
NESUS
Network for Sustainable Ultrascale Computing

IC1305

First NESUS Workshop. October 2014

A Workflow-oriented Language for Scalable
Data Analytics

Fabrizio Marozzo, Domenico Talia, Paolo Trunfio

DIMES - University of Calabria, Italy
fmarozzo@dimes.unical.it, talia@dimes.unical.it, trunfio@dimes.unical.it

Abstract

Data in digital repositories are everyday more and more massive and distributed. Therefore analyzing them requires efficient data analysis
techniques and scalable storage and computing platforms. Cloud computing infrastructures offer an effective support for addressing both the
computational and data storage needs of big data mining and parallel knowledge discovery applications. In fact, complex data mining tasks
involve data- and compute-intensive algorithms that require large and efficient storage facilities together with high performance processors to
get results in acceptable times. In this paper we describe a Data Mining Cloud Framework (DMCF) designed for developing and executing
distributed data analytics applications as workflows of services. We describe also a workflow-oriented language, called JS4Cloud, to support the
design and execution of script-based data analysis workflows on DMCF. We finally present a data analysis application developed with JS4Cloud,
and the scalability achieved executing it on DMCF.

Keywords Cloud computing, Data analytics, Workflows, JS4Cloud

I. Introduction

Cloud computing provides elastic services, high performance and
scalable data storage to a large and everyday increasing number
of users [1]. Clouds enlarged the offer of distributed computing
systems by providing advanced Internet services that complement
and complete functionalities of distributed computing provided by
the Web, Grid computing and peer-to-peer networks. In fact, Cloud
computing systems provide large-scale infrastructures for complex
high-performance applications. Most of those applications use big
data repositories and needs to access and analyze them to extract
useful information.

Big data is a new and over-used term that refers to massive,
heterogeneous, and often unstructured digital content that is difficult
to process using traditional data management tools and techniques.
The term includes the complexity and variety of data and data
types, real-time data collection and processing needs, and the value
that can be obtained by smart analytics. Advanced data mining
techniques and associated tools can help extract information from
large, complex datasets that are useful in making informed decisions
in many business and scientific applications including advertising,
market sales, social studies, bioinformatics, and high-energy physics.
Combining big data analytics and knowledge discovery techniques
with scalable computing systems will produce new insights in a
shorter time [5].

Although a few cloud-based analytics platforms are available to-
day, current research work foresees that they will become common
within a few years. Some current solutions are open source systems
such as Apache Hadoop and SciDB, while others are proprietary
solutions provided by companies such as Google, IBM, EMC, BigML,
Splunk Storm, Kognitio, and InsightsOne. As more such platforms
emerge, researchers will port increasingly powerful data mining pro-
gramming tools and strategies to the cloud to exploit complex and
flexible software models such as the distributed workflow paradigm.

The growing use of service-oriented computing could accelerate

this trend. Developers and researchers can adopt the software as a
service (SaaS), platform as a service (PaaS), and infrastructure as a
service (IaaS) models to implement big data analytics solutions in the
cloud. In such a way, data mining tasks and knowledge discovery
applications can be offered as high-level services on Clouds. This
approach creates a new way to delivery data analysis software that
is called data analytics as a service (DAaaS).

Here we describe a Data Mining Cloud Framework (DMCF) that
we developed according to this approach. In DMCF, data analysis
workflows can be designed through visual programming, which is
a very effective design approach for high-level users, e.g. domain-
expert analysts having a limited understanding of programming.
Recently, we extended the DMCF system to support also script-based
data analysis workflows, as an additional and more flexible program-
ming interface for skilled users. To this end, in [4] we introduced a
workflow-oriented language, called JS4Cloud, to support the design
and execution of script-based data analysis workflows on DMCF.

II. Data Mining Cloud Framework

The DMCF has been designed to be implemented on different Cloud
systems. However, a first implementation of the framework has been
carried out on the Windows Azure cloud platform and has been
evaluated through a set of data analysis applications executed on a
Microsoft Cloud data center. The remainder of the section describes
system architecture, application execution, user interface, and visual
workflow programming.

II.1 System architecture
The architecture includes different kinds of components that can be
grouped into storage and compute components (see Figure 1). The
storage components include:

• A Data Folder that contains data sources and the results of

1

mailto:fmarozzo@dimes.unical.it
mailto:talia@dimes.unical.it
mailto:trunfio@dimes.unical.it


First NESUS Workshop. October 2014

knowledge discovery processes. Similarly, a Tool folder contains
libraries and executable files for data selection, pre-processing,
transformation, data mining, and results evaluation.

