Chapter 1
Data Management Techniques

Ali Shoker,! Anna Queralt2 Toni Cortes’

1.1 Advanced Conflict-free Replicated DataTypes

One approach to achieve ultra-scale data management is to use a full data replication
paradigm with a relaxed consistency model. This is advocated given the tradeoffs of
Availability, Consistency, and network Partition addressed by the CAP theorem [1].
While a relaxed consistency model allows for prompt local updates, this can lead to
potential conflicts in the data once merged elsewhere. With the premise to eventually
converge to a single state, manual and case-tailored solutions are unproven correct
and cumbersome to use. In this section, we present a more generic and mathemat-
ically proven method though Conflict-free Replicated DataTypes [2] that guarantee
eventual convergence. We present four variants of CRDT models: operation-based,
pure operation-based, state-based, and delta-state based CRDTs [2, 3, 4, 5, 6]. We
aim to keep the presentation simple by addressing a common “set” datatype example
throughout all CRDT variants to show their differences. We finally present a case
study, on the dataClay [7, 8] distributed platform, demonstrating how CRDTSs can be
used in practice.

1.1.1 Scalability and Availability Tradeoffs

With the immense volumes of data generated by social networks, Internet of Things,
and data science, scalability becomes one of the major data management challenges.
To sustain such data volumes, a data management service must guarantee both a
large data storage capacity and high availability. Although the former can be in-
creased through scaling up, i.e., augmenting the storage capacity of a service though
adding larger hard drives or using RAID technology, the availability challenge re-
mains, due to bottlenecks and single points of failure. A typical alternative is to
scale out through distributing, a.k.a., replicating, the data over distinct nodes ei-
ther within a small proximity, like a cluster, or scattered over a large geographical
space. This however raises a challenge on the quality of data, subject to the speed of

'HASLab, INESC TEC & University of Minho, Portugal
2Universitat Politcnica de Catalunya, Spain
3Universitat Politcnica de Catalunya, Spain

2 Ultrascale Computing Systems

Read/Write operations and data freshness, and often governed through a data consis-
tency model [9].

Traditionally, the common approach was to fully replicate the data and use a
strong consistency model, e.g., sequential consistency or total order protocols like
quorum-based consensus [10, 11]. However, the overhead of synchronization be-
comes intolerable under scale, especially in a geographically distributed settings or
loosely coupled systems. In fact, the CAP theorem [1, 12] forces to choose between
(strict) data consistency and availability, given that network partitions are hard to
avoid in practice. Consequently, the recent trend is to adopt a relaxed data consis-
tency model that trades strict consistency for high availability. This is advocated by
applications that cannot afford large response times on reads and writes, and thus
allow for stale reads as long as propagating local writes eventually lead to conver-
gence [13]—assuming system quiescence.

The weakest consistency models that guarantee convergence often adopt a vari-
ant of Eventual Consistency [13] (EC) in which updates are applied locally, without
prior synchronization with other replicas, such that they are eventually delivered and
applied by all replicas. In practice, many applications require stronger guarantees
on time and order, and advocate the causal consistency model, which enforces a
happens-before relation [14]: A is delivered before B if A occurred before B on the
same machine; or otherwise, A occurred before a send event and B occurred after
a receive event (possibly by transitivity). To understand the need for causal consis-
tency in applications, consider an example on a replicated messaging service where
Bob commented on Alice’s message, i.e., Alice’s message happened before Bob’s
comment. Since, in a distributed setting, it can happen that different users read from
different servers (a.k.a., replicas), without enforcing causal consistency some users
may read Bob’s comment before Alice’s message.

Even if it boosts availablity, a relaxed consistency model can lead to conflicts
when concurrent operations are invoked on different replicas. Traditionally, con-
flicts are reconciled manually or left to the application to decide on the order (all
concurrent versions are retained and exposed) [15]. This process is very costly and
subject to errors which necessitates a systematic way instead. Conflict-free Repli-
cated DataTypes [2, 3, 5] (CRDTs) are mathematical abstractions that are proven
to be conflict-free and easy to use, and they are recently being adopted by leading
industry like Facebook, Tom Tom, Riak DB, etc.?. In the rest of this section, we
introduce CRDTSs and present some of the recent advanced models.

