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Abstract Software systems for social data mining provide algorithms and tools for extracting
useful knowledge from user-generated social media data. ParSoDA (Parallel Social Data
Analytics) is a high-level library for developing parallel data mining applications based
on the extraction of useful knowledge from large dataset gathered from social media. The
library aims at reducing the programming skills needed for implementing scalable social
data analysis applications. To reach this goal, ParSoDA defines a general structure for a
social data analysis application that includes a number of configurable steps and provides a
predefined (but extensible) set of functions that can be used for each step. User applications
based on the ParSoDA library can be run on both Apache Hadoop and Spark clusters. The
paper describes the ParSoDA library and presents two social data analysis applications to
assess its usability and scalability. Concerning usability, we compare the programming effort
required for coding a social media application using versus not using the ParSoDA library.
The comparison shows that ParSoDA leads to a drastic reduction (i.e., about 65%) of lines
of code, since the programmer only has to implement the application logic without worrying
about configuring the environment and related classes. About scalability, using a cluster
with 300 cores and 1.2 TB of RAM, ParSoDA is able to reduce the execution time of such
applications up to 85%, compared to a cluster with 25 cores and 100 GB of RAM.

Keywords Social Data analysis · Scalability · Parallel library · Big Data · Social media ·
Social networks

1 Introduction

Through the pervasive use of computers, smart phones and other digital objects, most
human activities create big datasets whose collection, storage and analysis can be done. In
particular, the use of social media produces a massive amount of data that can be downloaded
from social media platforms or collected independently to understand human behaviors and
processes. Social media mining aims at extracting useful knowledge from this big amount
of data [3]. Social media analysis tools and algorithms have been used for the analysis of
collective sentiments [16], for understanding the behavior of groups of people [6] or the
dynamics of public opinion [15]. The use of parallel and distributed data analysis techniques
and frameworks (e.g., MapReduce [10]) is essential to cope with the size and complexity of
social media data. However, it is hard for many users to use such frameworks, mainly due to
the programming skills needed for implementing the appropriate data analysis methods on
top of them [18].
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ParSoDA1 (Parallel Social Data Analytics) is a programming library for simplifying
the development of parallel social media mining application executed on High Performance
Computing systems. To achieve this goal, ParSoDA provides a set of widely used functions for
processing and analyzing data collected from social media, which can be used to extract useful
knowledge and patterns (e.g., topics trends, user mobility, user opinions). ParSoDA defines a
general framework for a social media analysis application that includes a number of steps
(data acquisition, filtering, mapping, partitioning, reduction, analysis, and visualization), and
provides a predefined (but extensible) set of functions for each data processing step. Thus,
an application developed with ParSoDA is expressed by a concise code that specifies the
functions invoked at each step.

In this way, data scientists and analysts having limited programming skills, especially with
regard to parallel programming, can efficiently design and execute data analysis applications
dealing with big amounts of social media data. The library includes algorithms that are
widely used on social media data for extracting different kinds of information. To deal with
social media items gathered from different sources, ParSoDA defines a metadata model that
represents the different types of social media items (tweets, Flickr posts, etc.). The model can
be easily extended to match most application requirements. Thus, the main contributions of
ParSoDA are summarized as follows: i) ParSoDA defines a general structure for social data
analysis applications and provides an extensible set of functions that can be used for each
step; ii) ParSoDA aims at reducing the programming skills needed for implementing scalable
social data analysis applications; iii) applications based on the ParSoDA library can be run
on both Hadoop and Spark clusters; and iv) ParSoDA is able to reduce the execution time
of data analysis by parallelizing the execution of the code and exploiting the computational
and storage resources of clusters.

Parallel social data analysis applications based on the ParSoDA library can be run on
Cloud and HPC systems exploiting both Apache Hadoop [4] and Spark [2]. To assess the
usability and scalability of ParSoDA, we present two social data analysis applications that
make use of the library to extract sequential patterns and frequent itemsets from social media
data published in Flickr and Twitter. The first application aims at discovering sequential
patterns from user movements, so as to find the common mobility patterns followed by users.
The goal of the second application is to discover the frequent sets of places visited by users.
Concerning usability, we compare the programming effort required for coding a social media
application using versus not using the ParSoDA library. The comparison shows that ParSoDA
leads to a drastic reduction (i.e., about 65%) of lines of code, since the programmer only
has to implement the application logic without worrying about configuring the environment
and related classes. The scalability was evaluated carrying out the data analysis applications
on an HPC cluster. Using a cluster with 300 cores and 1.2 TB of RAM, ParSoDA is able
to reduce the execution time of such applications up to 85%, compared to a cluster with
25 cores and 100 GB of RAM. This manuscript extends previous work [4] in the following
main aspects: i) a formal description of the steps that compose a ParSoda application has
been introduced; ii) the description and the pseudo code of the algorithms used in this paper
for discovering behaviors and mobility patterns of users have been added; iii) a comparison
about the programming effort required for coding a social media application using versus not
using the ParSoDA library has been included; iv) more extensive and detailed scalability
tests for measuring turnaround time, speed-up and scale-up have been added.

The remainder of the paper is organized as follows. Section 2 discusses related work.
Section 3 describes the ParSoDA library. Section 4 presents the experimental evaluation of
the two social data analysis applications. Finally, Section 5 concludes the paper.

2 Related work

Several developers and researches are working on the design and implementation of tools
and algorithms for extracting useful information from data gathered from social media. In
most cases the amount of data to be analyzed is so big that high-performance computers,
such as many and multi-core systems, Clouds, and multi-clusters, paired with parallel and

1 https://github.com/SCAlabUnical/ParSoDA

https://github.com/SCAlabUnical/ParSoDA
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distributed algorithms, are used by data analysts to reduce response time to a reasonable
value [3].

Several research projects consider not only the data analysis task, but also procedures
including other data processing tasks needed for building social data applications. In particular,
these projects aim at helping scientists to implement all the steps that compose social data
mining applications without the need to implement common operations from scratch.

SOCLE [1] is a framework for designing and optimizing data preparation in social
applications. It is composed by a general-purpose three-layer architecture, an algebra, and a
language for defining operations for data preparation in social applications. As an example,
SOCLE provides operators to remove all unnecessary information from data (data pruning),
to add information using external sources (data enrichment), and to transform data values
(data normalization). The authors examined the use of SOCLE for manipulating social data
in two families of social applications, recommendation and analytics, but no studies have
been performed to assess its scalability, and no details about framework requirements have
been provided.

Cuesta et al. [9] proposed a framework for easing Twitter data extraction and analysis.
In the proposed architecture, the tweets, mined by the application through the Twitter
APIs, are cleaned and then stored in a MongoDB database [7]. In addition to basic database
operations (i.e., selection, projection, insertion, updating, and deletion), the framework can
be extended creating more complex aggregation MapReduce tasks in Python. By default, the
framework provides developers with modules for executing sentiment analysis and generating
reports.

