch
the similarity between objects and defines a clustering
procedure that minimizes the information loss. The algo-
rithm builds a Distributional Cluster Features (DCF) tree to
summarize the data in k clusters, where each node contains
statistics on a subset of tuples. Then, given a set of k clusters
and their corresponding DCFs, a scan over the data set is
performed to assign each tuple to the cluster exhibiting the
closest DCF. The generation of the DCF tree is parametric to
a user-defined branching factor and an upper bound on the
distance between a leaf and a tuple. Furthermore, its time
complexity is claimed to be Oðnmþm2Þ.

Li and Ma [38] propose an iterative procedure that is
aimed at finding the optimal data partition thatminimizes an
entropy-based criterion. Initially, all tuples reside within a
single cluster. Then, a Monte Carlo process is exploited to
randomly pick a tuple and assign it to another cluster as a
trial step aimed at decreasing the entropy criterion. Updates
are retained whenever entropy diminishes. The overall
process is iterated until there are no more changes in cluster
assignments. Interestingly, the entropy-based criterion pro-
posed here can be derived in the formal framework of
probabilistic clustering models. Indeed, appropriate prob-
abilistic models, namely, multinomial [7] and multivariate
Bernoulli [8], have been proposed and shown to be effective.
It is worth noticing that the classical Expectation-Maximiza-
tion framework [29], equipped with any of these models,
reveals to be particularly suitable for dealing with transac-
tional data [30], [35], being scalable both in n and in m. Still,
the correct estimation of an appropriate number of mixtures,
as well as a proper initialization of all the model parameters,
is problematic here.

The problem of estimating the proper number of clusters
in the data has been widely studied in the literature. Many
existing methods focus on the computation of costly
statistics based on the within-cluster dispersion [17] or on

cross-validation procedures for selecting the best model
[12], [36]. The latter requires an extra computational cost
due to a repeated estimation and evaluation of a predefined
number of models. More efficient schemes have been
devised in [34], [15], [37]. Starting from an initial partition
containing a single cluster, the approaches iteratively apply
the K-Means algorithm (with k ¼ 2) to each cluster so far
discovered. The decision on whether to switch the original
cluster with the newly generated subclusters is based on a
quality criterion, for example, the Bayesian Information
Criterion [34], which mediates between the likelihood of the
data and the model complexity, or the improvement in the
rate of distortion (the variance in the data) of the subclusters
with respect to the original cluster [37]. The exploitation of
the K-Means scheme makes the algorithm specific to low-
dimensional numerical data, and proper tuning to high-
dimensional categorical data is problematic.

Also, automatic divisive approaches that adopt the
classical top-down induction of decision trees have been
proposed [4], [6], [27]. In these approaches, the attribute
with the largest gain in the quality function is selected, and
a split is performed according to the possible values of such
an attribute. The approaches differ in the quality criterion
adopted: reduction in entropy [4], [27] or distance among
the prototypes of the resulting clusters [6]. Compared with
[4], [6], the approach in [27] establishes a different
connection to supervised learning. The authors introduce
a binary target attribute and label each tuple in the data set
with the “yes” label. Then, new artificial (nonexisting) data
points, exhibiting the “no” label, are uniformly distributed
within the data set. A decision tree learning algorithm can
hence be applied to the augmented data set, and the
resulting decision boundaries allow them to separate dense
regions of “yes” data points. The authors concentrate on
how they can avoid the physical generation of artificial data
points and an overly excessive number of splits.

All of these approaches share some of the drawbacks
previously described (for example, the incapability of
discovering clusters with overlapping features). As an
example, the approach in [27] may separate the same cluster
(especially those of irregular shape) into multiple pieces, in
an attempt of drawing decision boundaries. Moreover, they
poorly scale on high-dimensional data: since each step of the
clustering process requires each attribute to be evaluated for
splitting, a large number of attributes would require a
prohibitive number of evaluations.

3 THE AT-DC ALGORITHM

We begin by fixing a proper notation to be used throughout
the paper. Let us consider a setM ¼ fa1; . . . ; amg of Boolean
attributes and a data set D ¼ fx1;x2; . . . ;xng of tuples
defined on M. In the current literature, a 2 M is usually
denoted as an item, and a tuple x 2 D as a transaction.
Usually, x is represented in a more compact form as a
proper subset of M, with the meaning that all the items
explicitly represented in x take value true, and the others
take value false. Data sets composed of transactions are
usually denoted as Transactional data, which is a special case
of high-dimensional categorical data (that is, data which
adhere to a schema where there are several not necessarily

1610 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 12, DECEMBER 2007

Boolean attributes). Notice that each data set whose
attributes are categorical can be represented as transactional
data (by explicitly representing each possible attribute
value as a Boolean attribute in M). Hence, in the following,
we shall refer mainly to transactional data.

A cluster is any set S � D. We denote by nS the size of S,
and by mS the size of MS ¼ faja 2 x;x 2 Sg. A partitioning
problem consists of dividing the original collection of dataD
into a set P ¼ fC1; . . . ; Ckg of nonempty clusters Cj such that
each cluster contains a homogeneous subset of transactions.
The notion of homogeneity found several different forma-
lizations in the literature. In this paper, we relate the notion
of homogeneity with the degree of overlap within transac-
tions: Clusters where transactions share several items exhibit
higher homogeneity than other subsets where transactions
share few items. As a consequence, a cluster of transactional
data is a set of tuples where certain items occur with higher
frequency than elsewhere. Notice that highly frequent items
implicitly define dense regions (subspaces) where clusters
occur. Hence, clustering transactional data can be stated as
the problem of detecting proper subspaces, which indeed
define clusters.

Our approach to clustering starts from the analysis of the
analogies between a clustering problem and a classification
problem. In both cases, a model is evaluated on a given data
set, and the evaluation is positive when the application of the
model locates fragments of the data exhibiting high
homogeneity. A simple rather intuitive and parameter-free
approach to classification is based on decision tree learning,
which is often implemented through top-down divide-and-
conquer strategies. Here, starting from an initial root node
(representing the whole data set), iteratively, each data set
within a node is split into two or more subsets, which define
new subnodes of the original node. The criteria upon which
a data set is split (and, consequently, a node is expanded) is
based on a quality criterion: choosing the best “discriminat-
ing” attribute (that is, the attribute producing partitions with
the highest homogeneity) and partitioning the data set on
the basis of such attribute. The concept of homogeneity has
found several different explanations (for example, in terms
of entropy or variance) and, in general, is related to the
different frequencies of the possible labels of a target class.

The key idea of our approach is to develop a clustering
procedure, which resembles the general schema of a top-
down decision tree learning algorithm. We start from an
initial partition containing a single cluster (representing the
whole data set) and then iteratively try to split a cluster
within the partition into two subclusters. If the subclusters
guarantee a higher homogeneity in the partition than the
original cluster, the latter is removed, and the outcome of
splitting is added to the partition. The approach is based on
the capability of splitting the clusters on the basis of their
homogeneity. We assume that a function QualityðCÞ
measures the degree of homogeneity of a cluster C. In
practice, clusters with high intrahomogeneity exhibit high
values of Quality.

The general schema of the AT-DC algorithm, implement-
ing the envisaged procedure, is specified in Fig. 1. The
algorithm starts with a partition containing a single cluster
corresponding to the whole data set (line 1). The core of the

algorithm is the body of the loop between lines 2 and 15.
Within the loop, an attempt to generate a new cluster is
performed by 1) choosing a candidate node (corresponding
to a cluster with low quality) to split (line 4), 2) splitting the
candidate cluster into two subclusters (line 5), and 3) eval-
uating whether the splitting allows a new partition that
exhibits better quality than the original partition (lines 6–
13). If this is the case, the loop can be stopped (line 10), and
the partition is updated by replacing the candidate cluster
with the new subclusters (line 8). Otherwise, the subclusters
are discarded, and a new candidate cluster is considered for
splitting.

The generation of a new cluster triggers the call to
STABILIZE-CLUSTERS in line 9, which aims at further
improving the overall quality by attempting relocations
among the clusters. Also, clusters at line 4 are considered in
increasing order of quality. This guarantees that the effects of
splitting are evaluated first on clusters with lower quality.
Indeed, if a cluster exhibits a lower degree of homogeneity, it
is more eligible for producing an improvement in the overall
quality, provided that it is properly split.