1.1.2 Conflict-free Replicated Datatypes

Conflict-free Replicated Datatypes (CRDTs) [2, 3, 5] are data abstractions (e.g,
counters,sets, maps, etc), that are usually replicated over (often loosely-connected)
network of nodes, and are mathematically formalized to guarantee that replicas con-
verge to the same state, provided they eventually apply the same updates. The as-
sumption is that state updates should be commutative, or designed to be so. This

4Some of the industry use of CRDTs can be seen here: https://en.wikipedia.org/wiki/Conflict-free_
replicated_data_type#Industry_use.

Ultrascale Computing Systems 3

ensures that applying concurrent updates on different nodes is independent from
their application order. For instance, applying “Add A” and “Add B” to a set will
eventually lead to both elements A and B in the two replicas. Whereas, concurrent
non-commutative operations “Add A” and “Remove A” may lead to two different
replicas (one is empty and the other has element A).

There are two main approaches for CRDTs: operation-based (a.k.a., op-based)
and state-based. The former is based on disseminating operations whereas the latter
propagates a state that results from locally applied operations. In the systems where
the message dissemination layer guarantees Reliable Causal Broadcast (RCB), op-
based CRDTs are desired as they allow for simpler implementations, concise replica
state, and smaller messages. On the other hand, state-based CRDTs are more com-
plex to design, but can handle duplicates and out-of-order delivery of messages with-
out breaking causality, and thus are favored in hostile networks.

In the following, we elaborate on these models and their optimizations focus-
ing on the Add-wins Set (AWSet) datatype (in which a concurrent add dominates
a remove). We opt for AWSet being a very common datatype that has causality
semantics, which helps explaining the different ordering guarantees in CRDT mod-
els. More formally, in an AWSet that retains add and rmv operations together with
their timestamps ¢, the concurrent semantics can be defined by a read operation that
returns the following elements:

{v|(t,[add,v]) € s AV(¢',[(add | rmv),v]) €5t £ '} (1.1)

Op-based CRDTs. In op-based CRDTs [2], each replica maintains a local state
that is type-dependent. A replica is subject to clients’ operations, i.e., guery and up-
date, that are executed locally as soon as they arrive. While query operations read
the local (maybe stale) state without modifying it, updates often modify the state
and generate some message to be propagated to other replicas through a reliable
causal broadcast (RCB) middleware. The RCB handles the exactly-once dissemina-
tion across replicas, mainly through an API composed of causal broadcast function
cbcast and causal deliver function cdeliver.

)y : State type, ©; is an instance
prepare;(0,0;) : Prepares a message m given an operation o
effect;(m,0;) : Applies a prepared message m on a state
val;(¢,0;) : Read-only evaluation of query g on a state

Figure 1.1: The general composition of an op-based CRDT.

To explain the process further, we consider the general structure of an op-based
CRDT in Figure 1.1, and convey Algorithm 1 that depicts the interplay between the
RCB middleware and the CRDT. In particular, when an update operation o is issued
at some node i having state o;, the function prepare;(0, 0;) produces a message m
that includes some ordering meta-data in addition to the operation. This message
m is then broadcast by calling cbcast;(m), and is delivered via cdeliver j(m) at each
destination node j (including i itself). cdeliver triggers effect;(m, ;) that returns a

4 Ultrascale Computing Systems

state: state:
| oieX | 0i=(s,m) € 2(0) x (0,<)
on operation;(0): on operation;(0)
m := prepare;(0, 0;) | tcbeast;(o)
cbcast;(m) on tcdeliver;(m,t):
on cdeliver;(m): | 7 = effect;(m,1,m;)
| 01:1= effect;(m, o) on tcstable;(z):
on query;(): | 0y := prune;(m;, s,1)
| vali(oy) on query;():
‘ vali(G,-)
Algorithm 1: CRDT & RCB Algorithm 2: Pure CRDT & TRCB

Figure 1.2: Distributed algorithms for node i showing the interplay of classical and
pure op-based CRDTs given a standard versus tagged reliable causal broadcast mid-
dlewares, respectively.

