
GLOBAL AND LOCAL SYNCHRONIZATION
IN PARALLEL SPACE-AWARE APPLICATIONS

Franco Cicirelli, Agostino Forestiero
Andrea Giordano, Carlo Mastroianni

ICAR-CNR, Rende (CS), Italy
Email: {cicirelli,forestiero,giordano,mastroianni}

@icar.cnr.it

Rostislav Razumchik
Institute of Informatics Problems

of the FRC CSC RAS, Moscow, Russia,
Peoples’ Friendship University of Russia

(RUDN University), Moscow, Russia
Email: rrazumchik@ipiran.ru,
razumchik rv@rudn.university

KEYWORDS

Synchronization algorithms, parallel computing, perfor-
mance evaluation

ABSTRACT

Space-aware applications are characterized by an explicit
representation of a spatial environment in which some
entities live and operate by interacting with each other
and with the hosting territory. A relevant space-aware ap-
plication domain is the so-called urban computing, em-
bracing issues like the simulation and implementation of
public transportation systems, traffic management, urban
monitoring and control. The execution of such applica-
tions is often distributed on parallel computing nodes,
which need to cooperate and exchange data among each
other, thus raising synchronization issues. In this paper
we analyze time-related characteristics of the computa-
tional process in a space-aware application in the case
when each node does not need global synchronization
(i.e. synchronization with all other nodes) but requires
only local synchronization (i.e. synchronization with a
subset of neighbor nodes). Performance is evaluated both
analytically and numerically. We provide the analyti-
cal support to an important conclusion: the mean com-
putation time per step remains finite irrespective of the
number of nodes under local synchronization, while un-
der global synchronization it grows unboundedly as the
number of nodes increases. In practical scenarios this
corresponds to significantly better scalability properties
of local synchronization.

INTRODUCTION

The need for parallelizing a computation can be caused
by the necessity to increase the efficiency of a very com-
plex application or can be inherent and related to the
scenario in which the application is defined. The latter
case, on which we focus here, occurs in a large variety
of “space-aware applications” (SAAs), for which data
and computation are inherently distributed and rely on
the explicit representation of a territory, that is, a spatial
environment on which data and objects are defined (see

Shook et al. (2013)). For example, in an urban environ-
ment, data is generated by the users that move in a city,
and there can be the need for aggregating and processing
the data both at a local level – e.g., at each city neighbor-
hood – and at the a global level, e.g., to derive general
knowledge concerning the whole environment.

In such contexts, it is natural to parallelize the com-
putation on distributed nodes and to perform the parti-
tioning by utilizing the topological properties of the ter-
ritory itself. Specifically, different regions of the territory
can be assigned to different computing nodes which can
process local data in parallel. Geology, biology, hydrol-
ogy, social sciences, logistics and transportation, smart
electrical grids, are significant examples of application
fields strongly related to SAAs (see Cicirelli et al. (2016);
Gong et al. (2013); Tang et al. (2011)). Another one is the
urban-computing field mentioned above, for which data
contains information regarding the mobility of people or
vehicles, air quality, safety issues, water/electricity con-
sumptions, etc., and can be profitably used to improve ur-
ban services and environments (see Zheng et al. (2014);
Blecic et al. (2014)). Two more application fields that
are emerging recently are the “Internet of Things” (IoT)
(see Atzori et al. (2010); Lee and Lee (2015)) and some
new distributed forms of Cloud Computing, sometimes
referred to as Fog Computing or Edge Computing (see
Krishnan et al. (2015); Hu et al. (2017)), where the com-
putation is brought closer to the user’s end and/or where
the data is generated.

In general, space-aware applications are not “embar-
rassingly parallel” (Ekanayake and Fox, 2010), i.e., com-
putation at the single nodes cannot be performed in iso-
lation because parallel tasks need to exchange data dur-
ing computation. This means that the computation per-
formed by different nodes needs to be synchronized (Fu-
jimoto, 2000), i.e., at certain time instants, one node must
wait for the data coming from other nodes before pro-
ceeding to the next piece of computation. In this paper,
for the sake of simplicity, we focus on the very common
case of step-based computation (i.e., the computation is
organized in work units which we call “steps”), and syn-
chronization occurs at the end of each step.