3.1 Splitting a Cluster

It is clear from the above discussion that the heart of the
proposed algorithm is a splitting procedure, which guaran-
tees a significant improvement in the quality of the partition.
Traditional decision tree learning algorithms choose the
attribute that best discriminates among the classes by
producing a partition for each possible value of the attribute.
Candidate partitions are obtained for free, since there is a
fixed number of candidate partitions to examine, and each
partition is associated with a value of an attribute. Moreover,
the overhead due to the identification of an appropriate
partition is, in general, linear in the size of the data.

In principle, the same criteria could be applied here by
choosing the attribute that guarantees the highest improve-
ment in the quality of the partition. Indeed, the approaches
in [6], [4] implement similar strategies. We found such
strategies to be unsuitable to large values of m. In sparse
data sets, an item a is likely to appear in few transactions.
Whenever a co-occurs with other items, a splitting based on

CESARIO ET AL.: TOP-DOWN PARAMETER-FREE CLUSTERING OF HIGH-DIMENSIONAL CATEGORICAL DATA 1611

Fig. 1. The AT-DC scheme.

a would produce low-quality partitions. Consider, for

example, the following transactions:

x1 ¼ fa1; a2; a3; a6; a8g; x2 ¼ fa1; a4; a7; a9g;
x3 ¼ fa2; a3; a5; a7; a8g; x4 ¼ fa4; a5; a6; a9g;
x5 ¼ fa6; a8g; x6 ¼ fa6; a8; a9g;
x7 ¼ fa7; a8g; x8 ¼ fa7; a9g:

There is a neat separation between transactions in S1 ¼
fx1;x2;x3;x4g and S2 ¼ fx5;x6;x7;x8g. This can be better

noticed in the following bitmapped representation:

Indeed, none of the transactions in S1 contains items a1�a5,

which, on the contrary, appear within the transactions in S2.

Also, transactions in each group exhibit a significant

overlap. However, a split based on any item would separate

the transactions from S1 and mix them with the ones in S2.
The point is that, as described in [14], [41], clusters of

categorical data are often characterized by frequent and

partially overlapping regions, where a region represents a

subset of items. In the above example, each item represents a

region, and all regions overlap in the transactions containing

them. Hence, choosing partitions on the basis of a single

attribute only would likely split overlapping regions, thus

lowering the quality of the resulting partitions.
To avoid the above drawbacks, we resort here to a greedy

approach, which starts from an initial partition and then

progressively moves to neighbor partitions as soon as there is

a convenience in doing so. Here, two neighbor partitions P

and P 0 differ over the assignment of a single element x:

precisely, x belongs to Ci in P and to Cj 6¼ Ci in P 0.

The PARTITION-CLUSTER algorithm in Fig. 2a imple-

ments such a schema. The algorithm is characterized by an

iterative analysis of the elements involved in the splitting.
The algorithm iteratively evaluates, for each element

x 2 C1 [C2, whether a membership reassignment improves

the degree of homogeneity of the two clusters. Homo-
geneity is evaluated on a local basis by combining the

contribution of each of the two clusters involved. Lines P8

and P9 compute the contribution of x to the local quality in

two cases: either in the case that x is maintained in its
original cluster of membership (represented by Cu) or in the

case that x is moved to the other cluster (represented by Cv).
If moving x causes an improvement in the local quality,
then the swap is accepted (lines P10–P13).

Lines P2–P14 in the algorithm are nested into a main

loop: elements are iteratively checked for swapping until a

convergence is met. In practice, the algorithm continues
reassigning elements from one cluster to another until a

convenience in swapping is found. In a sense, the scheme of

the algorithm is a generalization of the K-Means scheme (for
k ¼ 2). Indeed, the quality of a cluster can be defined in

terms of neighborhood of its elements to a cluster

prototype. Thus, relocation is accomplished only if an

element is nearer the opposite cluster’s prototype.
It is easy to see that the algorithm converges after a finite

number of steps.

Theorem 3.1. The algorithm in Fig. 2a terminates for any initial

values of C1 and C2.
Proof. Since two partitions can be compared according to

their quality criterion, the space of all possible partitions

is a lattice under such a comparison. At each iteration of

the loop described by lines P2–P14, the algorithm
traverses at most n neighbors (where n is the size of

C1 [C2), updating the current structure to neighbors

exhibiting higher quality. Thus, the algorithm traverses

the lattice of all partitions upward. Termination is
inferred by observing that such a lattice is finite. tu

1612 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 12, DECEMBER 2007

Fig. 2. Local/Global element relocation.

Some further aspects deserve to be discussed. The first
is that even though convergence is guaranteed, the
computational complexity could, in principle, be high:
The number of possible configurations is exponential, and
there is no apparent guarantee that the algorithm will not
consider all of them. However, this is very unlikely to
happen. Intuitively, each cluster acts as a gravity center by
attracting elements that contemporarily improve its quality
and reduce the loss in the opposite cluster. Under this
perspective, it is unlikely that once relocated, an element is
further considered for swapping in a subsequent step. If a
single element only were relocated for each iteration, the
cost of the main loop would be quadratic in the size of
C1 [C2. Nevertheless, single relocations seldom occur and,
consequently, PARTITION-CLUSTER exhibits a practically
faster rate of convergence. This is confirmed in Section 4.

Finally, there is no guarantee that the split computed by
the PARTITION-CLUSTER procedure is a global maximum.
Indeed, the way that the original cluster C1 is split still
depends on 1) the initial point, which is moved into C2 first,
and 2) the order in which the elements are considered for
relocation. As to the former point, the first optimization can
be achieved by forcing a refined initialization of C2 by
choosing the element x whose removal from C1 best
improves its quality.

However, the splitting process can still be sensitive to the
order upon which elements are considered: In the first
stage, it could be not convenient to reassign the generic xi

from C1 to C2, whereas a convenience in performing the
swap can be found after the relocation of some other
element xj. The main loop partly smooths this effect by
repeatedly relocating objects until convergence is met.
However, better PARTITION-CLUSTER can be made strongly
insensitive to the order with which cluster elements are
considered. The basic idea is discussed next. In general, the
elements that mostly influence the locality effect are either
outlier transactions (that is, those containing mainly items,
whose frequency within the cluster is rather low) or
common transactions (which, dually, contain very frequent
items). In the first case, C2 is unable to attract further
transactions, whereas in the second case, C2 is likely to
attract most of the transactions (and, consequently, C1 will
contain outliers).

Thus, the key idea is to rank and sort the cluster
elements before line P1, which is on the basis of their
splitting effectiveness. To this purpose, each transaction x
belonging to cluster C can be associated with a weight
wðxÞ, which indicates its splitting effectiveness. Ideally, x
is eligible for splitting C if its items allow us to divide C
into two homogeneous subclusters. In this respect, the Gini
index is a natural way to quantify the splitting effective-
ness GðaÞ of the individual attribute value a 2 x. Precisely,
GðaÞ ¼ 1� PrðajCÞ2 � ð1� PrðajCÞÞ2, where PrðajCÞ denotes
the probability of a within C. Notice that GðaÞ is close to its
maximum whenever a is present in about half of the
transactions of C and reaches its minimum whenever a is
unfrequent or common within C. The overall splitting
effectiveness of x can be defined by averaging the splitting
effectiveness of its constituting items wðxÞ ¼ avga2xðGðaÞÞ.
Once ranked, the elements x 2 C can be considered in

descending order of their splitting effectiveness at line P2.
This guarantees that C2 is initialized with elements, which
do not represent outliers and still are likely to be removed
from C1. In most cases, this removes the dependency on
the initial input order of the data.

Notice that as with decision tree learning, AT-DC exhibits
a preference bias, which is encoded within the notion of
homogeneity and can be viewed as the preference for
compact clustering trees. Indeed, due to the splitting
effectiveness heuristic, homogeneity is enforced by the
effects of the Gini index. At each split, this tends to isolate
clusters of transactions with mostly frequent attribute
values, from which the compactness of the overall cluster-
ing tree follows.

As the final remark, the aforementioned heuristic based
on transaction splitting effectiveness determines a negligi-
ble increase in the computational cost of the PARTITION-
CLUSTER procedure. Indeed, since element sorting is done
preliminarily to the execution of the main loop, the overall
cost of PARTITION-CLUSTER is raised by a quasilinear
contribution.