SODATO (SOcial Data Analytics Tool) [13] is an on-line tool for programming data
analytics on social data. It utilizes the APIs provided by social media platforms (i.e., currently,
it supports only Facebook and Twitter) for collecting data; then, it provides a combination
of web as well as console applications that run in batches for pre-processing and aggregating
data for analysis. At the end of the analytics process, the results can be displayed using the
integrated visualization module. SODATO provides methods for several kinds of analysis,
such as sentiments analysis, keyword analysis, content performance analysis, social influencer
analysis, etc.

Zhou et al. [22] proposed a general unsupervised framework for exploring events from large
amount of Twitter data. The framework exploits a pipeline process which consists of filtering,
extraction, and categorization steps. During the filtering step, all event-related tweets are
selected by exploiting a lexicon-based approach. Then, events are extracted from filtered
tweets and grouped into categories using an unsupervised Bayesian model, called Latent
Event & Category Model (LECM). The authors evaluated the categorization performances
of the proposed framework on a dataset consisting of 60 million tweets, but no experiments
on scalability have been provided.

Casalino et al. [5] presented a framework for exploring a collection of tweets by auto-
matically extracting topics with semantic relevance (e.g. detect groups of tweets related to
specific events and topics). The framework defines a process that consists of three steps.
The first step transforms a collection of tweets according to a Vector Space Model. Then,
during the second step, a Nonnegative Matrix Factorizations (NMF) technique is used to
extract and cluster relevant topics from tweets. Finally, in the last step, a cluster analysis
with word-cloud visualization is used to make a qualitative assessment of the results.

You et al. [20] presented a framework, running on Clouds, for developing social data anal-
ysis applications for smart cities, especially designed to support smart mobility. In particular,
the framework is composed of five components (i.e., data collector, data preprocessor, data
analyzer, data presenter, and data storage) that cover the whole data analysis life cycle. The
framework supports data collection from social media platforms (e.g., Twitter, Foursquare),
by exploiting their public APIs, and from other Internet sources (e.g., website, blog, files). A
component devoted to data pre-processing provides functions for data cleansing, filtering, and
normalization. Afterwards, the data analyzer component provides needed analysis methods
(e.g., K-Means, DBSCAN, and Self-organizing Map) to make some data analysis.

The main differences between ParSoDA and the systems described above (but the one by
You et al. [20]), are that our system was specifically designed to implement Cloud-based data
analysis applications. To this end, it provides scalability mechanisms based on two of the
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most popular parallel processing frameworks (Hadoop and Spark), which are fundamental to
provide efficient and scalable services as the amount of data to be managed grows.

3 The ParSoDA library

ParSoDA (Parallel Social Data Analytics) is a Java library that includes algorithms widely
used to process and analyze data gathered from social media with the goal of extracting
different kinds of information (e.g., user mobility, user sentiments, topic trends, and frequency).

ParSoDA defines a general structure for a social data analysis application that is composed
of the steps described in the following.

Data acquisition The goal of this step is to collect social media items from a set of data
sources DS = {ds0, ..., dsm}. Given a data source dsi, a query qi is defined such that
qi(dsi) = {g0, ..., gn}, where gj is a social media item gathered from dsi by applying qi. Given
DS and an ordered set of queries Q = {q0, ..., qm}, a data acquisition function can be defined
as af(DS,Q) = {q0(ds0) ∪ ... ∪ qm(dsm)}.

Data filtering This step filters the social media items gathered in the previous step, based
on a set of functions. A filtering function ff(gi) = {true ∨ false} is a boolean function that
takes as input a social media item gi and verifies whether gi matches some criteria. Given a
set of filtering functions FF = {ff0, ..., ffm} and a set of social media items G = {g0, ..., gn},
FF(G) = {gi ∈ G | (ff0(gi) ∧ · · · ∧ ffm(gi)) = true}.

Data mapping This step modifies the filtered social media items by applying a set of mapping
functions. A mapping function mf(gi) = g′i where g′i is a modified social media item derived
from gi. Given a set of mapping functions MF = {mf0, ..., mfm} and a set of social media items
G = {g0, ..., gn}, MF(G) = {g′i | g′i = mfm(mfm−1(. . . mf0(gi))),∀gi ∈ G)}.

Data partitioning This step partitions a set of social media items into shards using a group
key, and then sorts all the items with the same group key according to a sort key. A function
gk(gi) returns the group key of gi, while a function sk(gi) returns the sort key of gi. Given a
key k and a set of social media items G = {g0, ..., gn}, all the items having k as group key are
Gk = {gki ∈ G | gk(gki) = k}. Then, a set Gk = {gk0 , ..., gkm} can be ordered according to
sk by generating an ordered set of items (G′k) = {gki ∈ Gk | sk(gk0) ≤ · · · ≤ sk(gkm)}. Given
a group key function gk, a sort key function sk, and all possible group keys K = {k0, . . . kp},
a partitioning function is defined as pf(G, gk, sk) = {G′k0

, . . . , G′kp
}.

Data reduction This step aggregates all the data into a shard according to a reduce function,
that generates a new set of elements E = {e0, . . . , en}. Given a set of items (G′k) associated
to a key k, a reduce function is defined as rf(G′k) = E.

Data analysis This step analyzes the outputs of the data reduction step by using a data
mining function to extract a set of patterns P = {p0, . . . , pn}. Given a set of elements
E = {e0, . . . , em}, a data mining function is defined as af(E) = P .

Data visualization This is the final step in which a visualization function is applied to the
data analysis results to generate a set of visual results R = {r0, . . . , rn}. Given a set of
patterns P = {p0, . . . , pm}, a visualization function is defined as vf(P ) = R.

For each of these steps, ParSoDA provides a predefined set of functions. For example,
for the data acquisition step, ParSoDA provides crawling functions for gathering data
from some of the most popular social media platforms (e.g., Twitter and Flickr), while
for the data filtering step, ParSoDA provides functions for filtering geotagged items based
on their position, time of publication, and contained keywords. Users are free to extend
this set of functions with their owns. The current version of the library (v. 1.3.0 dated
October 25, 2018) contains more than forty predefined functions organized in seven packages,
corresponding to the seven ParSoDA steps. Details on each function are available at https:
//github.com/SCAlabUnical/ParSoDA.

https://github.com/SCAlabUnical/ParSoDA
https://github.com/SCAlabUnical/ParSoDA
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3.1 Reference architecture and execution flow

Figure 1 presents the reference architecture and execution flow of a ParSoDA application that
runs on the Hadoop [19] or Spark [21] framework. In such way, it is possible to implement
several parallel and distributed data mining applications with high scalability [8]. As shown
in Figure 1(a), user applications can utilize ParSoDA and other libraries (e.g., Mahout2,
MLlib3). Applications can be executed on Hadoop or Spark, using YARN as resource manager
and HDFS as distributed storage system. Figure 1(b) provides details on how applications
are executed on a Hadoop or a Spark cluster. The cluster is formed by one or more master
nodes, and multiple worker nodes. Once a user application is submitted to the cluster, its
steps are executed according to their order (i.e., data acquisition, data filtering, etc.).