Given the growing interest in space-aware applica-

Proceedings 32nd European Conference on Modelling and
Simulation ©ECMS Lars Nolle, Alexandra Burger,
Christoph Tholen, Jens Werner, Jens Wellhausen (Editors)
ISBN: 978-0-9932440-6-3/ ISBN: 978-0-9932440-7-0 (CD)

tions, there is a strong need for methodological ap-
proaches that help assessing the performance of their par-
allel execution. In particular, it is a well-established em-
pirical fact that the methodology adopted for synchro-
nization has a notable impact on the performance. With
the widely adopted all–to–all synchronization approach,
henceforth also referred to as global, a computation step
can be executed only as soon as all the nodes have com-
pleted the previous step. However, in many contexts this
requirement can be relaxed, and a node can proceed to
the next step after synchronizing with a limited number
of nodes, e.g., those which are assigned to adjacent por-
tions of the territory in a urban computing scenario. This
type of synchronization is henceforth referred to as local
synchronization.

One example of an application that can profitably
adopt local synchronization is the computation of fre-
quent mobility patterns (Yuan et al., 2013), i.e., the most
common routes that are followed by vehicles, as these
patterns can be extracted by concatenating the local pat-
terns discovered in different city districts (Harri et al.,
2009). The opportunity emerges of synchronizing the
computation only among a limited number of parallel
nodes, without the need for a central coordinator node.
The computation at one node can proceed after being no-
tified about the patterns discovered in neighbor nodes,
and can then concatenate these patterns, thus allowing
mobility patterns to be available much more rapidly than
in the scenario where the computation is synchronized
globally and data is delivered to a central node. The pat-
terns regarding the whole territory are achieved by pro-
gressively extending the area covered by local patterns.

In Mastroianni et al. (2017) it was shown that local
synchronization performs better than global synchroniza-
tion in terms of computation efficiency. However, there
is the need for building a theoretical foundation that is
able to accurately predict the performance, and also to
analyze the scalability properties. The scalability issue
arises when the number of parallel nodes increases, ei-
ther because the analyzed territory is extended (for ex-
ample, the city area for the mobility pattern application
mentioned before) or because the same area is divided
into a larger number of regions in order to improve the
accuracy of the computation. An analytical study is es-
sential to tackle important engineering issues, such us:
what is the number of parallel nodes needed to execute
the computation in a given time interval? what is the im-
pact of synchronization degree, i.e., the number of nodes
with which a single node must synchronize?

In this paper, we provide an analytical representation
of the model and its key ingredients: the overall execu-
tion time and the time to perform a single step when the
synchronization overhead is taken into account. In partic-
ular, we prove that in the general case, the average time
to perform a computation step on each node converges
under local synchronization, i.e., it is bounded when the
number of nodes increases, while under global synchro-
nization it grows unboundedly. Therefore, the adoption

of local synchronization is of utmost importance when
the computational load or the involved scenario requires
the use of a large number of nodes.

The paper is organized as follows. The next section de-
scribes the local synchronization model and provides an
analytical formulation for the execution time. Then we
assess the performance of local and global synchroniza-
tion: at first analytically by using the extreme value the-
ory and the max-plus algebra, then numerically by simu-
lation. In conclusion, we summarize the work and indi-
cate some interesting research avenues for future work.

LOCAL SYNCHRONIZATION MODEL

A natural way to optimize the execution of algorithms
working on spatial data is to partition the territory and use
this partitioning to decompose and parallelize the compu-
tation. The idea is to individuate a number of regions of
the territory, and assign each region, along with the con-
tained entities, to a computing node that will be in charge
of performing the computation pertaining to that portion
of the territory. Partitioning favors system scalability in
that as the size of the territory increases, more computing
nodes can be used to speed up the execution. A territory
can be partitioned through either a one-dimensional or a
bidimensional schema, as shown in Figure 1.

Let us denote by N the number of nodes, by li(k) the
time needed by node i, 1 ≤ i ≤ N, to execute the local
computation at the step k, and by Ti(k) the time elapsed
from the beginning of the computation at node i (i.e., start
of the step 1) until the end of the step k.

