
Noname manuscript No.
(will be inserted by the editor)

Exploiting in-memory storage for improving workflow
executions in Cloud platforms

Francisco Rodrigo Duro · Fabrizio Marozzo ·
Javier Garcia Blas · Domenico Talia ·
Paolo Trunfio

Received: date / Accepted: date

Abstract The Data Mining Cloud Framework (DMCF) is an environment
for designing and executing data analysis workflows in cloud platforms.
Currently, DMCF relies on the default storage of the public cloud provider
for any I/O related operation. This implies that the I/O performance of
DMCF is limited by the performance of the default storage. In this work we
propose the usage of the Hercules system within DMCF as an ad-hoc storage
system for temporary data produced inside workflow-based applications.
Hercules is a distributed in-memory storage system highly scalable and
easy to deploy. The proposed solution takes advantage of the scalability
capabilities of Hercules to avoid the bandwidth limits of the default storage.
We evaluated the performance of Hercules compared with the Microsoft
Azure Storage solution by using synthetic benchmarks with the objective of
demonstrating the viability of the proposed solution. Then, we evaluated
the integration of Hercules and DMCF on a real application consisting of
a workflow that accesses temporary data using either Azure storage or
Hercules. The I/O overhead in this real-life scenario using Hercules has been
reduced by 36% with respect to Azure storage, leading to a 13% reduction
of the total execution time. This confirms that our in-memory approach is
effective in improving the performance of data-intensive workflow executions
in Cloud-based platforms.

F. R. Duro and J. G. Blas
ARCOS, University Carlos III Madrid
Spain
E-mail: [frodrigo, fjblas]@arcos.inf.uc3m.es

F. Marozzo, P. Trunfio and D. Talia
DIMES, University of Calabria
Italy
E-mail: [fmarozzo, talia, trunfio]@dimes.unical.it

2 Francisco Rodrigo Duro et al.

Keywords DMCF · Hercules · workflows · in-memory storage · data cache ·
Microsoft Azure

1 Introduction

In the last decade, most of the scientific computing problems are increasing
their needs to process large quantities of data. Large simulations, data visu-
alization, and big data problems are some of the application areas leading
the trends in scientific computing. This evolution is moving needs from a
computing-centric power point of view to a data-centric approach. Current
trends in High Performance Computing (HPC) also include the use of cloud
infrastructures as a flexible approach to virtually limitless computing re-
sources. Given this current scenario, a solution that combines HPC, data
analysis, and cloud computing is becoming more and more necessary.

According to their elastic feature, cloud computing infrastructures can
serve as effective platforms for addressing the computational and data storage
needs of most big data applications that are being developed nowadays.
However, coping with and gaining value from cloud-based, big data requires
novel software tools and advanced analysis techniques. Indeed, advanced
data mining techniques and innovative tools can help users to understand
and extract what is useful in large and complex datasets for making informed
decisions in many business and scientific applications.

The Data Mining Cloud Framework (DMCF) [12] is an environment
for designing and executing data analysis workflows in cloud platforms.
Currently, DMCF uses the storage supplied by the cloud provider for any
I/O related job. This implies that the I/O performance of DMCF is limited by
the performance of the default storage system. Moreover, it is influenced by
the contention that occurs when other I/O tasks are concurrently executed in
the same region. Finally, the cost of using a persistent storage service to store
temporary data should be also taken into account. The solution proposed here
consists in using Hercules as storage system for temporary data produced
in workflows. Hercules is a distributed in-memory storage system, easy to
deploy and highly scalable [4].

This novel approach has three main objectives. The first one is taking
advantage of the scalability of Hercules to avoid the bandwidth limits of the
default storage. When the number of Hercules I/O nodes increases, the total
available aggregated bandwidth usable by worker nodes is enhanced. The
second objective is to allow the deployment, thanks to the easy deployment
of Hercules, of an ad-hoc and independent in-memory storage system to
avoid the contention produced during peak-loads in the cloud storage service.
The last objective is the independence from the cloud platform used. While
each cloud infrastructure has different APIs to access their storage services,

Title Suppressed Due to Excessive Length 3

Hercules has interfaces for commonly used APIs (like POSIX-like, put/get,
MPI-IO) in order to imply minor modifications to existing code.

An extensive evaluation has been performed to evaluate the performance
of Hercules compared with Microsoft Azure storage using synthetic bench-
marks to demonstrate the viability of the solution [14]. Furthermore, we
evaluated the integration of Hercules and DMCF on a real application con-
sisting of a workflow that can access to temporary data using either Azure
storage or Hercules. Using Hercules, the I/O overhead in this real-life scenario
has been reduced by 36% with respect to Azure storage, leading to a 13%
reduction of the total execution time. This confirms that our in-memory ap-
proach is effective in improving the performance of data-intensive workflow
execution in Cloud platforms.

The remainder of this paper is organized as follows. Section 2 describes
the main features of DMCF. Section 3 introduces Hercules architecture and
capabilities. Section 4 emphasizes the advantages of integrating DMCF and
Hercules and outlines how this integration will work. Section 5 evaluates the
performance of Hercules compared with Microsoft Azure storage. Section 6
evaluates the integration between DMCF and Hercules. Section 7 discusses
related work. Finally, Section 8 concludes the paper.

2 Data Mining Cloud Framework

The Data Mining Cloud Framework (DMCF) [12] is a software system de-
signed for designing and executing data analysis workflows on Clouds. A
Web-based user interface allows users to compose their applications and to
submit them for execution to the Cloud platform, following a Software-as-a-
Service (SaaS) approach.

The architecture of DMCF includes different components that can be
grouped into storage and compute components (see Figure 1).

The storage components include:

– A Data Folder that contains data sources and the results of knowledge dis-
covery processes. Similarly, a Tool Folder contains libraries and executable
files for data selection, pre-processing, transformation, data mining, and
evaluation of results.

– Data Table, Tool Table and Task Table contain metadata information associ-
ated with data, tools, and tasks.

– The Task Queue contains the tasks that are ready for execution.

The compute components are:

– A pool of Virtual Compute Servers (or Workers), which are in charge of
executing the data analysis tasks.

– A pool of Virtual Web Servers that host the Web-based user interface.