T=INxZ(IxNxV) oy =(0,{})
prepare;([add,v], (n,s)) = [add,v,i,n+1]
effect;([add,v,i',n'], (n,s)) = (0 (z—l)Vn su{(ni,n")})
prepare;[rmv,v], (n,s)) = [rmv,{(V/,i',n’) €s |V =v}]
effect;([rmv,r], (n,s)) = (n,s\r)
val;(n,s) | (i) es}

Figure 1.3: Operation-based Add-Wins Set CRDT, at node i.

new replica state GJ’-. Finally, a query operation g is issued, val;(g, o;) is invoked, and
no corresponding broadcast occurs.

Example. We further exemplify op-based CRDTs though an “Add-wins Set”
(AWSet) CRDT design depicted in Figure 1.3. The state ¥ is composed of a local se-
quence number n € IN and a set of values in V together with some meta-data in / x IN
that is used to guarantee the causality information of the datatype. The prepare of an
add operation produces a tuple, to be disseminate by RCB, composed of the element
to be added together with the ID and the incremented sequence number of the local
node i. The effect function is invoked on RCB delivery and leads to adding this tuple
to the state and incrementing the sequence number only if the prepare was local at i.
To the contrary, preparing a rmv returns all the tuples containing the removed item,
which allows the corresponding effect to remove all these tuples. Finally, the val
function returns all the elements in the set.

Pure Op-based CRDTs. Op-based CRDTs can be optimized to reduce the
dissemination and storage overhead. Indeed, since op-based CRDTs assume the
presence of and RCB, one can take advantage of its time abstractions, i.e., often

Ultrascale Computing Systems 5

L=2(0)xT =0 of = (sim)" = ({},{})

(\ {[add,] | 0 = [rmv,]},

n\{(¢,[add,v]) |o = [rmv,v] At <t}U

{(t,0) |o=T[add,Vv] A (L,0) € T Ao &s})
vali(s,m) = {v|[add,v] €sV (t,[add,V]) € T}

pruneg;(m,s,7) = (sU{o},m\{(t,0)}H) At<T

effect;(o,1,s, 1)

Figure 1.4: Pure operation-based Add-Wins Set CRDT, at node i.

implemented via version vectors (VV), to guarantee causal delivery and thus avoid
disseminating the meta-data produced by prepare. Consequently, this leads to dis-
seminating the “pure” operations and possible arguments which makes the prepare
useless, hence the name Pure op-based CRDTs [5, 6]. In addition, this “pure” mind-
set leads to having a standard state for all datatypes: a partially order log: Polog.
However, this will lead to storing the VV in the state which can be very expensive
when the number of replicas in the systems is high. Fortunately, and contrary to the
classical op-based approach, the time notion of VV is useful to transform the Polog
into a sequential log which eventually helps to prune the—no longer needed—VVs.

Tagged Reliable Causal Broadcast (TRCB). To achieve the above optimizations,
we consider an extended RCB, called Tagged RCB (TRCB), that provides two func-
tionalities through the API functions: tcdeliver and tcstable [5, 6]. The former is
a equivalent to the standard RCB cdeliver presented above with a simple extension
to the API by exposing the VVs (used internally by the RCB) to the node upon de-
livery, which can be appended to the operation by the recipient. On the other hand,
tcstable is a new function that returns a timestamp 7 indicating that all operations
with timestamp ¢ < 7 are stable: have been delivered on all nodes. The essence is
that no concurrent operations to the stable operations in the Polog are expected to
be delivered, and hence, the corresponding VVs in the Polog can be pruned without
affecting the datatype semantics.

Given the TRCB, depicted in Figure 2, the design of Pure CRDTs differs from
the classical ones in different aspects. First, the state is common to all datatypes,
and is represented by a set of stable operations and a Polog. Second, prepare has
no role anymore as the operations and its arguments can be immediately dissem-
inated though the TRCB. Third, the significant change is with the effect function
that discards datatype-specific “redundant” operations before adding to the Polog
(e.g., a duplicate operation). However, to the contrary of classical op-based CRDTs,
only one effect function is required per datatype. Finally, prune function is required
to move stable operations (triggered via the TRCB’s tcstable) to the sequential log
after pruning the VVs.