On a Hadoop cluster, some steps are inherently MapReduce-based, namely: data filtering,
data mapping, data partitioning and data reduction. This means that all the functions used
to perform these steps are executed within a MapReduce job that runs on a set of worker
nodes. In particular, the data filtering and data mapping steps are wrapped within Hadoop
Map tasks; the data partitioning step corresponds to Hadoop Split and Sort tasks; the data
reduction step is executed as a Hadoop Reduce task. The remaining steps (data acquisition,
data analysis, and data visualization) are not necessarily MapReduce-based. This means that
the functions associated with these steps could be executed in parallel on multiple worker
nodes, or alternatively they could be executed locally by the master node(s). The latter case
does not imply that execution is sequential, because a master node can make use of some
other parallel runtime (e.g., MPI).

ParSoDA Application

Processing

Framework

Resource

Management

Storage

Libraries

HDFS

YARN

Hadoop MapReduce / Spark

ParSoDA and others

(a) Reference architecture.

Data 

partitioning

Data 

reduction

Data mapping

Data filtering

Master nodes Worker nodes

Data analysis

Data visualization

Hadoop/Spark Cluster

Data acquisition

ParSoDA

application
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Map

tasks

Split/Sort

tasks

Reduce 

tasks

Stage 1

(b) Hadoop and Spark execution flows.

Fig. 1 Reference architecture and execution flow.

On a Spark cluster, the main steps are executed within two Spark stages that run on a
set of worker nodes. A stage is a set of independent tasks executing functions that do not
need to perform data shuffling (e.g., transformation and action functions). Specifically: data
filtering and mapping are executed within the first stage (Stage 0 ), while data partitioning
and reduction are executed within the second stage (Stage 1 ). Concerning the remaining
steps (data acquisition, data analysis, and data visualization), the same considerations made
for Hadoop apply to Spark.

2 https://mahout.apache.org/
3 https://spark.apache.org/mllib/
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3.2 Metadata model for social media data

To deal with social media items gathered from different sources, ParSoDA defines a metadata
model for representing the different types of social media items (tweets, Flickr posts, etc.).
According to this model, each social media item is represented by a metadata document
composed of two parts: a basic section that includes fields common to all social media
platforms (source, item id, date and time, location coordinates, user info); an extra section
that contains fields specific to the source. As an example, Listing 1 shows a metadata element
describing a tweet. The source field indicates that it is a social media item gathered from
Twitter, and therefore the extra section contains fields specific to the tweets (whether it is a
retweet or not, the retweet count, and so on). Listing 2 contains a metadata element for a
Flickr photo. The source field indicates that it is a Flickr social media item, and thus the
extra section contains fields specific to Flickr photos (a list of tags, date when the photo was
taken and so on).

{
"BASIC":{

"SOURCE":"Twitter", "ID":"111222333444555",
"DATETIME":"2015-12-20T23:20:34.000",
"LOCATION":{"LNG":-0.1262,"LAT":51.5011},
"USER":{ "USERID":"12345", "USERNAME":"joedoe"}},

"EXTRA":{
"inReplyToScreenName":"billsmith", "inReplyToUserId":123456789,
"inReplyToStatusId":678712345678962848,
"text":"@billsmith that sounds great!",
"hashtags":[ "#code", "#mapreduce"], "retweets":0, "isRetweet":false}

}

Listing 1 Metadata of a tweet serialized in JSON format.

{
"BASIC":{
"SOURCE":"Flickr", "ID":"43012793876",
"DATETIME":"2016-11-21T22:12:36.000",
"LOCATION":{"LNG":12.456661,"LAT":41.90245},
"USER":{ "USERID":"111222333@N00", "USERNAME":"mrwho"}},

"EXTRA":{
"title":"Basilica di San Pietro",
"description":"St Peter’s church in Rome"
"tags":[{"count":0,"value":"holiday"},{"count":0,"value":"vatican"}],
"dateTaken":"Nov 9, 2016 12:00:00 AM",
"accuracy": 16}
}

Listing 2 Metadata of a Flickr photo serialized in JSON format.

ParSoDA defines an abstract class named SocialItem that defines the basic fields, and a set
of classes (TwitterSocialItem, FlickrSocialItem, etc.) that extend SocialItem by defining the
extra fields specific to different social media. Each social media item is represented in memory
by an instance of one such classes (e.g., a tweet will be an instance of TwitterSocialItem).
When the metadata of a social media item must be saved to persistent storage or sent through
the network, the object is serialized in JSON format, a widely-used text notation [11].

3.3 Structure of a ParSoDA application

ParSoDA defines a general structure for a social data analysis application that includes a
number of steps (data acquisition, filtering, mapping, partitioning, reduction, analysis, and
visualization), and provides a predefined (but extensible) set of functions for each step. Thus,
an application developed with ParSoDA is expressed by a concise code that specifies the
functions invoked at each step. More specifically, a ParSoDA application can be developed by
creating an instance of a class named SocialDataApplication, which defines a set of methods
that allow the programmer specifying the functions to be used at each step.

Table 1 lists the main methods of the SocialDataApplication class. For each method, the
table specifies the step which it refers to, and a short description.
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Table 1 Main methods of the SocialDataApplication class.

Step Function and description

Data
acquisition

setCrawlers(Class[] functions, String[] params)

Specifies the crawling functions to be used for data acquisition.
The functions array contains the crawling classes;
params[i] contains the configuration string of functions[i].

Data
filtering

setFilters(Class[] functions, String[] params)

Specifies the functions and associated parameters to be used to perform data
filtering.

Data
mapping

setMapFunctions(Class[] functions, String[] params)

Specifies the functions and associated parameters to be applied at the
mapping step.

Data
partitioning

setPartitioningKeys(String groupKey, String sortKey)

Specifies the keys used by the secondary sort pattern, which partitions data
into shards by a primary key (groupKey) and then sorts shards by a
secondary key (sortKey).

Data
reduction

setReduceFunction(Class function, String params)

Specifies the function and associated parameters to be used at the reduction
step.

Data
analysis

setAnalysisFunction(Class function, String params)

Specifies the function and associated parameters to be used to perform data
analysis.

Data
visualization

setVisualizationFunction(Class function, String params)

Specifies the function and associated parameters to be used for data
visualization.

For the Data acquisition step, the SocialDataApplication class provides the setCrawlers
method that can be used to specify which crawling functions will be used to collect data
from social media platforms. The method receives two arrays as parameters: functions and
params. Array functions contains the crawling classes that will be instantiated to perform
data collection. Array params contains the parameters that are necessary to configure the
instances of the crawling classes specified in functions; specifically, params[i] contains the
configuration string of functions[i]. In ParSoDA, a set of crawling classes are available. For
example, a FlickrCrawler class can be instantiated to collect data from the Flickr social
network. If functions specifies multiple crawling classes, they will be instantiated and executed
in parallel.