4 Francisco Rodrigo Duro et al.

Infrastructure

Fig. 1 Architecture of Data Mining Cloud Framework.

The DMCF architecture has been designed to be implemented on top of
different Cloud systems. The implementation used in this work is based on
Microsoft Azure1.

A user interacts with the system to perform the following steps for de-
signing and executing a knowledge discovery application[10]:

1. The user accesses the Website and designs the workflow through a Web-
based interface.

2. After submission, the system creates a set of tasks and inserts them into
the Task Queue on the basis of the workflow.

3. Each idle Virtual Compute Server picks a task from the Task Queue, and
concurrently executes it.

4. Each Virtual Compute Server gets the input dataset from the location
specified by the workflow. To this end, a file transfer is performed from
the Data Folder where the dataset is located to the local storage of the
Virtual Compute Server.

5. After task completion, each Virtual Compute Server puts the results on
the Data Folder.

6. The Website notifies the user as soon as her/his task(s) have completed,
and allows her/him to access the results.

The set of tasks created on the second step depends on how many data
analysis tools are invoked within the workflow. Initially, only the workflow
tasks without dependencies are inserted into the Task Queue. All the potential
parallelism of the workflow is exploited by using all the needed Virtual
Compute Servers.

DMCF allows to program data analysis workflows using two languages:

1 http://azure.microsoft.com

Title Suppressed Due to Excessive Length 5

– VL4Cloud (Visual Language for Cloud), a visual programming language
that lets users develop applications by programming the workflow com-
ponents graphically[11].

– JS4Cloud (JavaScript for Cloud), a scripting language for programming
data analysis workflows based on JavaScript [12].

Both languages use two key programming abstractions:

– Data elements, denoting input files or storage elements (e.g., a dataset
to be analyzed) or output files or stored elements (e.g., a data mining
model).

– Tool elements, denoting algorithms, software tools or complex applications
performing any kind of operation that can be applied to a data element
(data mining, filtering, partitioning, etc.).

Another common element is the Task concept, which represents the unit
of parallelism in our model. A task is a Tool invoked in the workflow, which
is intended to run in parallel with other tasks on a set of Cloud resources.
According to this approach, VL4Cloud and JS4Cloud implement a data-driven
task parallelism. This means that, as soon as a task does not depend on any
other task in the same workflow, the runtime asynchronously spawns it to
the first available virtual machine (VM). A task Tj does not depend on a task
Ti belonging to the same workflow (with i 6= j), if Tj during its execution does
not read any data element created by Ti.

3 Hercules

Hercules [4] is a distributed in-memory storage system based on the key/-
value Memcached database [5]. The distributed memory space can be used
by the applications as a virtual storage device for I/O operations and has
been especially adapted in this work for being used as an in-memory shared
storage for cloud infrastructures. Our solution relies on an improved version
of Memcached servers, for offering an alternative storage solution to the
default cloud storage service provided by Azure.

As can be seen in the Figure 2, Hercules architecture has two main
layers: front-end (worker library) and back-end (server layer). On top is the
worker user-level library based on a layered design. Back-ends are based
on the Memcached server, extending its functionality with persistence and
tweaks. Main advantages offered by Hercules are: scalability, easy deployment,
flexibility, and performance.

Scalability is achieved by fully distributing data and metadata informa-
tion among all the nodes, avoiding the bottlenecks produced by centralized
metadata servers. Data and metadata placement is completely calculated in
the worker-side by a hash algorithm. The servers, on the other hand, are
completely stateless.

6 Francisco Rodrigo Duro et al.

!"#$% !"#$& !"#$'

!"#$%# &"'%

()*+,-.%%'&%/0"#$

(%#123%- 456,&"'% 7 (%#123%- 456,&"'% !"#

()*+*,

"-./012340# 567*,8

(092"2/0- 4:;1"1< =1>?@+0?-

!"#$?+&

(092"2/0- ;"2$+0?-

(092"2/0- -:#@1:;3@0-/"#/A9"B

)01#:#@0?209"?"C01

(092"2/0- ;"2$+0?-

)01#:#@0?209"?"C01

D0?01:2)01#:#@0?20 B43C:?

E>FGH7I

,@/01

(092"2/0-

H>2"4AJF

D0?01:2)01#:#@0?20 B43C:?

E>FGH7I

,@/01

(092"2/0-

H>2"4AJF

K012340# 4:;1"1<

Fig. 2 Hercules architecture. On the top the worker side, a user-level library. On the bottom the
server side with the Hercules I/O nodes divided in modules.

Easy deployment and flexibility at worker-side are tackled using a POSIX-
like user-level interface (open, read, write, close, etc.) in addition to classic
put/get approach existing in current NoSQL databases. Existing software
requires minimum changes to run using Hercules. The layered design offers
the possibility of performing any future change with the minimum required
effort. Servers can be deployed in any kind of Linux systems at user level,
without requiring any special privileges. Persistence can be easily configured
using the existing plugins or developing new ones. An MPI-IO interface is
also available for legacy software relying on MPI as communication system.

Finally, performance and flexibility at server-side are targeted by exploit-
ing the parallel I/O capabilities of Memcached servers. Flexibility is achieved
by Hercules due to its easiness to be deployed dynamically on as many
nodes as necessary. Each node can be accessed independently, multiplying
the total throughput peak performance. Furthermore, each node can serve
requests in a concurrent way thanks to a multi-threading implementation.
The combination of these two factors results in full scalability: both when the
number of nodes increases and when the number of workers running on the
same node increases.

Title Suppressed Due to Excessive Length 7

4 Integration between DMCF and Hercules

The final objective of this joint research work is the integration of DMCF and
Hercules. As can be seen in Figure 3, Hercules and DMCF can be configured in
more than one deployment scenarios to achieve different levels of integration.

AZURE

STORAGE

WORKER 0

WORKER 1

WORKER N-1

WORKER 0

WORKER 1

WORKER N-1

HERCULES

NODE 0

HERCULES

NODE 1

HERCULES

NODE M-1

WORKER/

HERCULES

NODE 0

WORKER/

HERCULES

NODE 1

WORKER/

HERCULES

NODE N-1

WORKER/

HERCULES

NODE 2

AZURE

STORAGE

Fig. 3 Deployment scenarios for the combination of Hercules and DMCF infrastructures.