It is important to define how the computing nodes syn-
chronize with each other. In many parallel/distributed
systems, as reported in the current literature, synchro-
nization is global or, in other words, all–to–all, i.e., it
is performed by constraining each node to start the exe-
cution for a given step only when all the nodes have fin-
ished their execution of the step before. The left part of
Figure 2 shows an example of the dynamics of a system
composed of seven nodes, for two consecutive steps. It
is seen in the figure that, at each step, all the nodes must
wait for the slowest one before advancing to the next step.
In the figure, node 5 is the slowest node at step 1 while
node 3 is the slowest at step 2.

For many SAAs scenarios, global synchronizations is
not required. Indeed, as mentioned in the introduction
section, it can be that a node needs to communicate and
synchronize only with a set of neighbor nodes. Fig-
ure 3 shows the loop executed by each computing node,
at each step, when adopting such local synchronization.
The loop includes three phases. First, the node executes
the local computation, i.e., the computation related to the
specific region for the current step. Afterwards, the node
sends data to its neighbor nodes. Finally, the node waits
for the analogous data coming from its neighbors, i.e.,
the nodes managing the neighbor regions.

Resuming the execution advancement shown in the left
part of Figure 2, corresponding to the case of global syn-

Territory

Region 1

(Node1)

Region 3

(Node 3)

Region 4

(Node 4)

Region 2

(Node 2)

Region 1

(Node1)

Region 2

(Node 2)

Region 4

(Node 4)

Region 3

(Node 3)

One-dimensional

Partitioning

Bidimensional

Partitioning

Figure 1: A territory partitioned into regions which are associated with parallel computing nodes. Two alternative types
of partitioning are shown, one-dimensional and bidimensional.

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7

T3(2)

l3(1),

T3(1)

l3(2)

STEP

1

STEP

2

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7

T3(2)

l3(1),

T3(1)

l3(2)

Figure 2: Dynamics of seven nodes for two steps using global synchronization (left) and local synchronization (right).
The solid vertical lines represent the execution times, the dashed vertical lines are the waiting times and the horizontal
dashed lines represent the synchronization points.

Local Computation Local ComputationLocal Computation

Send Updates

to neighbors

Wait For Data

from neighbors

fo
r

e
a

ch
 s

te
p

fo
r

e
a

ch
 s

te
p

fo
r

e
a

ch
 s

te
p

Send Updates

to neighbors

Send Updates

to neighbors

Wait For Data

from neighbors
Wait For Data

from neighbors

Figure 3: Execution loop under local synchronization.

chronization, we take the same local computation times,
li(k), and in the right part of Figure 2 we show the corre-
sponding execution advancement when adopting the lo-
cal synchronization. It can be seen that the times Ti(k)
tend to be shorter when compared to the case of global
synchronization.

Under local synchronization, Ti(k) are determined
from the following recursive formula:

Ti(k + 1) = max (Ti(k),Ti−1(k),Ti+1(k)) +

+ li(k + 1), 1 ≤ i ≤ N, (1)

where T0(k) = TN+1(k) = 0.
In (1) we have implicitly assumed that the time for

transmitting the data between the neighbor nodes is neg-
ligible. Let ci, j(k) be the communication time needed for
transmitting the data from the node i to the node j at the
end of step k. When the communication time is not neg-
ligible, the recursive formula (1) is transformed to:

Ti(k + 1) = max
(
Ti(k),Ti−1(k) + ci−1,i(k),

Ti+1(k) + ci+1,i(k)
)

+ li(k + 1), 1 ≤ i ≤ N. (2)

In the case of bidimensional partitioning, using a grid
with R rows and C column, and N = R · C, let us call
ir,c the node located in row r, 1 ≤ r ≤ R, and column c,
1 ≤ c ≤ C. For example, in the right part of Figure 1,
i1,1 is Node 1 and i1,2 is Node 2. Accordingly, lr,c(k) and
Tr,c(k) are, respectively, the local computation time and
the time elapsed from the beginning of the computation
to the end of the step k at the node ir,c, while cr,c,r′,c′ (k)
is the time for transmitting data from the node ir,c to the
node ir′,c′ at the end of step k. In the bidimensional case,
Tr,c(k) are computed from the recursion:

Tr,c(k + 1) = max(Tr,c(k),Tr−1,c−1(k) + cr−1,c−1,r,c(k),
Tr−1,c(k) + cr−1,c,r,c(k),Tr−1,c+1(k) + cr−1,c+1,r,c(k),

Tr,c−1(k) + cr,c−1,r,c(k),Tr,c+1(k) + cr,c+1,r,c(k),
Tr+1,c−1(k) + cr+1,c−1,r,c(k),Tr+1,c(k) + cr+1,c,r,c(k),

Tr+1,c+1(k) + cr+1,c+1,r,c(k)) + lr,c(k + 1)
1 ≤ r ≤ R, 1 ≤ c ≤ C, (3)

where T0,c(k) = TR+1,c(k) = Tr,0(k) = Tr,C+1(k) = 0.

Despite the relative simplicity of the systems of equa-
tions (2) and (3), which govern the behavior of the syn-
chronization model, it turns out to be very hard to come
up with the analytic analysis of its performance charac-
teristics. In the next section we dwell on only one aspect
of this problem: analysis of the mean computation time
per step.

PERFORMANCE OF GLOBAL AND LOCAL SYN-
CHRONIZATION
In what follows we give the analytic support to the fol-
lowing conclusion: global synchronization leads to un-
bounded mean computation time per step as the num-
ber of nodes increases, whereas the local synchroniza-
tion guarantees that the mean computation time per step
remains finite irrespective of the number of nodes.

In what follows, for the sake of ease of exposition, we
dwell on the simple case of the model: one-dimensional
partitioning and negligible communication times. In ad-
dition, we assume that the computation times li(k) de-
pend only on the nodes but do not depend on the step
number and that li(k) = li, 1 ≤ i ≤ N, are i.i.d. random
variables. In the case of global synchronization we have

Ti(k + 1) = (k + 1) max(l1, . . . , lN), k ≥ 0, (4)

and in the case of local synchronization we have (1),
which is readily reduced to

Ti(k + 1) = max(Ti(k),Ti−1(k),Ti+1(k))+
+ li, k ≥ 0, 1 ≤ i ≤ N. (5)

Note that the random sequence {~T (k)/k, k ≥ 1}, where
{~T (k) = (T1(k), . . .TN(k))} and Ti(k) are defined by (1)
(and, of course, (4)), falls into the framework of stochas-
tic equations as described in Borovkov (1979). Using the
results from Borovkov (1979) it can be shown that when
N is finite and {~l(k) = (l1(k), . . . , lN(k)), k ≥ 1} are in-
dependent, the sequence {~T (k)/k, k ≥ 1} is ergodic and
stable.

Analysis of global synchronization

Let us start with the analysis of (4). The conclusion about
the behavior of the global synchronization case follows
from the well-known results for the order statistics and
extreme value theory (see, for example, David and Na-
garaja (2003); Ang and Tang (1984); Madala and Sinclair
(1991)). If the positive random variable li has any con-
tinuous distribution with the support1 on a semi-infinite
interval, then as the number of nodes N grows, the mean
computation time per step limk→∞

1
k E(Ti(k)) grows as

well and in the limit as N → ∞ we have that

lim
k→∞

1
k

E(Ti(k)) = E(max(l1, . . . , lN))→ ∞.

1In the case that li are independent (not necessarily identically
distributed) random variables with a continuous distribution hav-
ing support on a bounded interval, the mean computation time
limk→∞ E(Ti(k))/k is always a constant, irrespective of the number of
nodes N.

For example, if li are i.i.d random variables distributed
exponentially with mean µ, then for sufficiently large N
we have2 limk→∞

1
k E(Ti(k)) ≈ µ (ln N + 0.5772).

Such nice expressions for extreme values are not avail-
able for all distributions. Yet for quite a large class of dis-
tributions (those having pure-exponential and non-pure
exponential tails like gamma distribution) the general ex-
pressions for limk→∞

1
k E(Ti(k)) can be found in Whitt

et al. (2007).
So in the case of global synchronization, if the com-

putation times are random with unbounded support, then
as the number of nodes N increases, on average, we wait
longer and longer in order to make the next computa-
tion step. The computation of the cumulative distribution
function (c.d.f.) of 1

k E(Ti(k)) is straightforward when li
are i.i.d. It should also be noticed that deeper insight
into the global synchronization can be gained by look-
ing at the relation between the global synchronization
model and the two types of queueing models: split-merge
queues3 (see, for example, Altiok and Perros (1986)) and
faucet queues as described in Lebedev (2003, 2004).