Example. Using the same example of the AWSet, we provide the Pure CRDT
version in Figure 1.4. The state is composed of a set of sequential operations s
and Polog m: a map from timestamps to operations. The prepare does not exist

6 Ultrascale Computing Systems

due the reasons mentioned above, and hence the operation and its arguments are
sent to the destination. Once a rmv operation is delivered, the effect deletes the
corresponding operation from s and those in the causal past of rmv € . (Remember
that all operations in s are in the causal past of delivered operations.) Finally, effect
only adds an add to 7 if the element is not in s or 7. Once the tcstable triggers
prune, given a stable timestamp 7, all operations with timestamp ¢ < T become stable;
and are thus removed by prune from 7 and added to s without the (now useless)
timestamp.

Additional pedantic details. A catalog of many op-based CRDT specifications
like counters, sets, registers, maps, etc., can be found in [6]. There are also several
optimizations that are beyond the scope of this book. For instance, the pure op-
based specifications can be generalized further to have a common framework for all
CRDTs in such a way the user only needs to define simple datatype-specific rules to
truncate the Polog. In addition, one can go deeper and optimize each datatype aside.
An example is to replace the stable state with a classical datatype instead of retaining
the set of operations. On the other hand, datatypes that are natively commutative can
be easier to implement as classical op-based CRDTs. Finally, we avoid presenting
the details of the TRCB for presentation purposes. The reader can refer to [5, 6] for
these details.

State-based CRDTSs. While op-based CRDTs are based on the dissemination
of operations that are executed by every replica, a “state” is disseminated in the state-
based CRDTs [2]. A received state is incorporated with the local state via a merge
function that, deterministically, reconciles any existing conflicts.

X : State defined as join semi-lattice, o; is an instance
Mutators : mutating operations that inflate the state.
sUs’ : LUB to merge states s and s’

vali(q,0;) :Read-only evaluation of query g on a state

Figure 1.5: The general composition of a state-based CRDT.

As depicted in Figure 1.5, a state-based CRDT consists of a state, mutators,
join, and query functions. The state ¥ is designed as a join-semilattice [16]: a set
with a partial order, and a binary join operation U that returns the least upper bound
(LUB) of two elements in S, and is always designed to be commutative, associative,
and idempotent. On the other hand, mutators are defined as inflation: for any mutator
m and state X, X T m(X). This guarantees that the state never diminishes, and thus,
each subsequent state subsumes the previous state when joined elsewhere. Finally,
the query operation leaves no changes on the state. Note that the specification of all
these functions, and the state, are datatype-specific.

Anti-entropy protocol. To the contrary of op-based CRDTs that assume the pres-
ence of RCB, state-based CRDTSs can ensure eventual convergence using a simple
anti-entropy protocol, as in Algorithm 3, that periodically ships the entire local state
to other replicas. Each replica merges the received state with its local state using the

Ultrascale Computing Systems 7

inputs: on operation;(m)
| ni € 2(I), set of neighbors | X] =m(X))

durable state: periodically // ship state
| X;:=_1 €S, CRDT state J =random(n;)

on receive;;(Y) send; ;(X;)
| X/ =Xx;uY

Algorithm 3: A basic anti-entropy algorithm for state-based CRDTs.

Y = ZPAxNxE)x Z(IxN)
o = ({11}
add;(e, (s,1)) = (sU{(i,n+1,e)},1)

with n = max({k | (i,k,-) € s})
) = (s10{(j,n) | (jin.e) €s})
fel Gome) €A (on) €1}
(s,H)U(s",") = (sus',tUr)

S~—
Il

Figure 1.6: State-based AWSet CRDT, at node i.

Jjoin operation. (Algorithm 3 can be more sophisticated to include retransmissions,
routing, or gossiping, but we keep it simple for presentation purposes.).

Example. Again, we exemplify on state-based CRDTSs via Figure 1.6 that de-
picts the design of AWSet. The state X is composed of two sets. One set is for the
addition of elements with unique tags defined by unique ID and sequence number,
and another tombstones set that serves for collecting the removed tags. This design
is crucial to achieve the semi-lattice inflation properties subject to mutators: add and
rmv. The former adds the new element to the addition set together with a new tag
leaving the tombstones set intact. An element is removed by rmv through adding its
unique tag to the tombstones set. Notice that the element must not be removed from
the addition set which violates inflation. Given these specifications, the query func-
tion val will simply return all the added elements that do not have corresponding tags
in the tombstones set. Finally, the merge function U joins any two (disseminated or
not) states by simply computing the union of the sets, thus respecting the semi-lattice
properties.