The first scenario shows the original approach of DMCF, where every
I/O operation is done against the cloud storage service offered by the cloud
provider, which is Azure Storage in this work. While this storage service
is suitable for persistent data, it could be inefficient for temporary data.
The main benefits of a cloud storage service are the convenience of using
every tool offered by the same provider and the persistence options offered,
even in different geographical regions. Nevertheless, there are, at least, four
disadvantages about this approach. First, proprietary interfaces and tools
to access the storage service offered by different providers. Second, the
performance offered by this services could have limitations that can not be
avoided and performance could not be stable when there are peaks of use by
other users. Third, the storage services are offered in a closed configuration,
and can not be customized for the necessities of users at any time. Fourth, the
cloud philosophy is tightly related with the pay-per-use concept. However, it
does not make sense to pay for temporary data as if it was persistent data.

The second scenario, and the first contribution of this paper, is to use
Hercules as the default storage for temporary generated data. Temporary
data is becoming more and more popular in data analysis and many-task
based applications. Most of these applications are developed as a sequence of
tasks that communicate by using temporary files. Hercules I/O nodes can be
deployed on as many VM instances as needed by the user depending on the
required performance and the characteristics of data. Even the instance type
can be configured according to the necessities of each different application.
As stated in Section 3, Hercules offers different user-level interfaces such as

8 Francisco Rodrigo Duro et al.

POSIX-like, put/get, and MPI-IO, allowing a more flexible deployment of
legacy applications than the default cloud storage service. Cost-wise it is
needed to better study the competition between using a persistence-focused
service against launching Hercules I/O node instances as temporary storage.

The third scenario shows an even tighter integration of DMCF and Her-
cules infrastructures. In this scenario, initial input and final output are stored
on persistent Azure storage, while intermediate data are stored on Hercules
in-memory nodes. Hercules I/O nodes share virtual instances with the DMCF
workers. If the data needed by a DMCF worker is stored inside the Hercules
I/O node running in the same instance, it will not be necessary to use the
network for accessing data, thus every I/O operation will be completely local.

5 Evaluating in-memory versus persistent storage operations

To demonstrate the capabilities of Hercules in accelerating the I/O operations
of DMCF workers, we evaluated the performance of the Azure Storage
service against our proposed solution. For this purpose, we have designed
and implemented a simple benchmark, referred from now on as Filecopy
Benchmark. In this benchmark, a configurable number of workers perform
two simple tasks per worker: the first one is writing files to the configured
storage (Azure Storage or Hercules) and, after the write task is complete,
a read task starts over the data written previously. The benchmark is fully
configurable in terms of:

– Number of worker nodes: each worker node is a VM deployed in Azure.
– Number of workers per node: worker processes running in the same node

in parallel. This parameter is important to evaluate how the storage
solutions will behave in multi-core architectures and how they perform
when different worker processes share the same network interface.

– File size: the total size in MegaBytes (MB) of the file can be configured to
simulate different problem sizes.

– Chunk size: in Azure storage, a BLOB object is divided into blocks (maxi-
mum block size of Azure Storage is 4 MB, not enough for large files). The
Java library used for accessing to Azure Storage, automatically divides a
block object in the required number of block objects. In addition to this
behavior, our implementation divides a file into different BLOB objects.
Chunk size parameter is the size of each of the block objects that are part
of a complete file. In Hercules, it corresponds to the buffer size of the
POSIX write operation. Internally, Hercules divides the files in blocks
adapted to the key-value hashmap of Memcached.

The computing resources used during the evaluation are completely based
on Microsoft Azure. Table 1 shows the characteristics of the different instance
types used during our evaluation. All the resources used were located on the

Title Suppressed Due to Excessive Length 9

Table 1 Azure instance type characteristics.

Type Cores RAM (GB) Bandwidth (Mbps)1 Price (e/h)

A0 1 0.75 <100 0.017
A1 1 1.75 ∼240 0.050
A2 2 3.50 ∼480 0.101
A3 4 7.00 ∼960 0.202
A4 8 14.00 ∼1700 0.408
D1 1 3.50 ∼480 0.097
D2 2 7.00 ∼900 0.194
D3 4 14.00 ∼1600 0.388
D4 8 28.00 ∼2000 0.776

"Western Europe" region and the OS installed on the VMs was Ubuntu 14.04
LTS. It is also worth to be noted that, as the objective of the research work is
to use Hercules as temporary storage, persistence features are disabled.

5.1 Chunk size evaluation

For the first evaluation case, we have fixed the file size to 128 MB, to have
a file size that is big enough to show the performance with different chunk
sizes. The chunk size will vary during the evaluation and we have used the
five standard (A0-A4) instance types. Figure 4(a) shows the performance
achieved during the write operations and Figure 4(b) the read operations
performance. As it can be seen in these figures, Azure Storage performs
much better for read (up to 72 MB/s) than for write operations (up to 38
MB/s). Also, the performance increases with the chunk size, achieving the
best performance around the 32 MB mark. Finally, it is interesting to note
how the performance varies with the instance type used: as expected, the
most expensive instances have the better performance.

5.2 Hercules I/O nodes scalability

The next phase in the evaluation process is the measurement of the per-
formance difference between Azure Storage and Hercules using different
configurations. Also, we evaluate how Hercules scales its performance as
the number of deployed I/O nodes increases. After some quick bandwidth
evaluation cases (results showed in Table 1), we selected D1 and D2 instances
as the best performers in network bandwidth per core ratio. D1 instances
achieve a peak performance of 60 MB/s using one core while D2 tops at
around 115 MB/s with two cores, managing to reach almost the best possible

1 Bandwidth measured experimentally using iperf tool between two VMs of the same instance
type in the same region.

10 Francisco Rodrigo Duro et al.

 0

 10

 20

 30

 40

 50

 60

 70

 80

64 KB 128 KB 256 KB 512 KB 1 MB 2 MB 4 MB 8 MB 16 MB 32 MB 64 MB 128 MB

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Chunk size

A0
A1
A2
A3
A4

(a) Throughput of Azure Storage by using the Filecopy Benchmark (128 MBytes)
for evaluating the block size for writes.