Analysis of local synchronization

Once we give up the global synchronization and allow
the node to proceed to the next computation step once a
finite number of neighbors finish their computations, the
conclusion is changed: the mean computation time per
step limk→∞

1
k E(Ti(k)) becomes finite irrespective of the

number of nodes N. In the following we consider the
case of synchronization with two neighbors4, which is
described by (5).

The model (5) falls into the general framework of dis-
crete event dynamic systems and it is convenient to de-
scribe its evolution in terms of the max-plus algebra (Hei-
dergott et al., 2006). As soon as it is done, one can use
the well-known results of the max-plus theory to study
the values of limk→∞

1
k E(Ti(k)).

Define the following “(max,+)” notations:

∀x, y, ∈ R ∪ {−∞}, x ⊕ y = max(x, y), x ⊗ y = x + y.

Define also the N × N matrix T(k) = [T(k)]i j, 1 ≤
i, j ≤ N. With this notation, remembering that ~T (k) =

(T1(k), . . .TN(k)), equation (5) can be rewritten as

~T T (k + 1) = T(k) ⊗ ~T T (k), k ≥ 0, (6)

where ·T stands for transpose, the matrix-vector product
is defined by [T(k)⊗ ~T T (k)]i = max1≤ j≤N([T(k)]i j+T j(k))

2It is well-known that the right part is the approximation of the ex-
pected maximum of N i.i.d. random variables with exponential distribu-
tion equal to µ

∑N
i=1 i−1, with

∑N
i=1 i−1 being the Nth harmonic number.

3The sojourn time of the kth customer in a split-merge queue in the
light-traffic regime is equal to 1

k E(Ti(k)).
4But the analysis and conclusions remain valid also in the case of

more than two neighbours and in the case of (at least simple) bidimen-
sional partitioning.

and the matrix T(k) is defined by

T(k) =

l1 l1 −∞ −∞ . . . −∞ −∞

l2 l2 l2 −∞ . . . −∞ −∞

−∞ l3 l3 l3 . . . −∞ −∞

−∞ −∞ l4 l4 . . . −∞ −∞

...
...

...
...

.
. . .

−∞ −∞ −∞ −∞ . . . lN−1 lN−1

−∞ −∞ −∞ −∞ . . . lN lN

.

Here the initial condition ~T T (0) is simply the column-
vector of zeros. Now we can make use of the well-
known asymptotic results from the max-plus theory (see,
for example, Baccelli and Konstantopoulos (1992)). The
matrix T(k) has at least one finite entry on each row,
which is the necessary and sufficient condition for T j(k)
to be finite. From (Baccelli and Konstantopoulos, 1992,
Lemma 6.1) we find5 that there exists γ > 0 such that
limk→∞

1
k E(Ti(k)) = γ, 1 ≤ i ≤ N. In the case when li

are stochastically bounded by a single variable (say L),
having moment generating function (say L(s)), the upper
bound for the value of γ is (see (Baccelli and Konstan-
topoulos, 1992, Proposition 6.2)):

γ ≤ inf{x > E(L) such that M(x) > ln 3}, (7)

where M(x) = supθ∈R(θx − ln L(θ)) and E(L) = L′(0).
What this result tells us is that in the case of local

synchronization the mean computation time remains fi-
nite for any number of nodes N. We could also proceed
with the establishing of the upper bound in (7) right from
(5) without resorting to the results of the max-plus alge-
bra. Indeed, assuming, as above, that all li are stochas-
tically bounded by L with the moment generating func-
tion L(s), we can apply stochastic ordering techniques
to find the following upper bound for limk→∞

1
k E(Ti(k)):

(ln 3 + ln L(s))/s, where s is the solution to the equation
L(s) = 3.