• The Data Table, Tool Table and Task Table that contain metadata
information associated with data, tools, and tasks.

• The Task Queue that manages the tasks to be executed.

Browser

1

2

3

Virtual
Servers

Cloud platform

Website

Web instances

Worker

Worker instances

Task Queue

5

6

Storage

4

Tool folderololol fofoldldlderlderData folderDaDatata fofofoldlderfo

User

Tables

Task TableTool TableData Table

Infrastructure

Figure 1: System architecture and application execution steps.

The virtual machines components are:

• A pool of Worker instances, which is in charge of executing the
data mining tasks submitted by users.

• A pool of Web instances host the Website, by allowing users to
submit, monitor the execution, and access the results of their
data mining tasks.

The Website is the user interface to three functionalities: i) App
submission, which allows users to submit single-task, parameter
sweeping, or workflow-based applications; ii) App monitoring, which
is used to monitor the status and access results of the submitted
applications; iii) Data/Tool management, which allows users to manage
input/output data and tools.

II.2 Applications execution
Figure 1 shows the main steps carried out for designing and execut-
ing a knowledge discovery application:

1. A user accesses the Website and designs the application (either
single-task, parameter sweeping, or workflow-based) through a
Web-based interface.

2. After application submission, the system creates a set of tasks
and inserts them into the Task Queue on the basis of the appli-
cation.

3. Each idle Worker picks a task from the Task Queue, and con-
currently executes it.

4. Each Worker gets the input dataset from the location specified
by the application. To this end, a file transfer is performed from
the Data Folder where the dataset is located, to the local storage
of the Worker.

5. After task completion, each Worker puts the result on the Data
Folder.

6. The Website notifies the user as soon as her/his task(s) have
completed, and allows her/him to access the results.

The set of tasks created on the second step depends on the type
of application submitted by a user. In the case of a single-task
application, just one data mining task is inserted into the Task Queue.
If the user submits a parameter sweeping application, the set of tasks
corresponding to the combinations of the input parameters values
are executed in parallel. If a complex workflow-based application
must be executed, the set of tasks created depends on how many
data mining tools are invoked within the workflow. Initially, only
the workflow tasks without dependencies are inserted into the Task
Queue.

II.3 User interface

The App submission section of the Website is composed of two main
parts: one pane for composing and running both single-task and
parameter-sweeping applications and another pane for programming
and executing workflow-based knowledge discovery applications.
As an example, Figure 2 shows a screenshot of the App submis-
sion section, taken during the execution of a parameter-sweeping
application.

Figure 2: Screenshot of the App submission section.

Users can monitor the status of each single task through the App
monitoring section, as shown in Figure 3. For each task, the current
status (submitted, running, done or failed) and status update time
are shown. Moreover, for each task that has completed its execution,
two links are enabled: the first one (Stat) gives access to a file
containing some statistics about the amount of resources consumed
by the task; the second one (Result) visualizes the task result.

2



First NESUS Workshop. October 2014

Figure 3: Screenshot of the App monitoring section.

II.4 Visual workflow programming
The DMCF includes a visual programming interface and its services
to support the composition and execution of workflow-based knowl-
edge discovery applications. Workflows provide a paradigm that
may encompass all the steps of discovery based on the execution of
complex algorithms and the access and analysis of scientific data. In
data-driven discovery processes, knowledge discovery workflows
can produce results that can confirm real experiments or provide
insights that cannot be achieved in laboratories.

Visual workflows in DMCF are directed acyclic graphs whose
nodes represent resources and whose edges represent the dependen-
cies among the resources. Workflows include two types of nodes:

• Data node, which represents an input or output data element.
Two subtypes exist: Dataset, which represents a data collection,
and Model, which represents a model generated by a data
analysis tool (e.g., a decision tree).

• Tool node, which represents a tool performing any kind of
operation that can be applied to a data node (filtering, splitting,
data mining, etc.).

The nodes can be connected with each other through direct edges,
establishing specific dependency relationships among them. When
an edge is being created between two nodes, a label is automatically
attached to it representing the kind of relationship between the
two nodes. Data and Tool nodes can be added to the workflow
singularly or in array form. A data array is an ordered collection of
input/output data elements, while a tool array represents multiple
instances of the same tool.