Data filtering is configured with the setFilters method. It works similarly to the setCrawlers
method. In fact, its first parameter can be used to specify the names of the classes that will
be instantiated to perform data filtering, while the second one contains the parameters used
to configure the instances of the filtering classes. ParSoDA implements a simple but effective
mechanism for filtering social media items according to a set of conditions. Each filtering class
implements a predicate function that verifies if a social media item meets or not a particular
condition. In ParSoDA, a filtering class is defined by implementing the interface Predicate,
which is included in Java since version 1.8. After executing the data filtering step, only social
media items that match all conditions provided will be passed to the data mapping step.

For configuring the Data mapping step, the developer has to use the setMapFunctions
method. Similarly to the methods described above, it receives two arrays as parameters,
which specify, respectively, the names of the classes that will be instantiated to perform data
mapping and the parameters used to configure them. In ParSoDA a mapping class defines a
function that transforms a filtered social media item. In such way, developers can transform
social media items by applying a sequence of map functions. A map function is defined by
extending the abstract class MapFunction.

Data partitioning is configured with the setPartitioningKeys method, which receives
two strings as parameters: groupKey and sortKey. The method partitions data in shards
by groupKey and then sorts all data in a shard by sortKey. The keys used to configure
this step must be present in the metadata model used to represent the social media items
under processing. ParSoDA implements the Secondary Sort design pattern [19], which allows
configuring a primary key (groupKey) for partitioning data into shards, and a secondary key
(sortKey) for sorting all data in a shard. As an example, this mechanism can be used to
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partition data by user ids and then sort it by timestamps, which is a very common task in
sequential pattern mining.

Data reduction is configured with the setReduceFunction that has two input parameters:
the name of the class that will be instantiated to perform data reduction and the parameters
used to configure it. The reduce function aggregates all the data contained in a shard. As an
example, to analyze the movements of social media users, one might use a reduce function
for aggregating all the data of a single user according to given criteria. In ParSoDA, a reduce
function is defined by creating a class that implements the interface ReduceFunction.

Data analysis is configured with the setAnalysisFunction method, which receives as input
parameters the name of the class that will be instantiated to perform the data analysis
task and the associated parameters. A data analysis function is defined by extending the
abstract class AnalysisFunction, which requires the implementation of two abstract methods:
formatData, for formatting the input data in the format required by the analysis function,
and analyzeData that implements the data analysis algorithm.

Finally, Data visualization is configured with the setVisualizationFunction method that,
similar to the previous methods, receives the name of the data visualization class and the
parameters required to create an instance. To create a custom data visualization function,
the programmer must define a class that implements the interface VisualizationFunction.

4 Case study applications

We carried out a set of experiments to evaluate usability and scalability of ParSoDA on two
social data analysis applications that process data published in Flickr and Twitter. The first
application aims at discovering sequential patterns from user movements, so as to find the
common routes followed by users. The second one aims at discovering the frequent sets of
places visited by users. The analysis was carried out by analyzing 325 GB of social media
data published in Flickr and Twitter that refer to the center of Rome.

The remainder of this section is organized as follows. Section 4.1 shows the code of the
ParSoDA applications. Section 4.2 describes the pseudo code of the sequential pattern analysis
and frequent itemset analysis algorithms used in the applications. Section 4.3 discusses the
most interesting results that have been obtained by analyzing the dataset. Section 4.4 assesses
the usability of ParSoDA by comparing the programming effort required for coding data
analysis applications using versus not using the ParSoDA library. Finally, Section 4.5 presents
scalability tests for measuring turnaround time, speed-up and scale-up.

4.1 Application code

Listing 3 shows the code of the application for executing the sequential pattern analysis.
First, an instance of the SocialDataApp class must be created (line 3 ). Then a file containing
the boundaries of the regions of interest (RomeRoIs.kml) is distributed to the processing
nodes (lines 4-5 ).

1 public class SequentialPatternMain {

2 public static void main(String[] args) {

3 SocialDataApp app = new SocialDataApp("SPM - City of Rome");

4 String[] cFiles = {"RomeRoIs.kml"};

5 app.setDistributedCacheFiles(cFiles);

6 Class[] cFunctions = {FlickrCrawler.class,TwitterCrawler.class};

7 String[] cParams = {"-lng 12.492 -lat 41.890 -radius 10 -startDate 2014-11-01 -

endDate 2016-07-31","-lat 12.492 -lng 41.890 -radius 10 -startDate 2014-11-01

-endDate 2016-07-31"};

8 app.setCrawlers(cFunctions,cParams);

9 Class[] fFunctions = {IsGeotagged.class,IsInPlace.class};

10 String[] fParams = {"","-lat 12.492 -lng 41.890 -radius 10"};

11 app.setFilters(fFunctions, fParams);

12 Class[] mFunctions = {FindPoI.class};

13 String[] mParams = null;

14 app.setMapFunctions(mFunctions, mParams);

15 String groupKey = "USER.USERID";
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16 String sortKey = "DATETIME";

17 app.setPartitioningKeys(groupKey,sortKey);

18 Class rFunction = ReduceByTrajectories.class;

19 String rParams = "-t 5";

20 app.setReduceFunction(rFunction,rParams);

21 Class aFunction = PrefixSpan.class;

22 String aParams = "-maxPatternLength 5 -minSupport 0.005";

23 app.setAnalysisFunction(aFunction,aParams);

24 Class vFunction = SortPrefixSpanBy.class;

25 String vParams = "-k support -d DESC";

26 app.setVisualizationFunction(vFunction,vParams);

27 app.execute();

28 }

29 }

Listing 3 A sequential pattern analysis application written using ParSoDA.

Afterwards, the different steps of the application are configured as described in the
following:

1. Data acquisition. The names of two crawling classes (FlickrCrawler and TwitterCrawler)
are defined in the cFunctions array (line 6 ). The parameters used to configure the
instances of the two crawling classes are defined in the cParams array (line 7 ). The two
arrays are then passed to the setCrawlers method (line 8 ).

2. Data filtering. Two filtering classes are specified: IsGeotagged and IsInPlace (line 9 ).
The former filters data by keeping only geotagged items. The latter filters out data that
are not in the center of Rome, which is defined by its geographical coordinates. The
parameters of the two filtering functions are specified in the fParams array (line 10 ). The
names of the filtering classes and associated parameters are then passed to the setFilters
method (line 11 ).

3. Data mapping. The map class FindPoI (line 12 ), which does not require parameters to
be instantiated (line 13 ), is specified. The mapping function defined in FindPoI assigns
to each social media item the name of the place that it refers to. To do this, it refers to
the boundaries specified in the file defined at line 4. The name of the map class is then
passed to the setMapFunctions method (line 14 ).

4. Data partitioning. The id of the user who posted a social media item is used as the
groupKey (line 15 ), while the date and time when the social media item was posted is
used as the sortKey (line 16 ). The two keys are then passed to the setPartitioningKeys
method (line 17 ).