 0

 10

 20

 30

 40

 50

 60

 70

 80

64 KB 128 KB 256 KB 512 KB 1 MB 2 MB 4 MB 8 MB 16 MB 32 MB 64 MB 128 MB

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Chunk size

A0
A1
A2
A3
A4

(b) Throughput of Azure Storage by using the Filecopy Benchmark (128 MBytes)
for evaluating the block size for reads.

Fig. 4 File copy benchmark configured for evaluating the Azure Storage performance depending
on the block object size.

performance of the available Gigabit virtual network interface. This is 2x the
bandwidth available per core compared with Standard ’AX’ instance types.
In the future, it would be interesting to evaluate the performance achieved by
Hercules running in the A8 and A9 network optimized instances with Infini-
band network, and 56 and 112 Gigabytes of RAM respectively. This network
optimized instances should be the optimal option for running Hercules I/O
nodes.

The final selection for this test is 8 VMs (D1 instances) as worker nodes
and up to 8 VMs (D2 instances) as Hercules I/O nodes. Figure 5 plots the
filecopy benchmark results, configuring the experiment with a file size of
512 MB, with 32 MB of chunk size and executing one read/write operation
per worker node (one worker process per node) which implies a 4096 MB
problem size (512 MB x 8 worker nodes). We have compared four different
cases. The first one is the performance obtained by Hercules using between

Title Suppressed Due to Excessive Length 11

1 and 8 I/O nodes. The second case is Azure Storage baseline approach,
using the default access pattern offered by the Java API, without any opti-
mizations. Third case is Azure Storage applying some optimizations to the
code, specially important is setting up the BlobRequestOptions object property
setConcurrentRequestCount with 8 threads per process, using 8 concurrent
threads to parallel access to Azure Storage. The last case can not be directly
compared with the performance achieved by Hercules, because it uses the
reserved D2 instances as worker nodes, instead of using them as I/O nodes,
to show the peak performance achievable by Azure Storage with fully work-
ing Gigabit interface, hence the dotted line. In the Hercules case, the peak
performance is limited by the aggregated bandwidth available worker-side
(8x60 MB/s ∼480 MB/s) not by the server-side 8x115 MB/s (∼920 MB/s).

 0

 100

 200

 300

 400

 500

 600

 700

0 1 2 4 8

A
g
g
re

g
a
te

d
 t
h
ro

u
g
h
p
u
t
(M

B
/s

)

Hercules I/O nodes

Hercules
Azure Naive

Azure Parallel
Azure Parallel D2

(a) Throughput of Hercules by using the File-
copy Benchmark for evaluating the scalability
of I/O nodes for writes. We set up the experi-
ment with 8 worker nodes, writing 512 MBytes
each one (4 GBytes in total).

 0

 100

 200

 300

 400

 500

 600

 700

0 1 2 4 8

A
g
g
re

g
a
te

d
 t
h
ro

u
g
h
p
u
t
(M

B
/s

)

Hercules I/O nodes

Hercules
Azure Naive

Azure Parallel
Azure Parallel D2

(b) Throughput of Hercules by using the File-
copy Benchmark for evaluating the scalability
of I/O nodes for reads. We set up the experi-
ment with 8 worker nodes, reading 512 MBytes
each one (4 GBytes in total).

Fig. 5 File copy benchmark configured for evaluating the Hercules I/O nodes scalability. 8
worker processes running on 8 worker nodes access 4 Gigabyte of data. Hercules performance
is up to 2x better than Azure Storage in write operations while performing nearly as good as
Azure Storage in the best read cases.

Figure 5(a) shows the performance evolution as the number of Hercules
I/O nodes increase compared to the different Azure Storage approaches. The
figure clearly demonstrates how Hercules performance tops near the 400
MB/s mark, which is near the maximum theoretical peak performance of
8x60 MB/s (∼480 MB/s). This peak performance achieved using 8 I/O nodes
for parallel access is nearly 2x the performance achieved by Azure Storage in
any of the configurations. Some interesting sights in the Azure Storage side
are how both the baseline and the parallel approach performance is nearly
identical caused by only being one core available in D1 instances. Also, it

12 Francisco Rodrigo Duro et al.

is interesting how the D2 instances performance using parallel accesses is
even lower, exposing the deficiencies of Azure Storage performance in write
operations.

In Figure 5(b), which depicts the read operations performance, can be
clearly seen how the Hercules performance evolves as the number of I/O
nodes available increases. With only one I/O node available, the performance
is ∼100 MB/s, the maximum offered by the network interface of the I/O
node (D2 instance). As the number of I/O nodes increases, the performance
evolves, reaching a peak performance of ∼400 MB/s, again near the theoretical
up mark of 480 MB/s and near the performance of Azure Storage that
slightly outperforms Hercules in this case. Azure Storage performs at the
peak performance of the available network, with same performance in naive
and parallel approaches using D1 instances while performing marginally
better when D2 instances are used as worker nodes.

Third evaluation case is an evolution of the previous test for a scenario
with higher congestion using the same infrastructure (8 D1 instances as
worker nodes and 8 D2 instances as Hercules I/O nodes). In this case, instead
of having 1 worker running on each node, we launched 4 workers running in
parallel on each of the worker nodes, keeping the problem size in 4096 MB.
For this purpose, each worker process writes, and then reads, a 128 MB file,
with the same chunk size of 32 MB.

 0

 100

 200

 300

 400

 500

 600

 700

0 1 2 4 8

A
g
g
re

g
a
te

d
 t
h
ro

u
g
h
p
u
t
(M

B
/s

)

Hercules I/O nodes

Hercules
Azure Naive

Azure Parallel
Azure Parallel D2

(a) Throughput of Hercules by using the File-
copy Benchmark for evaluating the scalability
of I/O nodes for writes. We set up the exper-
iment with 8 clients and 4 process per node,
writing 128 MBytes each process (4 GBytes in
total).

 0

 100

 200

 300

 400

 500

 600

 700

0 1 2 4 8

A
g
g
re

g
a
te

d
 t
h
ro

u
g
h
p
u
t
(M

B
/s

)

Hercules I/O nodes

Hercules
Azure Naive

Azure Parallel
Azure Parallel D2

(b) Throughput of Hercules by using the File-
copy Benchmark for evaluating the scalability
of I/O nodes for reads. We set up the exper-
iment with 8 clients and 4 process per node,
reading 128 MBytes each process (4 GBytes in
total).