3.2 Stabilizing Clusters

PARTITION-CLUSTER attempts to improve the local quality
of a cluster. In contrast, the STABILIZE-CLUSTERS procedure
tries to increase partition quality by finding, for each
element, the most suitable cluster among the ones available
in the partition. Fig. 2b shows the pseudocode of the
procedure. Again, the core of the algorithm is a main loop
whose body (lines S2–S17) examines all the available
elements. For each element x, a pivot cluster is tracked,
which is the cluster currently including x. Initially, the pivot
cluster is the cluster that contains x. Then, the available
clusters are iteratively evaluated. The insertion of x in the
current cluster (and its consequent removal from Cpivot) is
attempted (lines S5–S6), and the updated quality is
compared with the original quality. If an improvement is
obtained, then the swap is accepted (line S11). The new
pivot cluster is the one now containing x, and if the removal
of x causes emptying the old pivot cluster, the latter is
removed from the partition P. Conversely, if there is no
improvement in quality, x is restored into its pivot cluster,
and a new cluster is examined.

The main loop is iterated until a stability condition for
cluster membership is met. Convergence of STABILIZE-
CLUSTERS can be evicted by an argument that is similar to
the one used for PARTITION-CLUSTER. Again, the rate of
convergence of the procedure is very high: since the
procedure is called only after a new cluster is generated,
only local rearrangements are needed. Typically, they
involve elements that are more attractive for the newly
generated clusters and, in the previous steps of the
GENERATE-CLUSTERS procedure, were assigned to differ-
ent clusters. Experimentally, we found that convergence is
usually reached in not more than two steps. This explains
why the result of the PARTITION-CLUSTER procedure in
the GENERATE-CLUSTERS algorithm is typically a new
cluster C with a quite high degree of homogeneity. That is,
at each invocation, the PARTITION-CLUSTER procedure
identifies a kernel of elements, which form a natural cluster
and seldom need a rearrangement into new clusters.

CESARIO ET AL.: TOP-DOWN PARAMETER-FREE CLUSTERING OF HIGH-DIMENSIONAL CATEGORICAL DATA 1613

The only situation that, in principle, could cause massive
rearrangements is the fortuitous splitting of a natural
cluster into two or more subclusters. However, in such a
case, an adequate quality measure should foster the
merging of the two clusters and the removal of the
redundant one (envisaged in lines S8 and S9 of the scheme)
by penalizing the overall quality.

3.3 Cluster and Partition Qualities

AT-DC exploits two different quality measures, namely, one
for the local homogeneity within a cluster and another for
the global homogeneity of the partition. These measures are
employed with opposing objectives. Indeed, as shown in
Fig. 1, we can notice that partition quality is used for
establishing whether the insertion of a new cluster is really
convenient: In a sense, it is aimed at maintaining compact-
ness. Conversely, cluster quality in procedure PARTITION-
CLUSTER is aimed at the best localized splitting and, hence,
at a good separation.

In principle, cluster quality is identified with a high
degree of intracluster homogeneity, as well as with its
separation from other clusters. As stated in [11], there is a
strict relation between intracluster homogeneity and the
probability PrðaijCkÞ that item ai appears in a transaction
belonging to Ck: The higher the value of such a probability,
the higher the number of transactions in Ck sharing ai.
Moreover, there is a strict correlation between intercluster
separation and Prðx 2 Ckjai 2 xÞ: A high value of such a
probability for Ck, corresponds to low probability values for
clusters other than Ck (and, hence, to few transactions
containing ai in such clusters). Thus, cluster homogeneity
and separation can be effectively computed without
resorting to costly similarity measures but by simply
relating it to the commonality of items within the transac-
tions that it contains. In particular, cluster quality can be
expressed to be proportional to the combination of the
above probabilities

P
a2MC

PrðajCÞPrðCjaÞPrðaÞ. The last
term is used for weighting the importance of item a in the
summation: Essentially, high values from low-frequency
items are less relevant than those from high-frequency
values. By the Bayes theorem, the above formula can be
expressed as PrðCÞ

P
a2MC

PrðajCÞ2. Terms PrðajCÞ2 (that is,
the relative strength of a within C) and PrðCÞ (that is, the
relative strength of C) work in contraposition: Singleton
clusters exhibit strong items in a sparse region, whereas
highly populated clusters exhibit weaker items in a dense
region. In practice, it is more convenient to compute, for
each item, the gain in strength with respect to the whole
data set, that is

QualityðCkÞ ¼ PrðCkÞ
X

a2MCk

PrðajCkÞ2 � PrðajDÞ2
h i

:

The above formula also finds an interpretation in terms of
subspace clustering. In fact, items exhibiting higher
occurrence frequency compared to the occurrence fre-
quency in the original data set define a subset of relevant
features, as opposed to low-occurrence items, which are
indeed irrelevant to the purpose of clustering. Thus, clusters
exhibit high quality whenever a subspace of relevant items

occurs, whose frequency is significantly higher than in the

original data set.
Despite their similarity, there is a subtle and substantial

difference between the above definition of quality and the

definition provided by Fisher in [11]. There, each possible

attribute value contributes to the quality. In a sense, this

corresponds to give equal importance to both the presence

and the absence of an item within a transaction. In other

words, a faithful application of the concept of category utility

would result in the redefinition of the summation in the

above formula asX
a2M

PrðajCkÞ2 � PrðajDÞ2
� �

þ Prð:ajCkÞ2 � Prð:ajDÞ2
� �h i

:

As a drawback, in a high-dimensional setting, the gain in

the first term would be counterbalanced by a loss in the

second term, thus invalidating the approach. In other

words, an item a with a probability of appearing in Ck,
which is significantly higher than the probability of

appearing in D, would give no contribution to the cluster

quality.
In Fig. 1, the quality of a partition is meant to measure

both the homogeneity of clusters and their compactness.

Viewed in this respect, partition quality can be defined as

the weighted sum of the qualities of the available clusters:

QualityðPÞ ¼
X
C2P

PrðCÞQualityðCÞ:

The formula finds an interpretation in terms of the average

increase in quality obtained by partitioning the data set.

Notice that the component QualityðCÞ is already propor-

tional to the contribution PrðCÞ. As a result, in the overall

partition quality, the contribution of each cluster is

weighted by PrðCÞ2. This weighting has a major effect in

the GENERATE-CLUSTERS procedure: Splitting in extremely

small clusters is penalized. Indeed, the generated clusters

are added to the partition only if their contribution is really

worth. Notice the different roles of the contribution PrðCÞ in
the two quality measures: A strong penalization on

singleton clusters would not allow a proper splitting in

the PARTITION-CLUSTER procedure. In particular, splitting

would suffer from the bottleneck of the initial reassignment,

since, in principle, the possible loss in cluster C1 would not

be counterbalanced by a proper gain in C2. On the contrary,

the (stable) result of the PARTITION-CLUSTER procedure

has to be accepted only if it yields a significant change in the

average cluster quality. The same interpretation justifies the

usage of partition quality in the STABILIZE-CLUSTERS

procedure. There, massive rearrangements should be

discouraged, since the main objective of the procedure is

to further purge existing clusters on the basis of the newly

discovered splitting.

4 EVALUATION

Hereafter, we analyze the behavior of the AT-DC proposed

in the previous section. The analysis is performed with two

main objectives:

1614 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 12, DECEMBER 2007

. The assessment of result quality. Since clustering
algorithms define structures that are not known
a priori, irrespective of the clustering methods, the
final partition of data requires some kind of
evaluation [22]. The evaluation is useful for measur-
ing the adequacy of the discovered structure so that
it can be interpreted objectively. The adequacy of a
clustering structure refers to the extent in which the
clustering structure provides true information about
the data: A clustering structure is valid if it fits the
data set, that is, if the discovered clusters correspond
to the actual homogeneous groups in the data set.

. An extensive comparative analysis of its performance.
Since the proposed algorithm is specifically designed
to deal with a large data set of high dimensionality, it
is important to measure its performance on the basis
of such parameters. Also, notice that since the
computational complexity cannot be analytically
devised, an experimental performance analysis is
critical in the approach. To this purpose, it is
important to provide an efficient implementation of
the algorithm, which works effectively, even in
“extreme” situations.

Experiments are conducted on both real and synthesized
data, and their results are cross validated across different
orders of the data. Precisely, several real-life data sets are
employed in Section 4.3 to evaluate the effectiveness of AT-
DC. In particular, the algorithm is tested on the UCI
Machine Learning Repository for the purpose of enabling
an easier comparison with different approaches from the
current literature.