5. Data reduction. A reduce class, named ReduceByTrajectories (line 18 ), is specified to
aggregate all the social media items posted by a single user, into a list of individual
trajectories across places. The parameters of the reduce class are specified in the rParams
string (line 19 ). In particular, it receives only a parameter t, which is the maximum time
gap in hours that can be taken for consecutive places in the same trajectory. The name
of the reduce class and its parameters are then passed to the setReduceFunction method
(line 20 ).

6. Data analysis. A data analysis class, named PrefixSpan, is specified (line 21 ). The class
implements PrefixSpan [17], a scalable frequent sequence mining algorithm, which takes
as input a collection of sequences and mines frequent sequences. The parameters of data
analysis class are specified in the aParams string (line 22 ). The name of the data analysis
class and its parameters are then passed to the setAnalysisFunction method (line 23 ).
More details about this algorithm are in Section 4.2.

7. Data visualization. The SortPrefixSpanBy class is specified to perform the data visual-
ization function (line 24 ). A configuration string vParams, containing the parameters
of the data visualization class, is specified at line 25. The class receives two parameters:
the key used to sort results (the sequence support) and the sort direction (descending
order). The name of the data visualization class and its parameters are then passed to
the setVisualizationFunction method (line 26 ).

The sequential pattern analysis application is executed by invoking the execute method
(line 27 ).
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The frequent itemset analysis application is slightly different from the sequential pattern
analysis application. In Listing 4 we show only the differences with Listing 3, which are
detailed in the following:

– a different reduce class, named ReduceByItemsets, is specified to aggregate all the social
media items into a set of individual places posted by each user (line 18 ). Similarly to
the sequential pattern analysis application, it receives only a parameter t, which is the
maximum time gap in hours for consecutive places in the same trajectory (line 19 ).

– for extracting frequent sets of places from social media data, a parallel implementation of
FP-Growth [12], called PFP [14], has been used (lines 21-23 ). This algorithm receives
a parameter minSupport, which represents the minimal support level of the frequent
pattern.

17 ...

18 Class rFunction = ReduceByItemsets.class;

19 String rParams = "-t 5";

20 app.setReduceFunction(rFunction,rParams);

21 Class aFunction = FPGrowth.class;

22 String aParams = "-minSupport 0.005";

23 app.setAnalysisFunction(aFunction,aParams);

24 ...

Listing 4 An excerpt of the ParSoDa code for implementing a frequent itemset analysis.

4.2 Data analysis algorithms

Data is analyzed for discovering behaviors and mobility patterns of users. Specifically, we
perform both sequential pattern analysis and frequent item sets analysis, as described in the
following. The input dataset S is a list of individual sequences (or trajectories) across places
obtained after the reduction step. Formally,

S = {s0, s2, ..., sn}
where the i-th sequence si = 〈ui, {(pi0, ti0), ..., (pim, tim)}〉, where (pij , tij) is a pair indicating
place and timestamp of the j-th post published by user ui.

4.2.1 Sequential Pattern Analysis.

Sequential pattern analysis algorithms are intended to discover the sequences of elements
that occur most frequently in the data. Unlike the frequent item set analysis, in sequential
analysis are fundamental the time dimension and the chronological order in which the values
appear. In our case, this type of analysis is useful to discover the most frequent mobility
patterns across places. In our experiments we used a sequential pattern mining function that
is based on the PrefixSpan algorithm [17] (see Algorithm 1).

The function receives as input a dataset S containing sequences of places and the minimum
support supmin. Given S, the function creates a list data structure R for storing the frequent
sequential patterns, an empty prefix, and sets to 1 the starting length for the sequential
pattern L (lines 1-4). Then, the PrefixSpan sub-function is called (line 5). This sub-function
makes a set of recursive calls, until all the frequent patterns are found. Finally, the function
returns the list of frequent sequential patterns of places grouped by pattern length (line 6).
The PrefixSpan sub-function receives as input a dataset S of sequential patterns, the prefix
of the sequential patterns, the length of the patterns L, the minimum support supmin, and
the list R where to store the patterns found. If the given dataset is empty, the sub-function
ends (line 8). If not, it scans S to find L1, i.e., the list of all frequent sequential patterns
of length 1 in S (line 10). Each element of L1 is a pair 〈pattern, count〉, representing the
pattern and its associated support count. For each element li ∈ L1, the algorithm iterates
(lines 11-15) performing the following operations:

– Discards all the patterns having a support count lower than the minimum support supmin

(line 12).
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ALGORITHM 1: Sequential Pattern Mining algorithm pseudo code.

Input :A dataset containing sequences of places S, minimum support supmin

Output :Frequent sequential patterns of places R
1 Function SequentialPatternMining(S, supmin)
2 R← []; /* List for storing frequent sequential patterns */

3 prefix← `; /* Variable to store temporary prefix */

4 L← 1; /* Initial pattern length */

5 PrefixSpan(prefix, L, S, supmin, R); /* Recursive call */

6 return R

7 SubFunction PrefixSpan(prefix, L, S, supmin, R)
8 if S == ∅ then
9 return;

10 L1 = findLength1SequentialPatterns(S);
11 foreach li ∈ L1 do
12 if li.count ≥ supmin then
13 R[L].add(〈prefix + li.pattern, li.count〉); /* Add to results */

14 SBi = { suffixes of trajectories in S having li as prefix }
15 PrefixSpan(prefix + li.pattern, L + 1, SBi, supmin, R); /* Recursion */

16 return;

– If the support count of li is greater than or equal to the minimum support, then stores
a new frequent pattern of length L, obtained by concatenating the pattern of li to the
current prefix (line 13).

– Calculates a new dataset of sequences SBi containing all the suffixes of the sequential
patterns in S having li as prefix (line 14).

– Calls recursively the PrefixSpan sub-function to calculate on SBi sequential frequent
patterns of length L + 1 for the currently calculated prefix (line 15).

In our experiments, a parallel version of PrefixSpan, which is included in the Spark
Machine Learning library (MLlib), has been used. For large datasets, the computations of
length-1 sequential patterns F (line 10) and of the database SBi (line 14) are executed in
parallel by splitting the original dataset into shards that are processed locally. At the end,
the final results are obtained by merging the local frequent patterns.

4.2.2 Frequent Itemset Analysis.

Frequent itemset analysis is exploited with the goal of discovering the items that occur
together with a high frequency. Applied to dataset S, we perform a frequent place sets
discovery task, aimed at extracting the sets of places that are most frequently visited together
by users. In our experiments we used the FPGrowth algorithm [12] whose pseudo-code is
shown in Algorithm 2.

ALGORITHM 2: FPGrowth pseudo code.