Fig. 6 File copy benchmark configured for evaluating the Hercules I/O nodes scalability. 32
worker processes running on eight worker nodes (4 processes per node) access 4 Gigabyte of
data. Hercules performance is up to 2x better than Azure Storage in write operations while
performing nearly as good as Azure Storage in the best read cases.

Title Suppressed Due to Excessive Length 13

Figure 6(a), showing the performance in write operations, reports a very
similar behavior of Hercules compared to the previous test case, but achieving
a lower peak performance. At the same time, Azure Storage performance
with D1 instances increases and the difference between Hercules and Azure
Storage is narrowed to a 50% difference in favor of Hercules. Furthermore,
using more than one process per node in the dual-core D2 instances, doubles
the performance obtained by Azure Storage than Hercules in this special
case.

On the other hand, on Figure 6(b), related with read operations, the peak
performance of Hercules is even higher than the previous case, fully utilizing
the ∼480 MB/s of the available aggregated bandwidth at client-side and
surpassing the peak throughput performance of Azure Storage accessed from
D1 instances. When Azure Storage is accessed by D2 instances with more
than one process reading in parallel from different files, the performance is
almost doubled, in a similar way seen in the write operations.

As conclusions of the last two cases, we can emphasize how the aggre-
gated throughput of the workers accessing to the Hercules storage system
approaches the theoretical maximum bandwidth available in every studied
case, showing the scalability capabilities of our proposed solution. The perfor-
mance in write operations is between 1.5x and 2x the performance achieved
by Azure Storage with a similar architecture, while the performance in read
operations in first case is marginally in favor of Azure and in the second case
is comparable.

5.3 Worker nodes strong scalability

The last test cases focus on evaluating the behavior of our solution with an
increasing number of worker nodes accessing the Hercules storage system.
The objective is to evaluate the impact of the congestion against Azure
Storage. The test cases are equivalent to the previous test cases, with Hercules
using always 8 I/O nodes, while Azure Storage is evaluated using the native
approach and the optimized parallel implementation. The aim of this test is
to study a strong scalability scenario, where an increasing number of worker
nodes perform the same total work: writing 8x512 MB files, a total problem
size of 4096 MB, and then reading them. As expected, as the number of
worker nodes increases, the total available bandwidth increases at the same
pace, leading to better peak throughput performance, but the bottleneck
continues at client-side.

Figure 7 shows the same trends already explained in the previous test
cases. In Figure 7(a), which represent the aggregated throughput in write
operations, can be seen how Hercules is always reaching the theoretical peak
performance of each configuration, and how its performance is better than

14 Francisco Rodrigo Duro et al.

 0

 100

 200

 300

 400

 500

 600

 700

0 1 2 4 8

A
g
g
re

g
a
te

d
 t
h
ro

u
g
h
p
u
t
(M

B
/s

)

Worker nodes

Hercules
Azure Naive

Azure Parallel

(a) Throughput varing the worker nodes from
1 to 8, writing 8 files (512 MBytes) per node.
We set up the experiment with 8 I/O nodes in
case of Hercules.

 0

 100

 200

 300

 400

 500

 600

 700

0 1 2 4 8

A
g
g
re

g
a
te

d
 t
h
ro

u
g
h
p
u
t
(M

B
/s

)

Worker nodes

Hercules
Azure Naive

Azure Parallel

(b) Throughput varing the worker nodes from
1 to 8, reading 8 files (512 MBytes) per node.
We set up the experiment with 8 I/O nodes in
case of Hercules.

Fig. 7 File copy benchmark configured for comparing Azure Storage and Hercules performance
with an increasing number of worker nodes accessing to the storage concurrently. Hercules
is configured with 8 I/O nodes and from 1 to 8 worker nodes access to the storage systems
concurrently. Hercules performance is up to 2x better than Azure Storage in write operations
while performing nearly as good as Azure Storage in most cases.

Azure Storage in every case, even doubling the performance in the most
favorable one.

In the read operations performance case, Figure 7(b), again Hercules takes
advantage of the available bandwidth in every case and competes really
well with Azure Storage but the case of 8 clients where the Azure Parallel
performance is better.

From the results of the evaluation, we can conclude that Hercules is
capable of fully utilize the available bandwidth of every infrastructure where
it has deployed. Furthermore, the scalability is assured in any case, on
one hand when the number of I/O nodes deployed increases and, on the
other hand, when the number of concurrent worker nodes scales and the
congestion is higher. Compared to Azure Storage, our proposed solution
is up to 2x better in performance during write operations and competes
on equal conditions on read operations. Furthermore, should be noted that
every test case evaluated in this work uses the best possible configuration for
Azure Storage, as explained at the beginning of this section, and it could be
predicted the same performance for Hercules in other scenarios while Azure
Storage is expected to be penalized.

Title Suppressed Due to Excessive Length 15

6 Evaluating the integration between DMCF and Hercules

In this section we show the evaluation results of the integration between
DMCF and Hercules through the execution of a data analysis workflow using
two alternative configurations. In the first configuration, every I/O operation
of the workflow is done by DMCF using the Azure storage service, without
exploiting the Hercules functionalities (Figure 3, Scenario 1). In the second
configuration, a full integration between DMCF and Hercules is exploited,
where each intermediate data is stored in Hercules, while initial input and
final output are stored on Azure (Figure 3, Scenario 3). The goal is to evaluate
the increase of performance obtained in the second configuration as compared
to the first one.

The evaluation is based on a data mining workflow that analyzes n parti-
tions of the training set using k classification algorithms so as to generate kn
classification models. The kn models generated are then evaluated against a
test set by a model selector to identify the best model. Then, n predictors use
the best model to produce in parallel n classified datasets. The k classifica-
tion algorithms used in the workflow are C4.5 [13], Support Vector Machine
(SVM) [8] and Naive Bayes [7], that are three of the main classification algo-
rithms [16]. The training set, test set and unlabeled dataset, which represent
the input of the workflow, have been generated from the KDD Cup 1999’s
dataset2, which contains a wide variety of simulated intrusion records in a
military network environment.

