
ERCIM NEWS 83 October 2010

that makes the SmartLM solution more

secure in Clouds or extending the capa-

bilities if there is a bi-directional net-

work connection available at run-time.

Links:

elasticLM http://www.elasticlm.com

SmartLM http://www.smartlm.eu/

Please contact:

Wolfgang Ziegler

Fraunhofer SCAI, Germany,

Tel: +49 2241 14 2258

E-mail:

wolfgang.ziegler@scai.fraunhofer.de

44

Special Theme: Cloud Computing

existing middleware stacks. Figure 1

shows the basic SmartLM scenario for

environments where at run-time there is

no bi-directional network link available

between the license service that created

the license token and the remote execu-

tion environment, eg due to firewall

restrictions.

SmartLM addresses the licensing man-

agement issues not only from a techno-

logical point of view, but also from the

perspective of developing new business

models. This approach is necessary in

order to convince Independent Software

Vendors adopting to the new license

technology. More details can be found

on the project web pages.

The major part of the licensing tech-

nology presented in this article has been

designed and implemented prototypi-

cally in the European Commissions ICT

programme in the FP7 project

SmartLM. In the European funded

project OPTIMIS (Optimized

Infrastructure Services) we will further

improve the capabilities of the

SmartLM solution, developing addi-

tional features, for instance a feature

Enabling Reliable MapReduce Applications
in Dynamic Cloud Infrastructures
by Fabrizio Marozzo, Domenico Talia and Paolo Trunfio

MapReduce is a parallel programming model for large-scale data processing that is widely used in
Cloud computing environments. Current MapReduce implementations are based on master-slave
architectures that do not cope well with dynamic Cloud infrastructures, in which nodes join and
leave the network at high rates. We have designed a MapReduce architecture that uses a peer-to-
peer approach to manage node churn and failures in a decentralized way, so as to provide a more
reliable MapReduce middleware that can be effectively exploited in dynamic Cloud infrastructures.

MapReduce is a framework for pro-

cessing large data sets in a highly par-

allel way by exploiting computing facili-

ties available in a data centre or through

a Cloud computing infrastructure.

Programmers define a MapReduce

application in terms of a map function

that processes a key/value pair to gen-

erate a list of intermediate key/value

pairs, and a reduce function that merges

all intermediate values associated with

the same intermediate key.

Current MapReduce implementations,

like Google’s MapReduce, are based on

a master-slave architecture. A job is sub-

mitted by a user node to a master node

that selects idle workers and assigns a

map or reduce task to each. When all the

tasks have been completed, the master

node returns the result to the user node.

The failure of one worker is managed by

re-executing its task on another worker,

while master failures are not explicitly

managed as designers consider failures

unlikely in reliable computing environ-

ments, such as a data centre or a dedi-

cated Cloud.

In contrast, node churn and failures –

including master failures – are likely in

dynamic Cloud environments, such as a

Cloud of clouds, which can be formed

by a large number of computing nodes

that join and leave the network at very

high rates. Therefore, providing effec-

tive mechanisms to manage such prob-

lems is fundamental to enable reliable

MapReduce applications in dynamic

Cloud infrastructures, where current

MapReduce middleware could be unre-

liable.

At the University of Calabria and

ICAR-CNR we have designed an adap-

tive MapReduce framework, called

P2P-MapReduce, which exploits a

peer-to-peer model to manage node

churn, master failures, and job recovery

in a decentralized but effective way, so

as to provide a more reliable

MapReduce middleware that can be

effectively exploited in dynamic Cloud

infrastructures.

P2P-MapReduce exploits the peer-to-

peer paradigm by defining an architec-

ture in which each node can act either as

a master or a slave. The role assigned to

a given node depends on the current

characteristics of that node, and can

change dynamically over time. Thus, at

each time, a limited set of nodes is

assigned the master role, while the

others are assigned the slave role. Each

master node acts as a backup node for

the other master nodes. A user node can

submit a job to one of the master nodes,

which will manage it as usual in

MapReduce. That master dynamically

replicates the entire job state (ie, the

assignments of tasks to nodes, the loca-

tions of intermediate results, etc.) on its

backup nodes. If those backup nodes

detect the failure of the master, they will

elect one of them as a new master that

will manage the job computation using

its local replica of the job state.