Also, several synthesized data sets are exploited in
Section 4.4 to investigate scalability and robustness in
critical applicative settings, and a selection of real-life and
synthesized data sets is leveraged in Section 4.5 to compare
AT-DC against some major algorithms for categorical
clustering.

4.1 Implementation Details

The implementation of the algorithm needs to face some
crucial issues, which may severely affect its efficiency. First,
it must be noticed that the most frequent operation invoked
by the algorithm is the computation, for a given cluster C, of
QualityðCÞ. Hence, it is crucial to maintain the cost of such
an operation as low as possible. A naive implementation
requires OðmÞ updates, which is clearly not viable.
However, the local quality can be estimated as

QualityðCÞ ¼ PrðCÞ
X

a2x;x2C
PrðajCÞ2 � PrðaÞ2
h i

� n

N

X
a2x;x2C

na

n

� �2
� Na

N

� �2
" #

� 1

nCn

X
a2x;x2C

n2
a �

nC
n3

X
a2x;x2C

N2
a ;

ð1Þ

where na and Na represent the frequencies of a in C and D,
respectively. The components

P
n2
a and

P
N2

a can be
incrementally maintained via the adoption of hash tables.
Hence, the value of QualityðCÞ can be updated as soon as a
new transaction is added to C at a practically constant cost.

A further issue consists of the effective management of
large data sets, which do not fit in the main memory. Since
the execution of the algorithm causes a large number of
swaps between clusters, attention must be kept in order to
avoid disk thrashing. The potential problems are lines P9
and S5–S6 in the two auxiliary methods. Notice that in such
cases, there is no effective need to actually perform such
updates, since we only need to compute the change in
quality (which is hence updateable in constant time, as
shown above).

Rather, a more subtle problem arises when the hash
tables used for collecting the frequencies of items in the
above formula do not fit in the main memory. Since each
transaction x evaluated for swapping requires updates to
the frequencies, the risk is that each iteration, both in
PARTITION-CLUSTER and in STABILIZE-CLUSTERS, costs
OðNÞ I/Os.

In practice, data sets with a dimensionality higher than
225 are quite unusual. The latter is the maximum size
allowance for a hash table requiring 64 bytes for each
entry, which fits in the main memory of today’s work-
stations. Further, notice that in such data sets, thrashing
is produced by a huge number of low-frequency items.
Notwithstanding, we can still process such data sets by
approximating the terms in (2), without the need to
collect and maintain all the frequencies. Indeed, each term
in the formula can be estimated and computed incremen-
tally by resorting to mean and variance of item
frequencies. For example, 1=n

P
n2
a � avgðnaÞ þ varðnaÞ,

where avgðnaÞ and varðnaÞ are, respectively, the sample
mean and variance of item frequency. Now, it is easy to
see that avgCðnaÞ ¼ 1=nC

P
i jxij. Let �ðx; aÞ be the func-

tion returning 1 if a 2 x, and 0 otherwise. Then,

avgðnaÞ ¼ 1=nC

X
a

X
x2C

�ðx; aÞ ¼ 1=nC

X
x2C

X
a

�ðx; aÞ

¼ 1=N
X
x2C

jxj:

Hence, a suitable approximation of the term 1=n
P

n2
a can

be obtained by estimating the variance varðnaÞ on a
representative sample of the available items that fits in the
main memory.

4.2 Quality Measures

Three main methods for assessing clustering effectiveness
are described in [22], [25], namely,

. External criteria. When clustering results are evalu-
ated according to a prespecified structure, which
corresponds to a meaningful explanation of the data
at hand.

. Internal criteria. When clustering results are evalu-
ated in terms of the quantities that are computable
from the available data.

. Relative criteria. When evaluation takes place in
comparison with other clustering schemes.

It is worth recalling here that the adoption of external
criteria helps in understanding clustering results and,
hence, the adequacy of a clustering algorithm. Indeed, a
predefined structure can be interpreted as the explanation

CESARIO ET AL.: TOP-DOWN PARAMETER-FREE CLUSTERING OF HIGH-DIMENSIONAL CATEGORICAL DATA 1615

of the corresponding data by means of some hypotheses. As
a consequence, the correspondence of a cluster to one of
such predefined structures implies the interpretation of
such a cluster according to the corresponding hypothesis.
For these reasons, we resort to external criteria in order to
evaluate the partitioning quality. More specifically, we
investigate the behavior of the AT-DC algorithm on
collections of data with class labels and analyze the
correspondence between the discovered and hypothesized
structures. Notice that we exploit standard benchmark data
sets with inherent structures of strong regularities, which
would allow a classifier to accurately distinguish among the
corresponding cases. In particular, class labels serve as
ground truth for natural data classes. Therefore, by
matching the discovered partitions against the actual data
classes, we measure the effectiveness of both AT-DC and
other state-of-the-art algorithms in discovering natural
clusters.

In order to evaluate such a correspondence, we exploited
the indicator functions ID and IH [25], where IDðxi;xjÞ ¼ 1 if
both xi and xj are assigned by the algorithm to the same
cluster, and 0 otherwise. Analogously, IHðxi;xjÞ ¼ 1 if both
xi and xj are in the same (true) class. We employed the
above indicators to build a contingency table describing the
number a of pairs that are in the same class and in the same
cluster, the number b of pairs that are in the same cluster but
in different classes, the number c of pairs that are in the
same class but in different clusters, and the number d of
pairs that are in different classes and in different clusters.
Then, the following indices can be defined on the con-
tingency table:

. Rand. This is defined as ðaþ dÞ=ðaþ bþ cþ dÞ and
represents the compactness and separability of the
discovered structure related to the hypothesized
structure.

. Jaccard and Fowlkes. These are defined as a=ðaþ bþ
cÞ and a=

ffi
ðaþ bÞðaþ cÞ

p
, respectively, and represent

the compactness of the discovered structure.
. �. This is the normalized correlation between ID

and IH .

In addition, for each clustering result, we computed a
further contingency table m, where columns represent
discovered clusters, and rows represent true classes. The
term mij corresponds to the number of transactions in D
that were associated with cluster Cj and actually belong to
the ideal class Ci.

The matrix provides an immediate visual description of
the degree of agreement between the AT-DC and the ideal
partitions. Intuitively, each cluster Cj corresponds to the
class Ci that is best represented in Cj (that is, such thatmij is
maximal). A further measure can be devised, which reflects
such a degree of correspondence. This is the error rate of the
clustering scheme, that is, the number of instances that are
misclassified in the contingency table:

� ¼
P

j

P
i6¼hðjÞ mijP
i;j mij

;

where hðjÞ is the index of the class Ci with maximal mij.

In general, misclassified items are produced by wrong
allocations, that is, transactions whose actual class is not the
predominant one within a cluster.1 The evaluation of a
clustering, according to an external criterion, is satisfactory
when the number of wrong allocations is minimal. In
particular, large values of the Rand, Jaccard, Fowlkes, and
� indices represent high-quality clustering structures. Low
values are instead preferable for �, since it represents the
error of the discovered structure in overlapping the
hypothesized structure. Thus, a comparison of such values
gives us an objective criterion for evaluating the results of
the AT-DC algorithm.

4.3 Real-Life Data Sets

Several real-life data sets were evaluated. For each of these
data sets, we measured the performance of AT-DC, with
data ordering both enabled and disabled: In most cases, the
results reported here were obtained by enabling the data
ordering. A description of each data set employed for
testing is provided next, together with an evaluation of the
AT-DC performances.

4.3.1 SMART

The first data set that we analyze is the SMART collection
fromCornell University.2 This collection consists of 3,891 text
documents organized into three main subcollections:

. Medline. This collection contains 1,033 abstracts from
medical journals.

. Cisi. This collections contains 1,460 abstracts from
information retrieval papers.

. Cranfield. This collection contains 1,398 abstracts
from aeronautical system papers.

Through preprocessing, we obtained a series of data sets
with increasing dimensionality, where a fixed dimension-
ality m was obtained by choosing the m most frequent
terms. The corresponding data set was then obtained by
representing each document as an item set with the selected
terms. By applying the algorithm to such a data set, we
obtained high-quality clusters. In particular, Fig. 3a details
the results for the data set of dimensionality 14.571 (the
results for different dimensionalities are summarized in
Fig. 11). As we can see, the error rate is quite low (only
45 objects were misclassified). Moreover, the compactness
and separability are quite good.