Figure 8 shows the JS4Cloud source code of the workflow. At the begin-
ning, we define the training set (line 1) and a variable that stores the shuffled
training set (line 2). At line 3, the training set is processed by a shuffling
tool. Once defined parameter n = 20 at line 4, the shuffled training set is
partitioned into n parts using a partitioning tool (line 6). Then, each part of
the shuffled training set is analyzed in parallel by k = 3 classification tools
(C4.5, SVM, NaiveBayes). Since the number of tools is k and the number of
parts is n, kn instances of classification tools run in parallel to produce kn
classification models (lines 8-12). The kn classification models generated are
then evaluated against a test set by a model selector to identify the best model
(line 15). Then, m = 80 unlabeled datasets are specified as input (line 15). Each
of the m input datasets is filtered in parallel by m filtering tools (lines 19-20).
Finally, each of the m filtered datasets is classified by m predictors using the
best model (lines 22-23).

The workflow is composed of 3 + kn + 2m tasks. In the specific example,
where n = 20, k = 3, m = 80, the number of generated tasks is equal to 223.

Figure 9 shows the VL4Cloud version of the data mining workflow. The
visual formalism clearly highlight the level of parallelism of the workflow,

2 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99

16 Francisco Rodrigo Duro et al.

1: var TrRef = Data.get("Train");

2: var STrRef = Data.define("STrain");

3: Shuffler({dataset:TrRef, sDataset:STrRef});

4: var n = 20;

5: var PRef = Data.define("TrainPart", n);

6: Partitioner({dataset:STrRef, datasetPart:PRef});

7: var MRef = Data.define("Model", [3,n]);

8: for(var i = 0; i <n; i++){

9: C45({dataset:PRef[i], model:MRef[0][i]});

10: SVM({dataset:PRef[i], model:MRef[1][i]});

11: NaiveBayes({dataset:PRef[i], model:MRef[2][i]});

12: }

13: var TeRef = Data.get("Test");

14: var BMRef = Data.define("BestModel");

15: ModelSelector({dataset:TeRef, models:MRef, bestModel:BMRef});

16: var m = 80;

17: var DRef = Data.get("Unlab", m);

18: var FDRef = Data.define("FUnlab", m);

19: for(var i = 0; i <m; i++)

20: Filter({dataset:DRef[i], fDataset:FDRef[i]});

21: var CRef = Data.define("ClassDataset", m);

22: for(var i = 0; i <m; i++)

23: Predictor({dataset:FDRef[i], model:BMRef, classDataset:CRef[i]});

Fig. 8 Classification JS4Cloud workflow.

expressed by the number of parallel paths and the cardinality of tool array
nodes.

Fig. 9 Classification VL4Cloud workflow.

Title Suppressed Due to Excessive Length 17

Once the workflow is submitted to DMCF using either JS4Cloud or
VL4Cloud, DMCF generates a JSON descriptor of the workflow, specify-
ing which are the tasks to be executed and the dependency relationships
among them. Thus, DMCF creates a set of tasks that will be executed by
workers.

In order to execute a given workflow task, we have provisioned as many
D2 VM instances in the Azure infrastructure as needed (see Table 1), and
configured them by launching both the Hercules server process and the DMCF
worker process on each VM. Then, DMCF performs a series of preliminary
operations (i.e., getting the task from the Task Queue, downloading libraries
and reading input files from the Cloud storage) and final operations (e.g.,
updating the Task Table, writing the output files to the Cloud storage). Table
2 lists all the read/write operations performed during the execution of the
workflow on each data array. Each row of the table describes: i) the number
of files included in the data array node; ii) the total size of the data array;
iii) the total number of read operations performed on the files included in
the data array; and iv) the total number of write operations performed on
the files included in the data array. As can be noted, all the inputs of the
workflow (i.e., Train, Test, UnLab) are never written on persistent storage,
and the output of the workflow (i.e., ClassDataset) is never read.

Table 2 Read/write operations performed during the execution of the workflow.

Data node Number of
files

Total
size

Total number of
read operations

Total number of
write operations

Train 1 100MB 1 -
Strain 1 100MB 1 1
TrainPart 20 100MB 60 20
Model 60 ≈20MB 60 60
Test 1 50MB 1 -
BestModel 1 300KB 80 1
UnLab 80 8GB 80 -
FUnLab 80 ≈8GB 80 80
ClassDataset 80 ≈6GB - 80

Figure 10(a) shows the turnaround times of the workflow executed in
the two scenarios introduced earlier: 1) DMCF relying on Azure Storage
for every I/O operation (labeled as Azure); 2) DMCF relying on Azure
Storage and Hercules for temporary data (labeled as Azure+Hercules). In
both scenarios, the turnaround times have been measured varying the number
of virtual servers used to run it on the Cloud from 1 (sequential execution)
to 8 (maximum parallelism). In the Azure scenario, the turnaround time
decreases from 1 hour and 48 minutes on a single server, to about 15 minutes
using 8 servers. In the Hercules scenario, the turnaround time decreases from
1 hour and 33 minutes on a single server, to about 12 minutes using 8 servers.

18 Francisco Rodrigo Duro et al.

It is worth noticing that, in all the configurations evaluated, Hercules allowed
us to reduce the execution time of about 13% compared to the Azure scenario.

The scalability in both scenarios can be further evaluated through Figure
10(b), which illustrates the relative speedup obtained by using up to 8 servers.
In the Azure scenario, the speedup passes from 3.6 using 4 servers to 7.3
using 8 servers. In the Hercules scenario, the speedup passes from 3.7 using
4 servers to 7.5 using 8 servers.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1 2 4 6 8

T
u

rn
a

ro
u

n
d

 t
im

e
 (

s
e

c
.)

Number of servers

Azure
Azure+Hercules

(a) Turnaround time vs. number of available
servers.

1

2

4

6

8

1 2 4 6 8

S
p

e
e

d
u

p

Number of servers

Azure
Azure+Hercules

(b) Speedup vs. number of available servers.

Fig. 10 Classification workflow evaluation using Azure Storage or Hercules as temporary storage
service.

We also evaluated the overhead introduced by DMCF in the two scenarios
(Azure vs Azure+Hercules). We define as overhead the time required by the
system to perform a series of preliminary operations (i.e., getting the task
from the Task Queue, downloading libraries and reading input files from the
Cloud storage) and final operations (e.g., updating the Task Table, writing the
output files to the Cloud storage) related to the execution of each workflow
task. Table 3 shows the overhead time of the workflow in the two analyzed
scenarios. We observe that the overhead in the Azure scenario is 40 minutes,
while in the Hercules scenario is 25 minutes. This means that using Hercules
to store intermediate data we were able to reduce the overhead of a 36%.