Input :A dataset containing sequences of places S, minimum support supmin

Output :Frequent sets of places FS
1 F ← []; /* List of frequent items */

2 I ← {}; /* Set of items in S */

3 foreach si ∈ S do
4 foreach li ∈ si do
5 F [li] + +;
6 I ← I ∪ {li};

7 SortAndRemove(F , supmin); /* Sort F and remove infrequent items */

8 root← `; /* Create a null FP-tree root */

9 foreach si ∈ S do
10 SortByFrequency(si, F ); /* Sort si according to F */

11 BuildTree(si, root, supmin); /* Insert items in si in the FP-Tree */

12 foreach i ∈ I do
13 Growth(root,i,supmin, FS); /* Call the recursive method Growth() */

14 return FS
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The algorithm receives a dataset S containing the sequences of places and the minimum
support supmin. It initially calculates a list F , containing the supports of each place in
the dataset, and a places’ vocabulary I, containing the unique places found by scanning S
(lines 1-6). Then, the items in F are sorted by support and infrequent entries (i.e., places
with a support lower then supmin) are removed (line 7). Next, the algorithm scans all the
trajectories in S (line 9-11) to build a tree, called FP-Tree [17], where each path on the tree
represents a frequent set sharing the same places. According to the information contained in
F , each sequence in si ∈ S is sorted by descending order of their frequency in the dataset
(line 10). Then, it inserts the sorted sequence in the FP-Tree structure by inserting only
places in si that meet minimum support threshold (line 11). Since places in each sequences
have to be sorted by descending order of their frequency in the dataset, the tree can be
processed quickly. Finally, for each unique place found in the dataset, the recursive processing
of the FP-Tree is executed for finding all frequent item sets. (line 13). Finally, all the frequent
itemsets found are returned (line 14).

We used a parallel implementation of FPGrowth, PFP[14], which is able to run in parallel
all the steps of FPGrowth. Specifically, the computations of frequent places in F (lines 1-6) is
parallelized by sharding and parallel counting. Moreover, the recursive calls to tree building
operation and the Growth procedure (lines 9-13) are parallelized by splitting the original
dataset into shards and then by aggregating the results.

4.3 Application results

A set of 24 popular places in the center of Rome have been considered to run the sequential
pattern mining task and the frequent itemset discovery task, both implemented as ParSoDA
applications. In the following, we discuss some of the most interesting results that have been
obtained by analyzing the real dataset.

The sequential pattern analysis has been carried out for discovering the most frequent
routes in Rome. In this experiment, it has been set a maximum time duration (gap) to
move from a place to another of 5 hours. This means that, if the time distance between
two contiguous places in sequence is greater than 5 hours, they will belong to different
sequences. Table 2 provides detailed information about the most frequent patterns and the
corresponding supports.

Table 2 Top 5 sequential patterns of length 2, 3, and 4 across places in Rome

Sequential pattern Support

Colosseum → St. Peter’s Basilica 9.07%
St. Peter’s Basilica → Colosseum 7.72%
Colosseum → Roman Forum 5.28%
Colosseum → Pantheon 4.44%
Colosseum → Trevi Fountain 4.19%

Colosseum → Roman Forum → St. Peter’s Basilica 4.4%
Vatican Museums → St. Peter’s Basilica → Colosseum 3.9%
Colosseum → Trevi Fountain → St. Peter’s Basilica 3.7%
Colosseum → Roman Forum → Pantheon 3.6%
Colosseum → Pantheon → St. Peter’s Basilica 3.6%

Colosseum → Trevi Fountain → Pantheon → St. Peter’s Basilica 0.64%
Colosseum → Roman Forum → Trevi Fountain → San St. Peter’s Basilica 0.61%
Colosseum → Roman Forum → Piazza Venezia → Piazza di Spagna 0.58%
Colosseum → Roman Forum → Piazza Venezia → St. Peter’s Basilica 0.58%
Colosseum → Roman Forum → Pantheon → St. Peter’s Basilica 0.58%

Considering the sequential patterns of length 2, the sequence {Colosseum → St. Peter’s
Basilica} is the most frequent route among places in Rome, followed by 9.07% of users. The
sequence {Colosseum → Roman Forum → St. Peter’s Basilica} is the most frequent route
of length 3, which is followed by 4.4% of users. Finally, the sequence {Colosseum → Trevi
Fountain → Pantheon → St. Peter’s Basilica} is the most frequent route of length 4 with a
quite low support of 0.64%. As an example, Figure 2 shows the top five interesting patterns
of length 3 which have been found by the PrefixSpan algorithm.



ParSoDA: High-Level Parallel Programming for Social Data Mining 13

Fig. 2 Top 5 sequential patterns of length 3.

Table 3 shows the top 5 places visited in Rome, with the corresponding support in the
data. The Colosseum is the most visited place, followed by the St. Peter’s Basilica.

Table 3 Top 5 places visited
in Rome

Place Support

Colosseum 21.7%

St Peter’s Basilica 13.9%

Trastevere 8.7%

Pantheon 6.5%

Trevi Fountain 5.3%

Table 4 Top 5 frequent sets of places visited in Rome

Set of places Support

Pantheon, St. Peter’s Basilica, Colosseum 5.3%

Trevi Fountain, St. Peter’s Basilica, Colosseum 4.5%

Roman Forum, St. Peter’s Basilica, Colosseum 4.4%

Vatican Museums, St. Peter’s Basilica, Colosseum 4.4%

Trevi Fountain, Pantheon, Colosseum 4.0%

Table 4 shows the most frequent itemsets of length 3 that have been discovered by the
PFP algorithm. Set {Pantheon, St. Peter’s Basilica, Colosseum} is the most frequent set of
places visited by social users in Rome, with a support of 5.3%. Combining the information
contained in Tables 3 and 4, an interesting result is that Trastevere, a popular district of
Rome, is the third most visited place, but it is not present in any frequent itemset. This
could happen because Trastevere is visited by people during the evening, for having a dinner
in one of its many restaurants or pubs, but it is not part of common tourist routes during
the daylight.

4.4 Usability evaluation

Writing a parallel data analysis application from scratch usually requires deep programming
skills and the writing of many lines of code. In fact, designing and implementing such kind
of applications pose a number of challenges to developers such as parallelization of complex
algorithms, reduction of communication costs, and optimization of memory usage. In this
section, we demonstrate the usability of ParSoDA by comparing the programming effort
required for coding data analysis applications using versus not using the ParSoDA library. In
particular, in the first part of the section, we discuss how the sequential pattern analysis
application shown in Listing 3 could be re-implemented in Hadoop without ParSoDA. In the
second part, we point out the reduction of lines of code obtained using ParSoDA.

Listing 5 shows the main program of the sequential pattern analysis application imple-
mented in Hadoop without ParSoDA (a similar code is obtained by coding the application in
Spark). A developer has to design the entire MapReduce job by implementing several classes
(e.g., input/output formats, partitioner, group and sort comparator). The whole process is
not easy to do and requires a deep knowledge of the Hadoop/Spark architecture.

1 public class ApplicationDriverHadoop {

public static class TextPair implements WritableComparable<TextPair> {

...