The exact computation of γ in the considered model is
difficult and we are unaware of any well-established pro-
cedure (either in max-plus world or conventional proba-
bility theory) to perform such computation. On the con-
trast to the global synchronization model, where the ex-
act value of γ can be easily written out, the main problem
in the local synchronization is the inter-dependence be-
tween the values of Ti(k) and T j(k), i , j. If we drop this
dependence by assuming that {Ti(k), 1 ≤ i ≤ N} are inde-
pendent for each k, the computations of the c.d.f. of Ti(k)
are possible but they may lead to highly underestimated
or overestimated values of γ. If we keep the dependence
structure, then at each step k we have to perform the com-
putations of the N-dimensional c.d.f. of the vector ~T (k),
which already for small values of k and N become infea-
sible. At last, we note that the structure of (5) suggests
that for the construction of the N-dimensional c.d.f. it is

5Baccelli and Konstantopoulos (1992) gives even stronger results of
convergence of limk→∞

1
k (Ti(k)) to the same γ with probability 1.

appealing to apply the dependence trees technique (see
Chow and Liu (1968)), which takes into account order
dependence relationships between the random variables.

Numerical results

In the following we report some numerical results
both for global and local synchronizations under:
one-dimensional partitioning, negligible communication
times and i.i.d. computation times li. We have used Mat-
lab to simulate the computational behavior modeled by
(4) and (5) with different number of nodes N. We have
also considered the extended local synchronization sce-
nario in which a node synchronizes with more than two
neighbors (the number of neighbors with which a node
synchronizes on each of the two sides (left and right) is
referred to as Nb). For li we have considered6 exponen-
tial and hyper-gamma distributions. The performance is
assessed by computing7 the mean computation time per
step Tstep = limk→∞

1
k E(Ti(k)).

First, we consider the case in which li has an expo-
nential distribution with the mean equal to 6.185, for a
fair comparison with the hyper-gamma distribution dis-
cussed later. Figure 4 shows the values of Tstep versus
the number of nodes N in the case of global and local
synchronization with different values of Nb. The figure
also reports the theoretical value for the case of global
synchronization, which corresponds to the N th harmonic
number. The experimental values are consistent with the
theoretical bounds discussed in the previous section, and
it can be seen that the use of local synchronization al-
lows Tstep to be notably reduced with respect to global
synchronization, even when the number of neighbors Nb

increases. In Figure 5 we focus on the “exponential” sce-

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80 90 100

T
st

ep

No. of nodes, N

local synch Nb=1
local synch Nb=2
local synch Nb=3

global synch
harmonic number

Figure 4: Values of Tstep as function of N under global
and local synchronizations with different values of Nb.
The local computation times have exponential distribu-
tion with mean 6.185.

nario with Nb=1 and report the bound obtained with the
6Our choice is motivated by (Lublin and Feitelson, 2003), where

hyper-gamma distribution is shown to be well-suited workload model
in parallel computing systems.

7In order to compute each time the steady state value of Tstep we
used a single simulation run with k = 10000 and the batch-means
method.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80 90 100

T
st

ep

No. of nodes, N

local synch Nb=1
local synch Nb=1 max-plus
local synch Nb=1 N=1000

Figure 5: Values of Tstep as function of N under local
synchronization and Nb=1. The local computation times
have exponential distribution with mean 6.185. The plot
shows the bound obtained with max-plus algebra and the
numerical value with N=1000.

max-plus algebra. We also show the value for N = 1000
nodes. From the figure it can be seen that the exact nu-
merical bound is already reached when the number of
nodes is 100.

Figure 6 shows the results that are analogous to those
of Figure 4, this time assuming that the local computation
times have hyper-gamma distribution with the pdf

p(x) = p
1

Γ(α1)
βα1

1 xα1−1x−β1 x +(1− p)
1

Γ(α2)
βα2

2 xα2−1x−β2 x,

and the parameters p, αi, βi taken from (Lublin and Feit-
elson, 2003, Table 2):

p = 0.55, α1 = 6, β1 = 1.51, α2 = 68.5, β2 = 7.692.

It is seen that the advantage of local synchronization is
larger with the exponential distribution due to its larger
variance. This is a general result that we have also found
in other experiments not shown here.