Table 3 Overhead of DMCF in execution of the classification workflow using Azure Storage or
Hercules as temporary storage service.

Total time
(sec.)

Overhead
(sec.)

Azure 6,487 2,382
Hercules 5,624 1,519

Title Suppressed Due to Excessive Length 19

7 Related work

The current trends in scientific computing are greatly influenced by the new
possibilities brought by some of the most popular new technologies. The
use of cloud computing resources to solve existing scientific problems, and
the exploitation of data intensive techniques as novel approach for scientific
research, have uncovered new weak points and bottlenecks of the classical
high-performance I/O approaches. Data intensive applications, especially
where high concurrency in I/O operations appears (many-tasks, workflows,
etc.), requires novel approaches to solve new challenges.

Some of the problems that have to be addressed in this new data intensive
tendency, are not completely new, and should be taken into account before
addressing the new problems. Solutions like Parrot, Chirp, and AHPIOS
focused on in-memory storage as an alternative for solving I/O bottlenecks in
parallel I/O accesses. Parrot [15] is a middleware focused on adapting existing
I/O interfaces, such as POSIX, to new distributed systems and services. Parrot
is usually deployed in combination with Chirp, a lightweight user-level I/O
protocol and filesystem for collaboration in wide distributed environments
such as clusters, clouds, and grids. Our proposed solution shares with this
combination of solutions the user-level approach for easy-deployment, the
compatibility with legacy software through commonly used interfaces like
POSIX, but diverges in the focus of Hercules for scalability.

AHPIOS (Ad-Hoc Parallel I/O system for MPI applications) [6] is a
fully scalable system for I/O parallel MPI applications. AHPIOS relies on
dynamic partitions and elastic demand partitions for distributed deployment
applications. AHPIOS provides different memory caches levels. Most of
the AHPIOS features are shared with Hercules: i) easy-deployment user-
level components avoid the necessity of any special privileges in the used
nodes, transparency using a widely and easy deployment by using simple
commands, ii) scalability and high performance are achieved by the use of as
many nodes as possible as I/O nodes, iii) the use of main memory as high
performance storage for temporary data.

Costa et al. [1][2] propose in their MosaStore solution the use of file
attributes as hints for communicating information about data access patterns
between the workflow engine and file system. This information can be directly
communicated by the engine to the file system, or the file system can infer
patterns by analyzing the data accesses. The centralized metadata server used
by MosaStore to provide this functionality can be a bottleneck in large-scale
systems, constrasting with our fully distributed data and metadata approach.

The AMFS framework [18] shares with our solution the focus on providing
a simple scripting language for scripting execution of parallel applications
with in-memory accesses. AMFS shares sveral characteristics with Hercules:
i) I/O and metadata servers are managed by the same nodes and fully
distributed among them, ii) data and metadata accesses are focused on

20 Francisco Rodrigo Duro et al.

single-write, multi-read patterns, iii) targets data locality by running compute
tasks co-located with I/O nodes. The integration of Hercules with DMCF
provides simpler options for developing complex workflows (both graphical
and scripting definitions) and an easier framework for execution in cloud
environments.

HyCache+ [19] is a distributed storage middleware that allows effectively
use the network bandwidth of the high-end massively parallel systems. This
solution acts as a main storage for recently accessed and asynchronously flush
data with the remote file system when needed. Both HyCache+ and Hercules
share the fully distributed metadata approach, the lack of necessity of a
dedicated I/O network and the utilization of the high-performance compute
network available in compute nodes, and the high scalability focus. Hercules
offers more flexibility in the use of interfaces, offering the possibility of using
get/set and MPI-IO in addition to the default POSIX interface provided by
HyCache+. HyCache targets the improvement of performance of existing
parallel file systems, while Hercules is designed to accelerate workflow
execution engines, and opens the possibility to facilitate the exploitation of
data locality for temporary data in data intensive applications.

Confuga [3] is an active storage cluster file system designed for executing
DAG-structured workflows. This solution targets scalability of data-intensive
scientific applications in POSIX environments. Confuga shares with Hercules
its easy deplyment base on user-level components and the target os co-
locating data and exectuion in a distributed environment. The differences
reside in: i) the tight coupling of the Confuga scheduler responsible of job
scheduling and the storage. Our proposed solution is the combination of
DMCF and Hercules, which can work independently in any case, ii) our
approach targets cloud environments instead of clusters, and iii) Confuga
used a centralized "head node" as opposed to the Hercules architecture.

Other studies have been focused on the study of performance of storage
services provided on clouds environments. Zhao et al. [20] compares the I/O
performance of S3FS, HDFS, and FusionFS [21] while our focus is on the less
studied performance of Azure Storage. As demonstrated in the experimental
evaluation conducted in this paper, the performance obtained by Hercules
equals or exceeds Azure Storage.

Other popular solutions, such as Spark [17] or Tachyon [9], have recently
shown two fundamental basis: first, the importance of in-memory storage
and data locality for improving performance in data intensive applications,
and second, the necessity of taking advantage of the new high-speed network
technologies in I/O operations. However, both technologies target different
objectives and different environments than our proposed solution, remaining
out of the scope of this paper the enumeration of distinctions.

Title Suppressed Due to Excessive Length 21

8 Conclusions

In this work we have presented the integration of the Hercules in-memory
storage system and the Data Mining Cloud Framework in order to design and
evaluate an ad-hoc highly scalable in-memory storage system for temporary
data produced in data analysis workflow applications.

We evaluated the performance of Hercules for the management of tempo-
rary data compared with Microsoft Azure storage using synthetic benchmarks
to demonstrate the effectiveness of the solution. Then, we evaluated the inte-
gration of Hercules and DMCF on a real application consisting of a workflow
that access to temporary data using either Azure storage or Hercules. The
I/O overhead in this scenario using Hercules has been reduced by 36% with
respect to Azure storage, leading to a 13% reduction of the total execution
time. This confirms that our in-memory approach is effective in improving
the performance of data-intensive workflow executions in Cloud platforms.