It is also interesting to analyze the consistency of clusters
with respect to the items. The data set can be represented as
a Boolean incidence matrix, where each row represents a
transaction, each column an item, and a cell contains one if
the item corresponding to the column belongs to the
transaction corresponding to the row. Hence, a partition
of the matrix in blocks, where each block represents a
cluster, can give us a visual perception of the quality of the
clustering result. Ideally, a good clustering would produce
a block-triangular matrix, provided that a suitable sorting of
the items is produced. In our representation, we sorted by

1616 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 12, DECEMBER 2007

1. However, wrong allocations can also be due to outliers, that is,
transactions sharing few (but not most) items with other transactions within
a cluster. This is particularly likely to happen when the data is truly high
dimensional.

2. ftp://ftp.cs.cornell.edu/pub/smart.

associating each item a to the cluster C exhibiting the
highest PrðajCÞ. The resulting incidence matrix for the
SMART collection is shown in Fig. 3b.

Ticks in the figure represent cluster separators. In the
figure, four large clusters are clearly visible and are
represented by different items. Interestingly, the first and
fourth clusters are quite similar, but the relevant items
exhibit different frequencies. The high number of small
clusters (indeed characterized by a small subset of items
with high within-cluster probability) is due to the high
variability of the subtopics within the same subcollection.
The latter is a typical scenario occurring when data exhibit
sparse high dimensionality: Each class is likely character-
ized by different subspaces, and several outliers can occur.
Small clusters represent either subspaces or outliers.

Being explicitly designed for dealing with transactional
data and due to the devised notion of cluster homogeneity,
AT-DC is actually capable of identifying small groups of
transactions consisting of items with low occurrence
frequency within the corresponding clusters. Indeed, when
a cluster is selected for splitting, its quality can be further
improved by separating those transactions whose items do
not frequently occur within them. This is testified by the
fact that small clusters are usually detected at the last steps
of the algorithm.

4.3.2 UCI Data Sets

The behavior of the algorithm was also tested on several
data sets from the UCI Machine Learning Repository.
Generally, such data sets adhere to a fixed database schema,
containing categorical and numerical attributes. The latter
were disctretized by resorting to either supervised or
unsupervised discretization. In our experiments, we repre-
sented the tuples within such data sets as transactions of
fixed size, where each item is represented as a term
“attribute-name ¼ attribute-value.” A description of each
data set and the analysis of the AT-DC performances follow.

Zoo. The zoo data set is a simple database containing
101 records with 17 Boolean-valued attributes and
describes the species of a set of animals on the basis of
their attributes. Interestingly, the data set can be exploited
as a toy example to understand the behavior of the
algorithm. In particular it allows us to test our algorithm
with two different representations of the data. Indeed,
besides the traditional symmetric representation of each
record as a set of Attribute/Value pairs, we can impose
an asymmetry in the representation of the values. That is,
we can choose to provide an interpretation of Boolean
values in terms of transactions so that, for example,
values fhair ¼ true; feathers ¼ false; eggs ¼ false;milk ¼
trueg can be represented simply as fhair;milkg (that is,
by discarding all the pairs such that the associated value
is false). Fig. 7 shows the clustering results both for the
symmetric and asymmetric representations. Both results
exhibit good compactness and separability. In particular,
it can be noticed in Fig. 4, that in the case of symmetric
representation, the main sources of error are clusters 3
and 5: The first confuses among insect and invertebrate,
whereas the second confuses reptile and fish. This is not
surprising, since these two genders share several features.

Internet Ads. The Advertising data set contains 3,279 re-
cords and 1,554 Boolean attributes. In addition, three
further attributes are “categorical” in nature (although they
are numeric, several values occur frequently). To summar-
ize, the total number of possible items is 2,832. This data set
represents a set of possible advertisements on Internet
pages. Each record represents a Web page, and the features
encode phrases occurring in the URL, the image’s URL and
alt text, the anchor text, and words occurring near the
anchor text. Each record is labeled either as “ad” or as
“noad.” The data set is quite unbalanced, since there are
2,821 “noads” and 458 “ads.” AT-DC was tested on the
asymmetric representations of such a data set. Notwith-
standing, separability is quite good, as shown in Fig. 5a. In
particular, notice how clusters 4 and 6 represent the
minority class.

Fig. 5b reports the resulting incidence matrix. As it is
clearly visible, the 14 clusters discovered by the algorithm are
characterized by different subsets of items. The first, third,
and fourth clusters are the largest in size, exhibiting the
greatest high-density regions in the figure. The remaining

CESARIO ET AL.: TOP-DOWN PARAMETER-FREE CLUSTERING OF HIGH-DIMENSIONAL CATEGORICAL DATA 1617

Fig. 3. Results for the SMART collection. (a) Contingency table.

(b) Transaction/Item incidence matrix.

Fig. 4. Confusion matrix for zoo, with asymmetric representation.

clusters are smaller in size, but each one includes a
distinctive small subset of items. In particular, we point out
that clusters 4 and 6 (representing the minority class) share
some common items and still have distinguishing features:
cluster 6 exhibits most of the features of cluster 4, plus some
additional features.

Mushrooms. The Mushroom data set contains 8,124 re-
cords and 22 attributes. Each record describes one mush-
room specimen in terms of 22 physical properties (for
example, color, odor, size, and shape) and contains a label
designating the specimen as either poisonous (3,916 records)
or edible (4,208 records) too. All 22 attributes are catego-
rical. We obtained the results detailed by the confusion
matrix in Fig. 6a. As it can be seen, AT-DC automatically
found eight clusters. From the confusion matrix, we can
notice that only the clusters 1 and 4 contain misclassified
objects, 360 and 192, respectively. However, cluster 1
(which is the main source of the error rate of AT-DC) has
a net predominance of tuples labeled as Edible. Overall, the
error rate is quite low because only 552 (out of 8,124) objects
were misclassified. Finally, we can see a high homogeneity
in clusters 3 and 5. Also, for such a data set, compactness
and separability are quite good.

Congressional Votes. The Congressional Votes data set
contains a set of US Congressional Voting Records. Each
record corresponds to one Congressman’s votes on 16 issues
(for example, education spending, crime, and immigration).

All attributes are Boolean (“Yes” or “No” vote), and very
few contain missing values. A classification label of
“Republican” or “Democrat” is provided for each data
record. The data set contains 435 records: 168 “Republican”
and 267 “Democrat.” We applied the algorithm to such a
data set both in asymmetric and symmetric representations
(where the latter is obtained by ignoring the “No” value in
the attributes).The different results between its symmetric
and asymmetric representations are appreciable. Figs. 6b and
6c show the results yielded by AT-DC on the Congressional
Votes data set on the symmetric and asymmetric representa-
tions, respectively. We observe that classes are better
separated in the last representation, at the cost of lower
compactness. These results were obtained by exploiting the
data ordering described in Section 3.1. In contrast, Fig. 6d
shows the results obtained without resorting to data
ordering. As we can see, compactness is better, showing
that appropriate initializations can further improve the
effectiveness of clustering.

Other UCI data sets. The behavior of AT-DC was also
evaluated on other data sets from the UCI Repository. The
results are summarized in Fig. 7. In particular, we tried the
algorithm also on data sets containing a mix of numerical
and categorical attributes such as Horse Colic and Labor. The
algorithm was tested both by ignoring and by discretizing
the numerical attributes: we adopted both supervised and
natural binning discretization. For the latter case, the table
reports the results obtained with the optimal number of
bins. Within the table, � indicates asymmetric representa-
tion, whereas y and z denote supervised and unsupervised
discretization, respectively.

Here, the labor data set is worth a further discussion.
Although the data set is quite small (57 records and
16 attributes, eight of which categorical), the interesting
point of the data set is the presence of a large number of
missing values. In principle, a tuple exhibiting missing
values can be represented as a transaction where all the pairs
with missing values are ignored. In general, data sets with a

1618 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 12, DECEMBER 2007

Fig. 5. Ad, with asymmetric representation. (a) Contingency table.

(b) Transaction/Item incidence matrix.

Fig. 6. Clustering results for Congressional Vote and Mushroom data.

(a) Mushroom. (b) Vote, with symmetric representation. (c) Vote, with

asymmetric representation. (d) Vote, with no data ordering.

large number of missing values can be assumed to be
“intrinsically” transactional, so we expect a good behavior of
the algorithm on them. Indeed, we can see that compactness
and separability are, in general, good, with a peak when the
data set is discretized.