Figure 4 shows a data mining workflow composed of several
sequential and parallel steps as an example for presenting the main
features of the visual programming interface of the DMCF [3]. The
example workflow analyzes a dataset by using several instances of a
classification algorithm that run in parallel on several cloud servers.

III. Script-based workflow programming

JS4Cloud (JavaScript for Cloud) is a JavaScript-based language for
programming data analysis workflows [4]. The Web interface of
DMCF allows to design and execute workflows programmed by the
JS4Cloud language, by providing an environment similar to that
used to develop visual workflows in the same framework.

The main benefits of JS4Cloud are: i) it is based on a well known
scripting language, so that users do not have to learn a new pro-
gramming language from scratch; ii) it implements a data-driven
task parallelism that automatically spawns ready-to-run tasks to
the available Cloud resources; iii) it exploits implicit parallelism so
application workflows can be programmed in a totally sequential
way.

Two key programming abstractions in JS4Cloud are Data and Tool
elements:

• Data elements denote input files or storage elements, or output
files or stored elements.

• Tool elements denote algorithms or software tools.

For each Data and Tool element included in a JS4Cloud workflow,
an associated descriptor, expressed in JSON format, will be included
in the environment of the user who is developing the workflow.

A Tool descriptor includes a reference to its executable, the re-
quired libraries, and the list of input and output parameters. Each
parameter is characterized by name, description, type, and can be
mandatory or optional. The JSON descriptor of a new tool is cre-
ated automatically through a guided procedure provided by DMCF,
which allows users to specify all the needed information for invoking
the tool (executable, input and output parameters, etc.).

Similarly, a Data descriptor contains information to access an
input or output file, including its identifier, location, and format.
Differently from Tool descriptors, Data descriptors can also be cre-
ated dynamically as a result of a task operation during the execution
of a JS4Cloud script. For example, if a workflow W reads a dataset
Di and creates (writes) a new dataset Dj, only Di’s descriptor will
be present in the environment before W’s execution, whereas Dj’s
descriptor will be created at runtime.

Another key element in JS4Cloud is the task concept, which repre-
sents the unit of parallelism in our model. A task is a Tool, invoked
from the script code, which is intended to run in parallel with other
tasks on a set of Cloud resources.

According to this approach, JS4Cloud implements data-driven task
parallelism. This means that, as soon as a task does not depend on
any other task in the same workflow, the runtime asynchronously
spawns it to the first available virtual machine. A task Tj does not
depend on a task Ti belonging to the same workflow (with i 6= j), if
Tj during its execution does not read any data element created by
Ti .

III.1 JS4Cloud functions

JS4Cloud extends JavaScript with three additional functionalities,
implemented by the set of functions listed in Table 1:

• Data Access, for accessing a data element stored in the Cloud;

• Data Definition: to define a new data element that will be created
at runtime as a result of a tool execution;

• Tool Execution: to invoke the execution of a tool available in the
Cloud.

3



First NESUS Workshop. October 2014

Figure 4: A visual workflow for parallel classification.

Table 1: JS4Cloud functions.

Functionality Function Description

Data
Access

Data.get(<dataName>); Returns a reference to the data element with the provided
name.

Data.get(new RegExp(<regular expression>)); Returns an array of references to the data elements whose
name match the regular expression.

Data
Definition

Data.define(<dataName>); Defines a new data element that will be created at run-
time.

Data.define(<arrayName>,<dim>); Define an array of data elements.

Data.define(<arrayName>,[<dim1>,...,<dimn>]); Define a multi-dimensional array of data elements.

Tool
Execution

<toolName>(<par1>:<val1>,...,<parn>:<valn>); Invokes an existing tool with associated parameter val-
ues.

Data Access is implemented by the Data.get function, which is
available in two versions: the first one receives the name of a data
element, and returns a reference to it; the second one returns an
array of references to the data elements whose name match the
provided regular expression. For example, the following statement:

var ref = Data.get("Census");

assigns to variable ref a reference to the dataset named Census,
while the following statement:

var ref = Data.get(new RegExp("^CensusPart"));

assigns to ref an array of references (ref[0]...ref[n-1]) to all the
datasets whose name begins with CensusPart.

Data Definition is done through the Data.define function, avail-
able in three versions: the first one defines a single data element; the
second one defines a one-dimensional array of data elements; the
third one defines a multi-dimensional array of data elements. For
instance, the following piece of code:

var ref = Data.define("CensusModel");

defines a new data element named CensusModel and assigns its
reference to variable ref, while the following statement:

var ref = Data.define("CensusModel", 16);

defines an array of data elements of size 16 (ref[0]... ref[15]).
In both cases, the data elements will be created at runtime as result
of a tool execution.