As future work, we will continue the integration of DMCF and Hercules
by leveraging the co-location of compute workers and I/O nodes for exposing
and exploiting data locality. We plan to elaborate a detailed cost-performance
analysis of our proposed solution in contrast with the default Azure Storage.

Acknowledgement

This work is partially supported by EU under the COST Program Action
IC1305: Network for Sustainable Ultrascale Computing (NESUS). This work
is partially supported by the grant TIN2013-41350-P, Scalable Data Management
Techniques for High-End Computing Systems from the Spanish Ministry of
Economy and Competitiveness.

References

1. Samer Al-Kiswany, Abdullah Gharaibeh, and Matei Ripeanu. The case for a versatile storage
system. Operating Systems Review, 44(1):10–14, 2010.

2. L.B. Costa, H. Yang, E. Vairavanathan, A. Barros, K. Maheshwari, G. Fedak, D. Katz, M. Wilde,
M. Ripeanu, and S. Al-Kiswany. The case for workflow-aware storage:an opportunity study.
Journal of Grid Computing, pages 1–19, 2014.

3. Patrick Donnelly, Nicholas Hazekamp, and Douglas Thain. Confuga: Scalable Data Intensive
Computing for POSIX Workflows. In IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing, 2015.

4. Francisco Rodrigo Duro, Javier Garcia Blas, and Jesus Carretero. A hierarchical parallel
storage system based on distributed memory for large scale systems. In Proceedings of the
20th European MPI Users’ Group Meeting, EuroMPI ’13, pages 139–140, New York, NY, USA,
2013. ACM.

5. Brad Fitzpatrick. Distributed caching with memcached. Linux J., 2004(124):5–, August 2004.
6. Florin Isaila, Francisco Javier Garcia Blas, Jesús Carretero, Wei-Keng Liao, and Alok Choud-

hary. A Scalable Message Passing Interface Implementation of an Ad-Hoc Parallel I/O
System. Int. J. High Perform. Comput. Appl., 24(2):164–184, May 2010.

22 Francisco Rodrigo Duro et al.

7. George H. John and Pat Langley. Estimating continuous distributions in bayesian classifiers.
In Eleventh Conference on Uncertainty in Artificial Intelligence, pages 338–345, San Mateo, 1995.
Morgan Kaufmann.

8. S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, and K.R.K. Murthy. Improvements to platt’s
smo algorithm for svm classifier design. Neural Computation, 13(3):637–649, 2001.

9. Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica. Reliable, memory
speed storage for cluster computing frameworks. Technical Report UCB/EECS-2014-135,
EECS Department, University of California, Berkeley, Jun 2014.

10. Fabrizio Marozzo, Domenico Talia, and Paolo Trunfio. A cloud framework for parameter
sweeping data mining applications. In Proc. of the 3rd IEEE International Conference on
Cloud Computing Technology and Science (CloudCom 2011), pages 367–374, Athens, Greece, 1
December 2011. IEEE Computer Society Press. ISBN 978-0-7695-4622-3.

11. Fabrizio Marozzo, Domenico Talia, and Paolo Trunfio. A cloud framework for big data
analytics workflows on azure. In Charlie Catlett, Wolfgang Gentzsch, Lucio Grandinetti,
Gerhard Joubert, and JosÃl’ Luis Vazquez-Poletti, editors, Post-Proc. of the High Performance
Computing Workshop 2012, volume 23 of Advances in Parallel Computing, pages 182–191,
Cetraro, Italy, 2013. IOS Press. ISBN 978-1-61499-321-6.

12. Fabrizio Marozzo, Domenico Talia, and Paolo Trunfio. Js4cloud: script-based workflow
programming for scalable data analysis on cloud platforms. Concurrency and Computation:
Practice and Experience, pages n/a–n/a, 2015.

13. J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1993.

14. Francisco José Rodrigo Duro, Fabrizio Marozzo, Javier García Blas, Jesús Carretero Pérez,
Domenico Talia, and Paolo Trunfio. Evaluating data caching techniques in dmcf workflows
using hercules. In In Proceedings of the Second International Workshop on Sustainable Ultrascale
Computing Systems (NESUS 2015), pages 95–106, Krakow, Poland, 2015.

15. Douglas Thain and Miron Livny. Parrot: Transparent user-level middleware for data-intensive
computing. Scalable Computing: Practice and Experience, 6(3), 2005.

16. Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang Yang, Hiroshi Motoda,
Geoffrey J. McLachlan, Angus Ng, Bing Liu, Philip S. Yu, Zhi-Hua Zhou, Michael Steinbach,
David J. Hand, and Dan Steinberg. Top 10 algorithms in data mining. Knowl. Inf. Syst.,
14(1):1–37, December 2007.

17. Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing. In Proceedings of the 9th
USENIX Conference on Networked Systems Design and Implementation, NSDI’12, pages 2–2,
Berkeley, CA, USA, 2012. USENIX Association.

18. Zhao Zhang, Daniel S. Katz, Timothy G. Armstrong, Justin M. Wozniak, and Ian Foster.
Parallelizing the execution of sequential scripts. In Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, SC ’13, pages 31:1–31:12,
New York, NY, USA, 2013. ACM.

19. Dongfang Zhao, Kan Qiao, and Ioan Raicu. Hycache+: Towards scalable high-performance
caching middleware for parallel file systems. In IEEE/ACM CCGrid, 2014.

20. Dongfang Zhao, Xu Yang, Iman Sadooghi, Gabriele Garzoglio, Steven Timm, and Ioan Raicu.
High-Performance Storage Support for Scientific Applications on the Cloud. ScienceCloud’15,
June 2015.

21. Dongfang Zhao, Zhao Zhang, Xiaobing Zhou, Tonglin Li, Ke Wang, D. Kimpe, P. Carns,
R. Ross, and I. Raicu. FusionFS: Toward supporting data-intensive scientific applications on
extreme-scale high-performance computing systems. In 2014 IEEE International Conference on
Big Data (Big Data), pages 61–70, Oct 2014.

	Introduction
	Data Mining Cloud Framework
	Hercules
	Integration between DMCF and Hercules
	Evaluating in-memory versus persistent storage operations
	Evaluating the integration between DMCF and Hercules
	Related work
	Conclusions