36 }



14 Loris Belcastro et al.

37 private static Configuration conf = new Configuration();

38 private static FileSystem fs = null;

39 private static Job job = null;

40 public static void main(String[] args) throws Exception {

41 String pathFlickrItems = "FlickrRome2017.json";

42 String pathRoIs = "RomeRealShapes.kml";

43 String outputBasePath = "outputMR/";

44 conf = new Configuration();

45 conf.set("fs.defaultFS", "file:///");

46 fs = FileSystem.get(conf);

47 job = Job.getInstance(conf);

48 job.setJobName("Extracting user movements from Rome Flickr dataset");

49 job.addCacheFile(new Path(pathRoIs).toUri());

50 MultipleInputs.addInputPath(job, new Path(pathFlickrItems), TextInputFormat.

class, DataMapper.class);

51 TextOutputFormat.setOutputPath(job, new Path(outputBasePath+"dataset"));

52 job.setMapOutputKeyClass(MainMR.TextPair.class);

53 job.setMapOutputValueClass(Text.class);

54 job.setPartitionerClass(SecondarySort.SSPartitioner.class);

55 job.setGroupingComparatorClass(SecondarySort.SSGroupComparator.class);

56 job.setSortComparatorClass(SecondarySort.SSSortComparator.class);

57 job.setReducerClass(DataReducer.class);

58 job.setNumReduceTasks(1);

59 job.setOutputKeyClass(NullWritable.class);

60 job.setOutputValueClass(Text.class);

61 fs.delete(new Path(outputBasePath), true);

62 boolean jobSuccessful = job.waitForCompletion(true);

63 String params = "-i " + outputBasePath+"dataset/part-r-00000 -o " +

outputBasePath + "mgfsm" + " -m d -g 3 --tempDir /tmp";

64 try {

65 String[] analysisParams = params.split(" ");

66 ToolRunner.run(new Configuration(), new FsmDriver(), analysisParams);

67 } catch (Exception e) { e.printStackTrace(); }

68 String vis_params = outputBasePath + "mgfsm/translatedFS/part-r-00000 " +

outputBasePath + "sortedFS";

69 VisualizeFSMResult.visualize(vis_params.split(" "));

70 }

71 }

Listing 5 The main program of the sequential pattern analysis application implemented in Hadoop without
ParSoDA.

In addition to the main program, other MapReduce classes must be implemented to
code the functions required by the application. For instance, mining data from different
social media requires writing many lines of code to implement crawlers for collecting data.
Moreover, to deal with data coming from different social media, specific parsers are needed
for converting data into a common format. To address this issues, ParSoDA includes some
crawlers and parsers and defines a common metadata model for representing data coming
from different social media. Without ParSoDA, for implementing data filtering and mapping
functions into a MapReduce application, a specific mapper class must be defined. Listing 6
shows the Hadoop mapper class that implements the data filtering functions (isGeotagged,
isInPlace) and mapping function (FindPoI ) used in Listing 3. The mapper is quite complex
and requires many lines of code. In contrast, ParSoDA allows developers to use predefined
functions, or to implement new ones by coding only the function logic, without worrying
about configuring the Hadoop environment and related classes.

1 public class DataMapper extends Mapper<LongWritable, Text, TextPair, Text> {

...

11 protected void setup(Mapper<LongWritable, Text, TextPair, Text>.Context context)

throws IOException, InterruptedException {

12 this.context = context;

13 loadRois();
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14 List<Predicate<GeotaggedItem>> filterFunctions = new LinkedList<Predicate<

GeotaggedItem>>();

15 filterFunctions.add(new IsGeotagged());

16 filterFunctions.add(new IsInRome());

17 itemFilter = filterFunctions.stream().reduce(e -> true, Predicate::and);

18 super.setup(context);

19 }

20 public void map(LongWritable key, Text value, Context context) throws

InterruptedException, IOException {

21 item = buildItem(value.toString());

22 if (item == null)

23 return;

24 if (itemFilter != null && !itemFilter.test(item))

25 return;

26 item = assignLocation(item, rois);

27 if (item == null)

28 return;

29 outputKey.left = new Text(item.search(mapperGroupKey).toString());

30 outputKey.right = new Text(item.search(mapperGroupSortKey).toString());

31 outputValue.set(item.toString());

32 context.write(outputKey, outputValue);

33 }

34 private static GeotaggedItem buildItem(String s) {

...

40 }

41 private static GeotaggedItem assignLocation(GeotaggedItem g, List<Roi> rois) {

...

57 }

58 private void loadRois() throws IOException {

...

87 }

...

98 }

Listing 6 Mapper class of the sequential pattern analysis application implemented in Hadoop.

With regards to the data partition step, it is necessary to implement the secondary sort
pattern, which enables to partition and sort data passed to each reducer. To do that, some
efforts and skills on the functioning of the Hadoop partition phase are required. Specifically,
four classes (SSPartitioner, SSGroupComparator, SSSortComparator, TextPair) have to be
implemented, which require to write more than 120 lines of code. Instead, the secondary
sort pattern is a built-in functionality of ParSoDA, which can be easily configured from the
application main.

Similarly, for implementing the data reduction function, a specific reducer class must
be defined. Listing 7 shows the Hadoop reducer class that implements the data reduction
function for extracting user trajectories across locations (ReduceByTrajectories in Listing 3).
In ParSoDA, user data can be easily aggregated in trajectories using a predefined function.

For the data analysis and visualization steps, ParSoDA provides a set of predefined
functions ready to use or alternatively an abstract class that can be extended to recall
existent algorithms available in external libraries or packages. Using an abstract class allows
developers to easily integrate algorithms within a social media application.

1 public class ReduceByTrajectories extends Reducer<TextPair, Text, NullWritable,

Text> {

...

11 @Override

12 protected void setup(Reducer<TextPair,Text,NullWritable,Text>.Context context)

throws IOException,InterruptedException {

...

18 }

19 @Override

20 public void reduce(TextPair key, Iterable<Text> values, Context context) throws

java.io.IOException, InterruptedException {
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21 List<String> res = concatenateLocationsByDay(values);

22 for (String tmp : res) {

23 outputValue.set(tmp);

24 context.write(NullWritable.get(), outputValue);

25 }

26 }

27 private List<String> concatenateLocationsByDay(Iterable<Text> listItems, int

dayStep) {

28 LocalDateTime oldTimestamp = new LocalDateTime(0);

29 LocalDateTime currTimestamp = null;

30 ret = new LinkedList<String>();

31 oldLocation = null;

32 currentLocation = null;

33 item = null;

34 s = null;

35 for (Text value : listItems) {

...

60 }

61 return ret;

62 }

63 }

Listing 7 Reducer class of the sequential pattern analysis application implemented in Hadoop.

In general, using ParSoDA leads to a drastic reduction of lines of code. As reported in
Table 5, it allows to achieve an overall reduction of 65% of lines of code for implementing the
sequential pattern analysis application. In particular, ParSoDA allows programmers to save
hundred lines of code in the main (as the programmer needs to specify only the functions
to be used and their parameters), in the data acquisition and data partition steps (where
built-in functionalities are exploited), as well as in the data filtering, mapping, and reduction
steps (where the programmer needs only to define the function logic). For the data analysis
and visualization steps, we used the same code to invoke external libraries, which does not
lead to a gain in terms of lines of code. However, for these steps, ParSoDA ensures many
advantages in terms of usability. In fact, in the application main defined through ParSoDA,
all the MapReduce jobs created for the different steps, such as the ones in the analysis
and visualization steps, are automatically chained. This means that the output of a job is
automatically used as input to the next step. In contrast, without ParSoDA, programmers
need to manually control the execution flow among different jobs.