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90 100

T
st

ep

No. of nodes, N

local synch Nb=1
local synch Nb=2
local synch Nb=3

global synch

Figure 6: Values of Tstep as function of N under global
and local synchronizations with different values of Nb.
The local computation times have hyper-gamma distri-
bution, with mean equal to 6.185 and variance equal to
8.011.

CONCLUSION
In this paper two different synchronization strategies are
being compared, namely local and global, for the exe-
cution of distributed space-aware applications. We have
provided an analytical support, based on the max-plus
theory, to conclusions about the finiteness of the com-
putation time per step under local synchronization in
general, and its unboundedness (for infinite number of
nodes) under global synchronization. In practical scenar-
ios, this corresponds to a much better scalability behav-
ior of local synchronization, as confirmed by numerical
experiments. We deem that this result can be profitably
considered when designing a real computational infras-
tructure, for example for the support of urban comput-
ing applications. The problem of exact computation of
moments of computation time per step in the asymptotic
case is still open and requires further study. Also, the
benefits deriving from local synchronization need to be
better assessed in cases when communication times are
not negligible and the computation load is not equally
partitioned among the nodes and/or varies with time.

REFERENCES

Altiok, T. and Perros, H. (1986). Open networks of queues with
blocking: Split and merge configurations. IIE Transactions,
18(3):251–261.

Ang, A.-S. and Tang, W. (1984). robability Concepts in Engi-
neering Planning and Design Vol. II. Rainbow Bridge.

Atzori, L., Iera, A., and Morabito, G. (2010). The internet of
things: A survey. Computer networks, 54(15):2787–2805.

Baccelli, F. and Konstantopoulos, P. (1992). Estimates of cycle
times in stochastic petri nets. In Applied Stochastic Analysis,
pages 1–20. Springer Berlin Heidelberg.

Blecic, I., Cecchini, A., Trunfio, G. A., and Verigos, E. (2014).
Urban cellular automata with irregular space of proximities.
Journal of Cellular Automata, 9(2-3):241–256.

Borovkov, A. A. (1979). Ergodicity and stability theorems for
a class of stochastic equations and their applications. Theory
of Probability & Its Applications, 23(2):227–247.

Chow, C. and Liu, C. (1968). Approximating discrete probabil-
ity distributions with dependence trees. IEEE Transactions
on Information Theory, 14(3):462–467.

Cicirelli, F., Forestiero, A., Giordano, A., and Mastroianni, C.
(2016). Transparent and efficient parallelization of swarm
algorithms. ACM Trans. Auton. Adapt. Syst., 11(2):14:1–
14:26.

David, H. A. and Nagaraja, H. N. (2003). Order Statistics,
Third Edition. John Wiley.

Ekanayake, J. and Fox, G. (2010). High performance parallel
computing with clouds and cloud technologies. In Cloud
Computing, pages 20–38. Springer.

Fujimoto, R. (2000). Parallel and distributed simulation sys-
tems. John Wiley.

Gong, Z., Tang, W., Bennett, D. A., and Thill, J.-C. (2013).
Parallel agent-based simulation of individual-level spatial in-
teractions within a multicore computing environment. In-
ternational Journal of Geographical Information Science,
27(6):1152–1170.

Harri, J., Filali, F., and Bonnet, C. (2009). Mobility models for
vehicular ad hoc networks: a survey and taxonomy. IEEE
Communications Surveys & Tutorials, 11(4):19–41.

Heidergott, B., Olsder, G. J., and van der Woude, J. (2006). Max
Plus at Work: Modeling and Analysis of Synchronized Sys-
tems: A Course on Max-Plus Algebra and Its Applications.
Princeton University Press.

Hu, P., Dhelim, S., Ning, H., and Qiu, T. (2017). Survey on fog
computing: architecture, key technologies, applications and
open issues. Journal of Network and Computer Applications,
98:27 – 42.

Krishnan, Y. N., Bhagwat, C. N., and Utpat, A. P. (2015). Fog
computing- network based cloud computing. In 2nd IEEE
International Conference on Electronics and Communica-
tion Systems (ICECS), pages 250–251.

Lebedev, A. V. (2003). The gated infinite-server queue with
unbounded service times and heavy traffic. Problems of In-
formation Transmission, 39(3):309–316.