4.4 Synthesized Data

AT-DC was also tested on synthesized data. The data
generation process was made parametric to the size N of
M and D of D, the average number T of items for reach
transaction and the number C of clusters to force within the
data, the percentage � of outlier items inM, and the degree #
of overlapping among transactions of different clusters.

The synthetic data generation process works as follows:
Initially, M is populated with N items. Then, a subset of
items, with the size proportional to �, is extracted from M,
and C random subsets are generated from the remaining
elements in M. Each subset Si defines a cluster, and
transactions for each cluster are generated starting from
such a subset. In particular, a transaction in Ci is generated
by picking its size s from a normal distribution with mean T

and fixed variance. Then, the transaction is populated with
s items, # percent of which are picked from Si, and the
remaining from the whole M.

In the following experiments, we deliberately chose to
ignore data ordering in order to evaluate the potential impact
of a random ordering of the data over the performances.
Clearly, scalability results when data ordering is considered
exhibit a logarithmic worsening, which is due to the initial
ordering of the data in the clusters.

4.4.1 Evaluating Scalability

The algorithm was implemented in C++ and executed on an
Intel Itanium processor with 4 Gbytes of memory and
2 GHz of clock speed. Fig. 8 reports the performances of the
algorithm on different synthetic data sets. In all such
figures, N was chosen to be 20 percent of D. As we can see,

AT-DC exhibits a practically linear behavior with respect to
T , D, and C. This demonstrates that the rate of convergence
of both PARTITION-CLUSTER and STABILIZE-CLUSTERS is
quite fast. In particular, Fig. 8c details the average number
of iterations performed by the PARTITION-CLUSTER proce-
dure with regard to data sets of varying size. (Recall that a
single iteration is composed of the instructions P3–P13).
Interestingly, the graph exhibits a sublinear relationship
between these two variables. Also, notice that the graph
depicts both the cases where transactions are initially sorted
or unsorted. There seems to be a light improvement in the
convergence, even though it is not substantial.

Fig. 8d shows the performances of AT-DC for increasing
values of � and # (by fixing D ¼ 100; 000, C ¼ 4, and
N ¼ 10; 000). In principle, the # rate has influence on the
separability of clusters, whereas the � rate has influence on
the number of clusters. Thus, it is important to study the
performances for these two parameters. Surprisingly, the
algorithm exhibits acceptable performances, even when # ¼
70 percent (that is, in the presence of highly noisy data). The
high values corresponding to values of 80 percent and
90 percent are essentially due to sensible overlap among
clusters: In such cases, AT-DC produces several random
partitions, which do not reflect the hypothesized structures
but exhibit a sort of regularity (due essentially to the data
generation process).

Also, there does not seem to exist a neat correlation
among the quality of the underlying true classes and the
number of iterations performed by the PARTITION-CLUS-

TERS and STABILIZE-CLUSTERS procedures: Figs. 8e and 8f
clearly show that the average number of iterations is
bounded by a factor, which only depends on the size of
the data.

4.4.2 Evaluating Cluster Quality

Clearly, the # and � parameters have a direct influence on
the quality of the results of the algorithm. Figs. 9a and 9b

CESARIO ET AL.: TOP-DOWN PARAMETER-FREE CLUSTERING OF HIGH-DIMENSIONAL CATEGORICAL DATA 1619

Fig. 7. Quality indices for selected data sets.

show some selected indices describing the overlap and the

separation of the clusters. Results were obtained by

generating data with fixed values: D ¼ 100; 000, T ¼ 10,

N ¼ 10; 000, and C ¼ 32. As we can see, the algorithm is

highly tolerant to high values of the two indices. Interest-

ingly, tolerance is higher when � � 60 percent (in particular,

if # ¼ 50 percent to 70 percent). Indeed, in such cases, the

high degree of overlap, combined with a high number of

outlier items, allows the algorithm to discover several

clusters, which hence maintain separation on hypothesized

clusters.
Fig. 9c shows how the average size T of the transactions

and the number N of items available influences the quality

of the results. In principle, as N increases, clusters are

sparser; that is, the probability of items within clusters

tends to decrease. As a consequence, the quality of the

resulting partitions tends to decrease as well. However,

larger transactions are more tolerant to such a peculiarity

(since, of course, item probabilities become more stable).

Finally, Fig. 9d describes the changes in local quality

during the invocation of the PARTITION-CLUSTER proce-

dure. Results refer to a data set obtained by fixing T ¼ 40,

D ¼ 1; 000; 000, N ¼ 100; 000, and C ¼ 4. As we can see, the

first three invocations (corresponding to those locating the

clusters) achieve a stable quality within less than six steps.

The next invocations (concerning rejected splits) require

converging less rapidly. Nevertheless, the most significant

improvements in quality are located in the very first steps,

and the subsequent steps produce improvements of an

order of magnitude of 10�6.
The robustness of the algorithm can be appreciated by

evaluating and comparing the incidence matrices in

Figs. 10a and 10b. Both data sets are generated with

D ¼ 10; 000, T ¼ 20, N ¼ 5K, C ¼ 8, and � ¼ 60 percent.

However, the first one exhibits a degree of overlap # ¼ 50

percent, whereas the second one has # ¼ 70 percent. The

analysis of the former plot reveals that there are nine “pure”

blocks, that is, that the algorithm found nine clusters

1620 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 12, DECEMBER 2007

Fig. 8. Cluster scalability. (a) Scalability with respect to D and T ðC ¼ 4; � ¼ 0:6; # ¼ 0:5Þ. (b) Scalability with respect to C and

D ðT ¼ 10; � ¼ 0:6; # ¼ 0:5Þ. (c) PARTITION-CLUSTER: iterations versus data size. (d) Scalability with respect to � and #. (e) PARTITION-CLUSTER:

iterations versus �. (f) PARTITION-CLUSTER: iterations versus #.

(precisely, one more than the actual number of clusters in

the data sets). It is worth highlighting that if the degree of

transaction overlap is relatively low, each of the discovered

blocks exhibits an internal density, which is higher than the

one of the outer regions. Clearly, this means that each

cluster is inherently characterized by the occurrence of an

exclusive set of items. We observe that such an incidence

matrix is realistically close to an ideal block-diagonal

matrix: this guarantees an excellent quality of the clustering

results.
As far as Fig. 10b is concerned, we can notice that AT-DC

is still capable of discovering meaningful patterns. Indeed,

the high degree of transaction overlap prevents the dis-

covery of the actual clusters. Nevertheless, local regularities

are detected and exploited by the algorithm, which thus

outputs several small clusters that are strongly characterized

by these regularities. This is shown in the plot by the

diagonal stripe, which has higher density than the surround-

ing regions.

4.5 Comparative Analysis

We evaluated AT-DC versus three main algorithms from the

current literature, namely, LIMBO, CLICK, and ROCK.

CLICK [41] was shown to outperform other approaches

adopting a similar hypergraph partitioning strategy [16],

[14] and was chosen for comparison, since this claimed to be

capable of dealing with high-dimensional categorical data.

ROCK [21] is particularly suitable for market-basket data.

LIMBO [2], despite its time complexity, was shown to be

quite effective.
Fig. 11 summarizes the results of the comparison. We

employed some benchmark real-life data sets and four

synthetic data sets generated with T ¼ D ¼ 1; 000, C ¼ 4,

and � ¼ 40 percent, and different degrees of overlap #. For

the SMART data set, we sorted the 14,571 attributes by

frequency and considered different versions of the data set,

where, for each version, the first d attributes were considered

(with d ranging from 50 to 15,000). The results for the

LIMBO, ROCK, and CLICK algorithms were obtained by

performing an accurate tuning of the input parameters: For

each data set, different runs were executed for different

values of the parameters, and the best results were chosen.

The results shown only refer to the run with the best

combination of parameters.

CESARIO ET AL.: TOP-DOWN PARAMETER-FREE CLUSTERING OF HIGH-DIMENSIONAL CATEGORICAL DATA 1621

Fig. 9. Quality results for synthesized data. (a) � index. (b) Error rate.

(c) Quality measures with respect to N and T ðD ¼ 100; 000; C ¼ 32Þ.
(d) PARTITION-CLUSTER: rate of convergence.