Differently from Data Access and Data Definition, there is not a
named function for Tool Execution. In fact, the invocation of a tool T
is made by calling a function with the same name of T. For example,
the following statement:

DTree({dataset:DRef, confidence:0.05, model:MRef});

invokes a tool named DTree, where DRef is a reference to the dataset
to be analyzed, previously introduced using the Data.get func-
tion, MRef is a reference to the model to be generated, previously
introduced using Data.define.

III.2 Basic patterns

Several workflow patterns can be implemented with JS4Cloud [4].
Figure 5 shows four examples of patterns that can be defined in
JS4Cloud workflows, namely data partitioning, data aggregation,
parameter sweeping and input sweeping. For each pattern, the
figure shows an example as a visual DMCF workflow, and how the
same example can be coded using JS4Cloud.

The data partitioning pattern produces two or more output data
from an input data element, as in Figure 5-a1, where a Partitioner
tool divides a dataset into a number of splits. With JS4Cloud, this
can be written as shown in Figure 5-a2.

4



First NESUS Workshop. October 2014

NetLog Partitioner

dataset datasetParts

NetLogPart[16]

SCensus J48 CensusTree

var DRef = Data.get("NetLog");

var PRef = Data.define("NetLogParts", 16);

Partitioner({dataset:DRef, datasetParts:PRef});

a1) a2)

ModelChooser

models bestModel

Model[8] BestModel

var BMRef = Data.define("BestModel");

ModelChooser({models:MsRef, bestModel:BMRef});

b1) b2)

TrainSet J48[5]
PS: confidence

Model[5]

dataset model

var TRef = Data.get("TrainSet");

var nMod = 5;

var MRef = Data.define("Model", nMod);

var min = 0.1;

var max = 0.5;

for(var i=0; i<nMod; i++)

J48({dataset:TRef, model:MRef[i],

confidence:(min+i*(max-min)/(nMod-1))});

c1) c2)

TrainSet[16] J48[16]
PS: dataset

Model[16]

dataset model

var nMod = 16;

var MRef = Data.define("Model", nMod);

for(var i=0; i<nMod; i++)

J48({dataset:TsRef[i], model:MRef[i],

confidence:0.1});

d1) d2)

Figure 5: Visual (left) and JS4Cloud (right) workflow patterns: a) data partitioning; b) data aggregation; c) parameter sweeping; d) input sweeping.

The data aggregation pattern generates one output data from multi-
ple input data, as in Figure 5-b1, where a ModelChooser tool takes
as input eight data mining models and chooses the best one based
on some evaluation criteria. The same task can be coded using
JS4Cloud as shown in Figure 5-b2.

Parameter sweeping is a data analysis pattern in which a dataset
is analyzed by multiple instances of the same tool with different
parameters, as in the example shown in Figure 5-c1. In this exam-
ple, a training set is processed in parallel by 5 instances of the J48
data classification tool to produce the same number of data mining
models. The J48 instances differ each other by the value of a single
parameter, the confidence factor, which has been configured (through
the visual interface) to range from 0.1 to 0.5 with a step of 0.1. The
equivalent JS4Cloud script is shown in Figure 5-c2.

Finally, input sweeping is a pattern in which a set of input data is
analyzed independently to produce the same number of output data.
It is similar to the parameter sweeping pattern, with the difference
that in this case the sweeping is done on the input data rather
than on a tool parameter. An example of input sweeping pattern
is represented in Figure 5-d1. In this example, 16 training sets are
processed in parallel by 16 instances of J48, to produce the same
number of data mining models. The corresponding JS4Cloud script
is shown in Figure 5-d2.

III.3 Example of JS4Cloud workflow

We describe a JS4Cloud workflow that analyzes a dataset using n
instances of the J48 classification algorithm that work on n partitions

of the training set and generate n knowledge models. By using
the n generated models and the test set, n classifiers produce in
parallel n classified datasets (n classifications). In the final step
of the workflow, a voter generates the final classification (in the
file FinalClassTestSet) by assigning a class to each data item.
This is done by choosing the class predicted by the majority of the
models [6].

The input dataset, containing about 46 million tuples and with a
size of 5 GB, was generated from the KDD Cup 1999’s dataset, which
contains a wide variety of simulated intrusion records in a military
network environment.