Delta-state CRDTs. Despite the simplicity and robustness of state-based CRDTs,
the dissemination overhead is high as the entire state is always propagated even with
small local state updates. Delta-state CRDTs [3, 4] are state-based CRDT variants
that allow to “isolate” the recent updates on a state and ship the corresponding delta,
i.e., a state in the semi-lattice corresponding only to the updates, and shipped to be
merged remotely. The trick is to find new delta-mutators (a.k.a., §-mutators) m® that

8 Ultrascale Computing Systems

Y = Z(AxNxE)x Z(IxN)
o = (L)

add?(e’ (S,l)) = ({(l,l’l-i- 1,6)},{})
with n = max({k | (i,k,-) € s})

) = {3AU) [(inse) €s})
vali((s,1)) = {e|(j,ne)esN(j,n) &t}
(s,)u(s',t") = (sus,tuUt)

Figure 1.7: Delta-state AWSet CRDT, at node i.

return deltas instead of entire states (and again, these are datatype specific). Given a
state X, the relation between mutators m in state-based CRDT's and m? is as follows:

X' =m(X)=Xum®(X) (12)

This represents the main change in the design of state-based CRDTs in Fig-
ure 1.5.

Example. Considering the AWSet example, the only difference between the
delta CRDT version in Figure 1.7 and its state-based counterpart in Figure 1.6 is with
mutators. One can simply notice that add® returns the recent update that represents
the added element whereas add returns the entire state. A similar logic holds for the
difference between rmv® and rmv. As for the U and val, their design is the same in
both versions; however, notice that the propagated and merged message is a delta-
state in Figure 1.7 rather than a whole state. Indeed, although a delta-mutator returns
a single delta, it more practical to join deltas locally and ship them in groups (which
must not affect the LI in any case) as we explain next.

Causal anti-entropy protocol. This delta CRDT optimization comes at a cost:
it is not longer safe to blindly merge received (delta) states when the datatype re-
quires causal semantics. Indeed, state-based CRDTs implicitly ensure per-object
causal consistency since the state itself retains all the causality information, whereas
a delta state includes the tags of individual changes without any memory about the
causal past. This requires a little more sophisticated anti-entropy protocol that en-
forces causal delivery on received deltas and supports coarse-grained shipping of
delta batches, called “delta-intervals”. A delta-interval A?’b is a group of consecutive
deltas corresponding to a sequence of all the local delta mutations from a through
b — 1, and merged together via LI before shipping:

AP =] [{dF|a<k<b} (1.3)

Given this, an anti-entropy algorithm can guarantee causal order if it respects the
“causal delta-merging condition”: X; X]“ This means that a receiving replica can
only join a remote delta-interval if it has already seen (and merged) all the causally
preceding deltas for the same sender. Algorithm 4 is a basic anti-entropy protocol
that satisfies the causal delta-merging property. (We discarded many optimization

Ultrascale Computing Systems

inputs: on receive; ;(delta,d,n)
| ni € 2(I), set of neighbors if d [Z X; then
durable state: X =X;ud
X;:= 1 € §, CRDT state D;=Di{ci—d}
¢i :=0 € IN, sequence number cf» =ci+1

volatile state:
D; :={} € N S, sequence of s
A;:={} €I — N, ack map

send; j(ack,n)
on receive; ;(ack,n)
| A} =Ai{j — max(4;(j),n)}

9

on operation, (m®) periodically // ship delta-interval
d=md(X)) j = random(n;)
X! = X;Lud d=LHDi(1) | Aij) <1 < ci}
D; = Di{ci — d} sendiyj(delta,d,c,-)
ci=ci+1 periodically // garbage collect Js
I=min{n | (-,n) € A;}
D;={(n,d)eD;|n>1}

Algorithm 4: Basic causal anti-entropy protocol satisfying the delta-merging con-
dition.

to focus on the core concept.) In addition to the state, a node retains a sequence
number that, together with the acknowledgments map, helps the node to identify the
missing deltas to be sent to a destination. In addition, the delta-interval D serves to
batch deltas locally before sending them periodically. Once an operation is received
from a client, a corresponding delta is returned by m®, which is then merged to the
local state and joined to D for later dissemination to a random node. Once a delta
interval is received, it gets merged to the local state as well as the local delta-interval
buffer—to be sent to other nodes. Finally, deltas that have been sent to all nodes are
garbage-collected from D.