Lebedev, A. V. (2004). Gated infinite-server queue with heavy
traffic and power tail. Problems of Information Transmis-
sion, 40(3):237–242.

Lee, I. and Lee, K. (2015). The internet of things (IoT): Ap-
plications, investments, and challenges for enterprises. Busi-
ness Horizons, 58(4):431 – 440.

Lublin, U. and Feitelson, D. G. (2003). The workload on
parallel supercomputers: modeling the characteristics of
rigid jobs. Journal of Parallel and Distributed Computing,
63(11):1105 – 1122.

Madala, S. and Sinclair, J. B. (1991). Performance of syn-
chronous parallel algorithms with regular structures. IEEE
Trans. on Parallel and Distributed Systems, 2(1):105–116.

Mastroianni, C., Cesario, E., and Giordano, A. (2017). Effi-
cient and scalable execution of smart city parallel applica-
tions. Concurrency and Computation: Practice and Experi-
ence. Early view, http://dx.doi.org/10.1002/cpe.4258.

Shook, E., Wang, S., and Tang, W. (2013). A communication-
aware framework for parallel spatially explicit agent-based
models. International Journal of Geographical Information
Science, 27(11):2160–2181.

Tang, W., Bennett, D. A., and Wang, S. (2011). A parallel
agent-based model of land use opinions. Journal of Land
Use Science, 6(2–3):121–135.

Whitt, W., Crow, C., and Goldberg, D. (2007). Two-
moment approximations for maxima. Operations Research,
55(3):532–548.

Yuan, J., Zheng, Y., Xie, X., and Sun, G. (2013). T-drive:
Enhancing driving directions with taxi drivers’ intelligence.
IEEE Transactions on Knowledge and Data Engineering,
25(1):220–232.

Zheng, Y., Capra, L., Wolfson, O., and Yang, H. (2014). Ur-
ban computing: Concepts, methodologies, and applications.
ACM Trans. Intell. Syst. Technol., 5(3):1–55.

AUTHOR BIOGRAPHIES
Franco Cicirelli Ph.D, is a researcher at the ICAR-CNR
Institute, Italy, since 2015. He earned a Ph.D. in System
Engineering and Computer Science at the University
of Calabria (Italy). He was a researcher fellow at
the University of Calabria (Italy) from 2006 to 2015.
Research topics include agent-based systems, distributed
simulation, parallel and distributed systems, real-time
systems, workflow management systems, Internet of
Things and cyber-physical systems.

Agostino Forestiero is a researcher at ICAR-CNR, Italy,
since 2010. He received his Laurea degree and his Ph.D.
degree in Computer Engineering from the University of
Calabria, Italy, in 2002 and 2007. He co-authored over
50 papers published in international journals, among
which IEEE/ACM TON, IEEE TEVC and ACM TAAS,
and conference proceedings. His areas of interest are
distributed systems, Cloud Computing, P2P, swarm intel-
ligence, multi-agent systems and cyber-physical systems.

Andrea Giordano is a researcher at ICAR-CNR, Italy,
since 2011. He earned a Masters degree in Computer
Engineering and a Ph.D in System Engineering and
Computer Science at the University of Calabria, Italy.
His research work focuses on agent-based systems,
parallel and distributed systems, swarm intelligence,
distributed simulation and cyber-physical systems.

Carlo Mastroianni is a senior researcher at ICAR-
CNR, Italy. He received his Laurea degree and his Ph.D.
degree in Computer Engineering from the University
of Calabria, Italy, in 1995 and 1999, respectively. He
authored over 100 papers published in international
journals, among which IEEE/ACM TON, IEEE TCC,
IEEE TEVC and ACM TAAS, and conference proceed-
ings. His research focuses on Cloud Computing, P2P,
bio-inspired algorithms, multi-agent systems.

Rostislav Razumchik received his Ph.D. degree in
Physics and Mathematics in 2011. Since then, he has
worked as a leading research fellow at Institute of Infor-
matics Problems of the Federal Research Center “Com-
puter Science and Control” of the Russian Academy of
Sciences (FRC CSC RAS). Currently he also holds the
associate professor position at Peoples’ Friendship Uni-
versity of Russia (RUDN University). His current re-
search activities are focused on queueing theory and its
applications for the evaluation of stochastic systems.