Figure 6 shows the JS4Cloud code of the workflow. At the be-
ginning, the input dataset is split into training set and test set by a
partitioning tool (line 3). Then, the training set is partitioned into
64 parts using another partitioning tool (line 5). As third step, the
training sets are analyzed in parallel by 64 instances of the J48 clas-
sification algorithm, to produce the same number of classification
models (lines 7-8). The fourth step classifies the test set using the 64
models generated on the previous step (lines 10-11). The classifica-
tion is performed by 64 classifiers that run in parallel to produce 64
classified test sets. As the last operation, the 64 classified test sets
are passed to a voter that produces the final classified test set.

Beside each code line number, a colored circle indicates the status
of execution. The green circles at lines 3 and 5 indicate that the two
partitioners have completed their execution; the blue circle at line 8
indicates that J48 tasks are still running; the orange circles indicates
that the corresponding tasks are waiting to be executed.

Figure 7 shows the turnaround times of the workflow, obtained

5



First NESUS Workshop. October 2014

Figure 6: JS4Cloud workflow running in the DMCF’s user interface.

varying the number of virtual servers used to run it on the Cloud
from 1 (sequential execution) to 64 (maximum parallelism). As
shown in the figure, the turnaround time decreases from more than
107 hours (4.5 days) by using a single server, to about 2 hours on 64
servers. This is an evident and significant reduction of time, with a
speedup ranging from 7.64 using 8 servers to 50.78 using 64 servers.
This is a very positive result, taking into account that some sequential
parts of the implemented application (namely, partitioning and
voting) do not run in parallel.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

1 8 16 32 64

T
u

rn
a

ro
u

n
d

 t
im

e
 (

s
e

c
.)

Number of servers

Figure 7: Turnaround time vs number of available servers.

IV. Concluding remarks

Cloud computing [2] provides scalable resources for Big data mining
and parallel knowledge discovery applications. In fact, Clouds offer
large and efficient storage facilities with high performance proces-
sors to get results in reduced times. In this paper we presented a
Data Mining Cloud Framework (DMCF) designed for developing
and running distributed data analytics applications as collections of
services. In this framework, data sets, data mining algorithms and
knowledge models are implemented as services that can be com-
bined through a visual interface to produce distributed workflows
executed on Clouds.

Recently, we extended the DMCF system to support also script-

based data analysis workflows, as an additional and more flexible
programming interface for skilled users. To this end, we introduced a
workflow-oriented language, called JS4Cloud, to support the design
and execution of script-based data analysis workflows on DMCF.
Experimental performance results, obtained designing and executing
JS4Cloud workflows in DMCF, have proven the effectiveness of
the proposed language for programming data analysis workflows,
as well as the scalability that can be achieved by executing such
workflows on a public Cloud infrastructure.

Acknowledgment
The work presented in this paper has been partially supported
by EU under the COST programme Action IC1305, ’Network for
Sustainable Ultrascale Computing (NESUS)’.

References

[1] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D.
Joseph, Randy Katz, Andy Konwinski, Gunho Lee, David Pat-
terson, Ariel Rabkin, Ion Stoica, and Matei Zaharia. A view of
cloud computing. Commun. ACM, 53(4):50–58, April 2010.

[2] Cloud Computing Expert Group. The future of cloud computing.
Report from European Commission, January 2010.

[3] F. Marozzo, D. Talia, and P. Trunfio. A cloud framework for
big data analytics workflows on azure. In Proc. of the 2012 High
Performance Computing Workshop, HPC 2012. 2012.

[4] Fabrizio Marozzo, Domenico Talia, and Paolo Trunfio. Scalable
script-based data analysis workflows on clouds. In Proc. of the 8th
Workshop on Workflows in Support of Large-Scale Science (WORKS
2013), pages 124–133, Denver, CO, USA, November 2013. ACM
Press.

[5] Domenico Talia. Clouds for scalable big data analytics. IEEE
Computer, 46(5):98–101, 2013.

[6] Z.-H. Zhou and M. Li. Semi-supervised learning by disagree-
ment. Knowl. Inf. Syst., 24(3):415–439, 2010.

6


	Introduction
	Data Mining Cloud Framework
	System architecture
	Applications execution
	User interface
	Visual workflow programming

	Script-based workflow programming
	JS4Cloud functions
	Basic patterns
	Example of JS4Cloud workflow

	Concluding remarks