Fig. 10. Transaction/Item incidence matrix for synthesized data sets,

with varying degrees of transaction overlap. (a) # ¼ 50 percent. (b) # ¼
70 percent.

The evaluation of CLICK poses a number of challenges.
First, the algorithm also outputs a None cluster, containing
all the transactions, which actually do not belong to any
clique. For fairness in comparison, we undertook this
behavior as a failure in recognizing the hypothesized
classes (thus influencing negatively both � and �). The poor
performance of CLICK on such binary data is due to the fact
that the algorithm leverages attribute values to build a
graph. Clearly, if there are only two values per attribute, the
resulting graph tends to be most likely a complete k-partite
graph for some (small) value of its parameters � or minsup.
This means that there will be only one cluster found, if any.
One may resort to selective mining to recover missed
clusters. However, in this case, all the 2d candidate
combinations of d items need to be evaluated, which leads
to a prohibitive computational cost.

In addition, CLICK did not succeed in satisfactorily
clustering SMART for values of d that are greater than 100,
although the resulting runtimes were acceptable.

AT-DC and CLICK appear to be the best performing
algorithms from the efficiency viewpoint. In particular, AT-
DC scales well both on the number of tuples and on the
dimensionality of the data set, as shown by the experiments
on SMART. In contrast, ROCK suffers from the size of the
data set, whereas LIMBO costs are prohibitive on high-
dimensional data (in particular, we were not able to test the
algorithm for dimensionalities that are greater than 5,000).

In the first five data sets, AT-DC exhibits quality values
that are comparable to those of the competitors. In
particular, the Advertising data set testifies the good
behavior of AT-DC on high-dimensional data with respect
to its competitors. Again, on this data set, the low
performance of CLICK is due to the high number of
transactions belonging to cluster “None.”

Concerning the SMART collection, LIMBO outperforms
the competitors, but the performance of AT-DC progres-
sively increases, as long as dimensionality increases. The
latter is a direct consequence of the aforementioned choice
of the items. At low dimensionality, items are frequent in all
classes and, consequently, the quality function of AT-DC is
unable to properly discriminate. On higher dimensional-
ities, the number of characterizing items for each cluster
increases, thus determining a neat improvement. In con-
trast, competitors seem to suffer from higher dimension-
ality, since the opposite trend can be observed in ROCK
and, apparently, also in LIMBO.

The algorithms were also tested on synthesized data in
order to compare their robustness to overlapping clusters.
As we can see, all the algorithms behave similarly, but AT-
DC seems to exhibit higher robustness. Again, the tuning of
CLICK did not provide any significant clustering, even for
¼ 40 percent.

5 CONCLUDING REMARKS

We proposed AT-DC, which is a fully-automatic, para-
meter-free approach to clustering high-dimensional catego-
rical data. The main advantage of our approach is its
capability of avoiding explicit prejudices, expectations, and
presumptions on the problem at hand, thus allowing the
data itself to speak. This is particularly useful with the
problem at hand, where the data is described by several
relevant attributes. An intensive experimental evaluation on
large data sets showed that the algorithm efficiently yields
high-quality results. As a matter of fact, AT-DC exhibits
results that are comparable (and, in most cases, even
superior) to those of parameter-laden algorithms.

A limitation of the proposed approach is that the
underlying notion of cluster quality is not specifically
meant for catching conceptual similarities, that is, when
distinct values of an attribute are used for denoting the
same concept. Indeed, probabilities are leveraged to
evaluate cluster homogeneity only in terms of the frequency
of items across the underlying transactions. Hence, the
resulting notion of quality suffers from the typical limita-
tions of the approaches, which use exact-match similarity
measures to assess cluster homogeneity. To this purpose, it
is worth noticing that conceptual cluster homogeneity for
categorical data can be easily plugged into the framework of
the AT-DC algorithm. The idea is learning latent concepts
from the data and a collection of characterizing attribute
values for each such a concept so that each transaction can
be viewed as a mixture of various concepts. Such an
approach would enable the discovery of groups of transac-
tions with similar concepts. In this respect, the probability
PrðajCkÞ that item a appears in a transaction belonging to
cluster Ck can be replaced by PrðcjCkÞ ¼

P
a PrðcjaÞPrðajCkÞ,

where c denotes a generic (latent) concept. In principle, the
identification of three related entities, namely, data attri-
butes, latent concepts, and transaction clusters, lends itself
to the employment of a hierarchical probabilistic model for

1622 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 12, DECEMBER 2007

Fig. 11. Comparison among categorical clustering methods ðC � optimal number of clustersÞ.

learning the relationships among such entities. A focus of
our ongoing work is adopting the LDA technique [5] to fit
our setting.

In addition, since the algorithmic scheme is somehow
decoupled from the notion of quality, alternative instantia-
tions can be obtained by adopting different measures, which
encode specific application requirements. For example,
distinct instantiations can be attempted on different kinds
of data such as highly structured data (sequences, graphs,
and trees) and time-series data. Interestingly, these data
types allow similar definitions of cluster quality, which can
be managed in an incremental way. Nevertheless, different
assumptions about the model can induce different quality
measures on the same categorical data, still enabling the
same general scheme of the algorithm. For example, the
exploitation of the notion of information loss/gain in terms
of entropy would rather produce different clustering, where
homogeneity is measured not only in terms of transaction
overlap but also proportionally to the absent items. We
deserve the investigation of these aspects as a future
research direction.

Another promising direction of further research is the
extension of the scheme in Fig. 1 in order to deal with
outliers. These are transactions whose structure strongly
differs from that of the other transactions being character-
ized by low-frequency items. It is clear that a cluster
containing such transaction exhibits low quality. Worst,
outliers could negatively affect the PARTITION-CLUSTER

procedure by preventing the split to be accepted (because
of an arbitrary assignment of such outliers, which would
lower the quality of the partitions). Hence, a significant
improvement of AT-DC can be obtained by defining an
outlier detection procedure that is capable of detecting and
removing outlier transactions before partitioning the
clusters.

REFERENCES

[1] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan,
“Automatic Subspace Clustering of High Dimensional Data for
Data Mining Applications,” Proc. ACM SIGMOD Int’l Conf.
Management of Data (SIGMOD ’98), pp. 94-105, 1998.

[2] P. Andritsos, P. Tsaparas, R. Miller, and K. Sevcik, “LIMBO:
Scalable Clustering of Categorical Data,” Proc. Ninth Int’l Conf.
Extending Database Technology (EDBT ’04), pp. 123-146, 2004.

[3] D. Barbará, J. Couto, and Y. Li, “COOLCAT: An Entropy-Based
Algorithm for Categorical Clustering,” Proc. 11th ACM Conf.
Information and Knowledge Management (CIKM ’02), pp. 582-589,
2002.

[4] J. Basak and R. Krishnapuram, “Interpretable Hierarchical
Clustering by Constructing an Unsupervised Decision Tree,”
IEEE Trans. Knowledge and Data Eng., vol. 17, no. 1, Jan. 2005.

[5] D.M. Blei, A.Y. Ng, and M.I. Jordan, “Latent Dirichlet Allocation,”
J. Machine Learning Research, vol. 3, pp. 993-1022, 2003.

[6] H. Blockeel, L.D. Raedt, and J. Ramon, “Top-Down Induction of
Clustering Trees,” Proc. 15th Int’l Conf. Machine Learning (ICML
’98), pp. 55-63, 1998.

[7] I. Cadez, P. Smyth, and H. Mannila, “Probabilistic Modeling of
Transaction Data with Applications to Profiling, Visualization,
and Prediction,” Proc. Seventh ACM SIGKDD Int’l Conf. Knowledge
Discovery and Data Mining (KDD ’01), pp. 37-46, 2001.

[8] M. Carreira-Perpinan and S. Renals, “Practical Identifiability of
Finite Mixture of Multivariate Distributions,” Neural Computation,
vol. 12, no. 1, pp. 141-152, 2000.

[9] S. Deerwester et al., “Indexing by Latent Semantic Analysis,”
J. Am. Soc. Information Science, vol. 41, no. 6, 1990.

[10] M. Ester, H.P. Kriegel, J. Sander, and X. Xu, “A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases
with Noise,” Proc. Eighth ACM Int’l Conf. Knowledge Discovery and
Data Mining (SIGKDD ’96), pp. 226-231, 1996.

[11] D. Fisher, “Knowledge Acquisition via Incremental Conceptual
Clustering,” Machine Learning, vol. 2, pp. 139-172, 1987.