Additional pedantic details. A catalog of many delta-state CRDT specifications
like counters, sets, registers, maps, etc., can be found in [3, 4]. There are also several
optimizations that are beyond the scope of this book. For instance, the tags in the
tombstone set can be compressed further in a single version vector and few tags.
This helps generalizing the specifications to use a common causality abstraction per
all datatypes [4]. Furthermore, the causal anti-entropy protocol can consider other
conditions to improve performance, e.g., through considering transitive propagation
of deltas or sending a complete state once a delta does not help, e.g., a node was
unavailable for a long time. In this particular case, other useful alternatives to define
deltas by join decomposition can be found in [17].

1.1.3 A case study: dataClay distributed platform

We now present a case study to demonstrate the practical use of CRDTs in a real dis-
tributed system: dataClay distributed platform [7, 8]. The aim is to give the reader an
applied example of CRDTs showing how they can make the developers life easier.

10 Ultrascale Computing Systems
For that purpose, we try to be direct and simple to help the reader getting started.

dataClay. A distributed platform aimed at storing, either persistently or in mem-
ory, Java and Python objects [7, 8]. This platform enables, on the one hand, to store
objects as in an object-oriented database and, on the other hand, to build applications
where objects are distributed among different nodes, while still being accessible from
any of the nodes where the application runs. Furthermore, dataClay enables several
applications to share the same objects as part of their data set.

dataClay has three interesting properties. The first is that it stores the class
methods in addition to the data. This functionality has several implications that help
application developers use the data in this platform: (1) data can only be accessed
using the class methods (no direct field modifications) and thus class developers can
take care, for instance, of integrity constraints that will be fulfilled by all applications
using the objects; and (2) methods can be executed over the objects inside the plat-
form, without having to move the data to the application. The second property is that
objects in dataClay are not flat; and they can rather be composed of other objects, or
language basic types, like in any object-oriented language. Finally, dataClay enables
objects to be replicated to several nodes managed by the platform in order to increase
tolerance to faults and/or execution performance by exploiting parallelism.

The case for CRDTSs. Despite fully replicating the data (and class definitions)
to improve tolerance to faults, dataClay does not natively implement any synchro-
nization scheme between replicas since some applications (or modules of an appli-
cation) cannot afford paying the synchronization price [18, 9]. Consequently, to
provide this flexibility, dataClay tries to offer mechanisms for class developers to
implement the consistency model their objects may need. Nevertheless, building
such mechanisms is always tedious and, most importantly, synchronization implies
a performance penalty and lack of scalability [12]. Here is where CRDTs come into
play to provide a relaxed consistency and seamless plug-and-play conflict resolution
for the replicated objects across the platform. Furthermore, given that code is part of
the replicated data, the class developers can implement CRDTs and dataClay itself
will guarantee that the update rules will be followed regardless of the application
using them; however, this can also be used in a relaxed consistency fashion instead
of using a centralized server (as it is currently designed). We touch upon these two
issues in the following.

Using CRDTs. For replicating objects, dataClay can provide the developer with
a library for CRDTs to be used in the classes and maybe through composing ob-
jects. Given that dataClay’s system model is a graph-like Peer-to-Peer system, it
is more desirable to use the state-based CRDT model since no RCB middleware
is required. By using CRDTs, any application can modify the data objects with-
out prior synchronization with other replicas or applications. Once the changes are
propagated, CRDTs can eventually converge to the same value. In order to show
how CRDTs are mapped to dataClay, we provide a simple example on a Grow-only
Counter (GCounter) CRDT [2, 3]. We choose the counter being a simple example

Ultrascale Computing Systems 11

= [—N

5
? {}

Q
I

inci(m) = m{i—m(i)+1}

val;(m) = Z m(r)
redom(m)

mUm' = max(m,m)

Figure 1.8: State based GCounter CRDT, on replica i.

and at the same time shows how a semi-lattice can be different from the AWSet
discussed before.