Table 5 Total number of lines of code of the sequential pattern analysis application using versus not using
ParSoDA.

Step ParSoDA Hadoop

Main 29 71
Data acquisition 0 220
Data filtering 30 40
Data mapping 26 98
Data partitioning 0 120
Data reduction 5 63
Data analysis 120 120
Data visualization 75 75

Total 285 803

4.5 Scalability evaluation

We experimentally evaluated the scalability of ParSoDA by running the data analysis
applications on a private cloud infrastructure. Specifically, we used a cluster equipped with
1 head node and 12 worker nodes, each one with 25 CPU cores and 100 GB of memory
(altogether there are 300 CPU cores and 1200 GB of memory). In our experiments, we used



ParSoDA: High-Level Parallel Programming for Social Data Mining 17

 0

 1000

 2000

 3000

 4000

 5000

25 50 100 150 200 250 300

T
u

rn
a

ro
u

n
d

 t
im

e
 (

s
e

c
.)

# Cores

Sequential Pattern Analysis

128GB
256GB
512GB

1024GB

(a) Turnaround time.

 0

 1

 2

 3

 4

 5

 6

 7

25 50 100 150 200 250 300

S
p

e
e

d
u

p

# Cores

Sequential Pattern Analysis

  128GB
  256GB
  512GB
 1024GB

(b) Speedup.

Fig. 3 Turnaround time and relative speedup of the sequential pattern analysis for different data sizes.

the Spark version of ParSoDA, since, as demonstrated in [2], it resulted to be faster than the
Hadoop version of the library.

The analysis was carried out by analyzing a dataset containing 325 GB of social media
items published by Flickr and Twitter users from 2014 to 2016 referring to the center of
Rome. To perform a more complete scalability analysis, we randomly sampled the original
dataset to generate four datasets D128, D256, D512, D1024 that contains 128 GB, 256 GB,
512 GB and 1024 GB of data respectively.

The goal of the evaluation is to assess the scalability of the ParSoDA applications,
obtained by varying the number of worker nodes used (i.e., the number of cores exploited).
In particular, the following performance parameters have been considered:

– Turnaround time: the amount of time elapsed from the submission of an application to
its end;

– Speed-up: the ratio of the turnaround time using 1 worker node to the turnaround
time using n worker nodes, which indicates how much performance gain is obtained by
distributing data over an increasing number of nodes;

– Scale-up: the turnaround time when the problem size is increased linearly with the number
of worker nodes, which measures the capability of the system to manage increasing loads
when machines are added to accommodate that growth.

Figure 3 shows the results obtained with the sequential pattern analysis application.
Figure 3(a) shows the turnaround times of the ParSoDA application for the four datasets
considered using from 25 to 300 CPU cores (i.e., from 1 to 12 worker nodes). For the
smallest dataset (D128) the turnaround time decreases from 10 minutes using 25 cores to 2
minutes using 300 cores. For D256 the turnaround time decreases from 20 to 3.5 minutes. For
D512 the turnaround time decreases from 39 to 6.3 minutes. Finally, for the largest dataset
(D1024), the turnaround time ranges from 1.3 hour to 12 minutes. The scalability achieved
using ParSoDA can be evaluated through Figure 3(b), which illustrates the relative speedup
obtained by using up to 300 cores. For the smallest dataset (D128) the speedup passes from
1.9 using 50 cores to 4.7 using 300 cores. For D256 the speedup ranges from 1.9 to 5.6. For
D512 the speedup ranges from 1.9 to 6.2. Finally, with the largest dataset (D1024), we
obtained a speedup ranging from 1.9 to about 7. As shown in Figure 3(b), although the
speedup is not ideal, as the size of the analyzed dataset increases, also the system speedup
increases, because the system is able to exploit the parallel processing capability.

Figure 4 shows the results obtained with the frequent itemset analysis application. As
shown, the turnaround time (Figure 4(a)) and speedup (Figure 4(b)) are similar to those
obtained with the sequential pattern analysis application. However, some differences can
found by analyzing separately the contribution of step 6 (data analysis) from that of steps
1-5 (pre-processing), as described in Figure 5.
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Fig. 4 Turnaround time and relative speedup of the frequent itemset analysis for different data sizes.

Figure 5 measures the scale-up of both applications by showing the turnaround time
obtained when the dataset size increases proportionally to the number of worker nodes used
(i.e., from 128 GB using 25 cores, to 1024 GB using 200 cores). As mentioned before, the
figure also shows the time required by the ParSoDA applications for executing pre-processing
(steps 1-5) and data analysis (step 6).

Using the D128 with 25 cores the turnaround time of the sequential pattern analysis
application is 9.9 minutes, for D256 with 50 cores is 10.4 minutes, for D512 with 100 cores
is 11.4 minutes, while for D1024 with 200 cores is 13.4 minutes. Instead, the turnaround
time of the frequent itemset analysis application is 9.8 minutes, for D256 with 50 cores is
10.2 minutes, for D512 with 100 cores is 11.2 minutes, while for D1024 with 200 cores is 13
minutes.

In both cases, the results show that the turnaround time increases moderately as the
data size and the number of cores become greater. In particular, by analyzing the partial
times, we observe that the data analysis step increases slightly more than the other steps of
the application. Overall, the results show that the system is able to manage the increasing
computing load by increasing the number of processors.
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5 Conclusions

Social data mining is an important research area aimed at extracting useful information from
the big amount of data gathered from social media. To cope with the size and complexity of
social media data, the use of parallel and distributed data mining techniques is fundamental.
ParSoDA is a high-level library that can be used for building complex parallel social data
analysis applications. It defines a general structure for social data analysis programming that
includes a number of key steps (data acquisition, filtering, mapping, partitioning, reduction,
analysis, and visualization), and provides a predefined (but extensible) set of functions for
each step.

Parallel social data analysis applications based on the ParSoDA library can be run on
Cloud and HPC systems exploiting both Apache Hadoop and Spark. To assess the usability
and scalability of ParSoDA, we discussed two social data analysis applications implemented
through the library to extract sequential patterns and frequent itemsets from social media
data published in Flickr and Twitter. About usability, ParSoDA leads to a drastic reduction
(i.e., about 65%) of lines of code, since the programmer only has to implement the application
logic without worrying about configuring the environment and related classes. About the
scalability, the performance has been evaluated by running the data analysis applications on
a private Spark cluster with 300 cores and 1.2 TB of RAM. The results demonstrate that
ParSoDA is able to reach a good level of scalability as it allowed to reduce the execution
time up to 85%, compared to the execution on a cluster with 25 cores and 100 GB of RAM.

The ParSoDA library is available as open-source software at https://github.com/

SCAlabUnical/ParSoDA.
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