The behaviour of a generic node is mod-

elled as a state diagram which defines

the different states that a node can

assume, and all the events that deter-

mine transitions from one state to

another state (see Figure 1). The slave

macro-state describes the behaviour of

an active or idle worker. The master

macro-state is modelled with three par-

allel states, which represent the dif-

ferent roles a master can perform con-

currently: possibly acting as a primary

master for one or more jobs (manage-

ment); possibly acting as a backup

ERCIM NEWS 83 October 2010 45

master for one or more jobs (recovery);

coordinating the network (coordina-

tion). The goal of a master acting as the

network coordinator is to ensure the

presence of a given percentage of mas-

ters on the total number of nodes; to this

end, it has the power to change slaves

into masters, and vice versa.

We implemented a prototype of the

P2P-MapReduce framework using the

Sun’s JXTA peer-to-peer framework. In

our implementation, each node includes

three software modules/layers:

Network, Node and MapReduce (see

Figure 2). The Network module is in

charge of the interactions with the other

nodes using the pipe communication

mechanism provided by the JXTA

framework; additionally, it allows the

node to interact with the JXTA

Discovery Service for publishing its

features and for querying the system

(eg, when looking for idle slave nodes).

The Node module controls the node

lifecycle; its core is represented by the

FSM component which implements the

logic of the finite state machine shown

in Figure 1. Finally, the MapReduce

module manages the local execution of

jobs (when the node is acting as a

master) or tasks (when the node is

acting as a slave). Currently this module

is built upon the local execution engine

of Apache Hadoop.

We are carrying out a set of experiments

to evaluate the behaviour of the P2P-

MapReduce framework compared to a

standard master-slave implementation

of MapReduce, in the presence of dif-

ferent levels of churn. Early experi-

mental results show that, in contrast to

NODE

SLAVE

<<MacroState>>

IDLE

CHECK_MASTER

MASTER

PRIMARY

BACKUP

ELECTING_COORDINATOR

WAITING_COORDINATOR

COORDINATOR

[MANAGEMENT]

[RECOVERY]

[COORDINATION]

taskAssigned

taskCompleted

<<timeout>>

[exists a
master node]

becomeMaster

becomeSlave

[not exists a

master node]

NOT_COORDINATOR

JobN

. . .
Job2

Job1

JobM

. . .
Job2

Job1

ACTIVE

TaskN

. . .
Task2

Task1

NOT_BACKUP

NOT_PRIMARY

Figure 1: UML State Diagram
describing the behavior of a generic
node in the P2P-MapReduce
framework. The slave macro-state
describes the behavior of an active
or idle worker. The master macro-
state is modelled with three parallel
states: Management (the node is
possibly acting as a primary
master); Recovery (the node is
possibly acting as a backup master);
Coordination (the node is possibly
acting as the network coordinator).

Figure 2: Software architecture of the P2P-MapReduce framework. Each node includes three
software modules/layers: Network, Node and MapReduce. The Network module provides
communication mechanisms with the other nodes and with the JXTA Discovery Service. The
Node module implements the logic of the finite state machine shown in Figure 1. The
MapReduce module manages the local execution of jobs and tasks.

Please contact:

Domenico Talia

ICAR-CNR and

DEIS, University of Calabria, Italy

Tel: +39 0984 494726

E-mail: talia@deis.unical.it

Fabrizio Marozzo and Paolo Trunfio

DEIS, University of Calabria, Italy

E-mail: fmarozzo@deis.unical.it,

trunfio@deis.unical.it

Node 1

Node 2

Data
store

Network module

Node module

FSM

MapReduce
module

JXTA
Discovery
Service

Node 3

standard implementations, the P2P-

MapReduce framework does not suffer

from job failures even in presence of

very high churn rates, thus enabling the

execution of reliable MapReduce appli-

cations in very dynamic Cloud infra-

structures.

Links:

http://labs.google.com/papers/

mapreduce.html

https://jxta.dev.java.net

http://hadoop.apache.org