[12] C. Fraley and A. Raftery, “How Many Clusters? Which Clustering
Method? The Answer via Model-Based Cluster Analysis,” The
Computer J., vol. 41, no. 8, 1998.

[13] G. Gan and J. Wu, “Subspace Clustering for High Dimensional
Categorical Data,” SIGKDD Explorations, vol. 6, no. 2, pp. 87-94,
2004.

[14] V. Ganti, J. Gehrke, and R. Ramakrishnan, “CACTUS: Clustering
Categorical Data Using Summaries,” Proc. Fifth ACM Conf.
Knowledge Discovery and Data Mining (KDD ’99), pp. 73-83, 1999.

[15] A. Gersho and R. Gray, Vector Quantization and Signal Compression.
Kluwer Academic Publishers, 1991.

[16] D. Gibson, J. Kleinberg, and P. Raghavan, “Clustering Categorical
Data: An Approach Based on Dynamical Systems,” VLDB J.,
vol. 8, pp. 222-236, 2000.

[17] A. Gordon, Classification. Chapman and Hall/CRC Press, 1999.
[18] C. Gozzi, F. Giannotti, and G. Manco, “Clustering Transactional

Data,” Proc. Sixth European Conf. Principles and Practice of Knowledge
Discovery in Databases (PKDD ’02), pp. 175-187, 2002.

[19] J. Grabmeier and A. Rudolph, “Techniques of Cluster Algorithms
in Data Mining,” Data Mining and Knowledge Discovery, vol. 6,
no. 4, pp. 303-360, 2002.

[20] S. Guha, R. Rastogi, and K. Shim, “CURE: An Efficient Clustering
Algorithm for Large Databases,” Proc. ACM SIGMOD Conf.
Management of Data (SIGMOD ’98), pp. 73-84, 1998.

[21] S. Guha, R. Rastogi, and K. Shim, “ROCK: A Robust Clustering
Algorithm for Categorical Attributes,” Information Systems, vol. 25,
no. 5, pp. 345-366, 2001.

[22] M. Halkidi, Y. Batistakis, and M. Vazirgiannis, “Cluster Validity
Methods,” SIGMOD Record, vol. 31, nos. 1-2, 2002.

[23] E. Han, G. Karypis, V. Kumar, and B. Mobasher, “Clustering in a
High Dimensional Space Using Hypergraph Models,” Proc. ACM
SIGMOD Workshops Research Issues on Data Mining and Knowledge
Discovery (DMKD ’97), 1997.

[24] Z. Huang, “Extensions to the K-Means Algorithm for Clustering
Large Data Sets with Categorical Values,” Data Mining and
Knowledge Discovery, vol. 2, no. 3, pp. 283-304, 1998.

[25] A. Jain and R. Dubes, Algorithms for Clustering Data. Prentice Hall,
1988.

[26] E. Keogh, S. Lonardi, and C. Ratanamahatana, “Towards Para-
meter-Free Data Mining,” Proc. 10th ACM Conf. Knowledge
Discovery and Data Mining (KDD ’04), pp. 206-215, 2004.

[27] B. Liu, Y. Xia, and P. Yu, “Clustering through Decision Tree
Construction,” Proc. Ninth Int’l Conf. Information and Knowledge
Management (CIKM ’00), pp. 20-29, 2000.

[28] A. McCallum, K. Nigam, and L.H. Ungar, “Efficient Clustering of
High-Dimensional Data Sets with Application to Reference
Matching,” Proc. Sixth Int’l Conf. Knowledge Discovery and Data
Mining (KDD ’00), pp. 169-178, 2000.

[29] G. McLachlan and D. Peel, Finite Mixture Models. John Wiley &
Sons, 2000.

[30] M. Meila and D. Heckerman, “An Experimental Comparison of
Model-Based Clustering Methods,” Machine Learning, vol. 42,
no. 1/2, pp. 9-29, 2001.

[31] R. Ng and J. Han, “CLARANS: A Method for Clustering Objects
for Spatial Data Mining,” IEEE Trans. Knowledge and Data Eng.,
vol. 14, no. 5, pp. 1003-1016, Sept./Oct. 2002.

[32] M. Ozdal and C. Aykanat, “Hypergraph Models and Algorithms
for Data-Pattern-Based Clustering,” Data Mining and Knowledge
Discovery, vol. 9, pp. 29-57, 2004.

[33] L. Parsons, E. Haque, and H. Liu, “Subspace Clustering for High-
Dimensional Data: A Review,” SIGKDD Explorations, vol. 6, no. 1,
pp. 90-105, 2004.

[34] D. Pelleg and A. Moore, “X-Means: Extending K-Means with
Efficient Estimation of the Number of Clusters,” Proc. 17th Int’l
Conf. Machine Learning (ICML ’00), pp. 727-734, 2000.

[35] J.G.S. Zhong, “Generative Model-Based Document Clustering: A
Comparative Study,” Knowledge and Information Systems, vol. 8,
no. 3, pp. 374-384, 2005.

[36] P. Smyth, “Model Selection for Probabilistic Clustering Using
Cross-Validated Likelihood,” Statistics and Computing, vol. 10,
no. 1, pp. 63-72, 2000.

CESARIO ET AL.: TOP-DOWN PARAMETER-FREE CLUSTERING OF HIGH-DIMENSIONAL CATEGORICAL DATA 1623

[37] M. Sultan et al., “Binary Tree-Structured Vector Quantization
Approach to Clustering and Visualizing Microarray Data,”
Bioinformatics, vol. 18, 2002.

[38] M.O.T. Li and S. Ma, “Entropy-Based Criterion in Categorical
Clustering,” Proc. 21st Int’l Conf. Machine Learning (ICML ’04),
pp. 68-75, 2004.

[39] K. Wang, C. Xu, and B. Liu, “Clustering Transactions Using Large
Items,” Proc. Eighth Int’l Conf. Information and Knowledge Manage-
ment (CIKM ’99), pp. 483-490, 1999.

[40] Y. Yang, X. Guan, and J. You, “CLOPE: A Fast and Effective
Clustering Algorithm for Transactional Data,” Proc. Eighth ACM
Conf. Knowledge Discovery and Data Mining (KDD ’02), pp. 682-687,
2002.

[41] M. Zaki and M. Peters, “CLICK: Mining Subspace Clusters in
categorical Data via k-Partite Maximal Cliques,” Proc. 21st Int’l
Conf. Data Eng. (ICDE ’05), 2005.

[42] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An Efficient
Data Clustering Method for Very Large Databases,” Proc. ACM
SIGMOD Conf. Management of Data (SIGMOD ’96), pp. 103-114,
1996.

Eugenio Cesario received the PhD degree in
systems and computer engineering from the
University of Calabria in 2006. From 2003 to
2006, he was a research fellow in the Institute of
High-Performance Computing and Networks,
National Research Council (ICAR-CNR), Italy,
working on data mining systems and applica-
tions. He is currently a temporary researcher at
ICAR-CNR. His current research interests are
distributed data mining, grid programming en-

vironments, and grid services architectures.

Giuseppe Manco received the bachelor’s de-
gree (summa cum laude) in computer science in
1994 and the PhD degree in computer science
from the University of Pisa. He is currently a
senior researcher in the Institute of High-
Performance Computing and Networks, National
Research Council (ICAR-CNR), Italy, and a
contract professor at the University of Calabria,
Italy. He was a contract researcher at the Centro
Nazionale Universitario di Calcolo Elettronico

(CNUCE), Pisa, Italy, and a visiting fellow at the Centrum voor Wiskunde
en Informatica (CWI), Amsterdam. His current research interests include
deductive databases, knowledge discovery and data mining, and Web
databases and semistructured data.

Riccardo Ortale received the bachelor’s degree
(summa cum laude) in computer science en-
gineering from the University of Calabria, the
master’s degree in Internet software design from
the ICT Center of Excellence for Research,
Innovation, Education, and Industrial LabsPart-
nership (CEFRIEL), Politecnico di Milano, in
collaboration with Siemens SBS, and the PhD
degree in computer science and systems en-
gineering from the University of Calabria. He is

currently a researcher in the Institute of High Performance Computing
and Networks, National Research Council (ICAR-CNR), Italy, and a
contract professor at the University of Calabria. His current research
interests include knowledge discovery and data mining, Web databases
and semistructured data, and Web personalization.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1624 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 12, DECEMBER 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