The GCounter specification is conveyed in Figure 1.8. In this design, the state
¥ is defined as a map from node IDs to a natural number corresponding to the incre-
ments done locally. As inc mutator shows, a node can only increment its own key,
whereas the val query function returns the sum of all keys from all nodes. Once a
(whole) state is propagated, the merge is done through taking the maximum counter
corresponding to each key. For instance, in a system of three nodes, the following
two GCounters are merged as follows: (1,4,5)U(3,4,2) = (3,4,5). In the Java im-
plementation of the GCounter presented in Figure 1.9, the state is coded as a hash
map to enable the addition of new replicas on the fly, without any kind of synchro-
nization and/or notification as part of the CRDT. In this code, the increment method
pushes the new version of the hash map to all existing replicas to have the last up-to-
date version and recover any potentially missed update from another node. We leave
the details of the code as an exercise to the reader.

Class deployment. As mentioned above, dataClay also replicates the class def-
initions to be used by the applications across the systems and to allow method in-
vocations close to the data. For this purpose, once a class is updated, the different
versions must be coordinated to avoid conflicts in the semantics of the corresponding
class instances. In order to allow for these updates in a loosely coordinated fashion,
the classes can be designed as a Set CRDT associated with the class version. When
a class update is made somewhere by any developer, the changes are deployed ev-
erywhere in the system, but they cannot be used until all replicas in the system see
the new change. This concept is similar to the causal stability feature provided by
the Tagged RCB presented before. In particular, although not all nodes detect causal
stability of a version at the same time, once any node detects this, it is safe to start us-
ing that version. The reason is that causal stability ensures that the version has been
delivered by all nodes in the system, and thus, the new class updates can fetched to
be used in the future. Notice that we are talking about class deployment here, but the
designer must consider the compatibility between the old and the new versions, e.g.,
if some class instances already exist.

12 Ultrascale Computing Systems

public class CRDTG_Counter extends DataClayObject {
// To identify which replica I am.
// The Key is the dataClay ID where the replica is stored.
private String nodeID = System.getenv().get("nodeID");
// The real set of counters.
// We store it as a map to allow adding new replicas seamlessly
private Map<String, Integer> counters;

public CRDTG_Counter() {

counters = new HashMap<String, Integer>();
// Creating a new counter
counters.put(nodeID, 0);

}

public synchronized void increment() {
// Incrementing my "local" counter
Integer counter = counters.get(nodeID);
if(counter == null){

counter = 0;
}

counter++;
counters.put(nodeID, counter);
// Propagate the update to all replicas
for(String key: counters.keySet()){
if(key.equals(nodeID)){|
continue;
}

this.runRemote(new ExecutionEnvironmentID(key),
"merge”, new Object[]{ counters });

}
}

public int getValue(){

int counter = ©;

for(String key: counters.keySet()){
counter = counter + counters.get(key);

return counter;

public synchronized void merge(Map<String, Integer> map){
String[] keys = map.keySet().toArray(new String[map.size()]);
for(String key: keys){
Integer current = counters.get(key), value = map.get(key);
if(current == null || current < value){
counters.put(key, value);
}

}

Figure 1.9: An implementation for GCounter CRDT in dataClay.

1.1.4 Conclusions and Future Directions

CRDTs make using replicated data less cumbersome to developers and correct being
mathematically designed abstractions. However, they can only be useful when the
application semantics allow for stale reads and favor immediate writes. CRDTs exist
for many datatype variants of counters, sets, maps, registers, graphs, etc. They can
however be extended to other types as long as operations are commutative or can be
made so.

This section presented two main variants for CRDTs and their important opti-
mizations. Some of the tradeoffs are understood, while others require future empir-
ical investigation. Op-based CRDT designs are more intuitive to design and can be
used once a reliable causal middleware is available. If it is possible to extend the
middleware API, once can use pure op-based CRDTs to reduce the overhead of dis-

REFERENCES 13

semination and storage. On the other hand, state-based CRDTs are more tolerant in
hostile networks and gossip-like systems being natively idempotent: data can arrive
though different nodes and get merged safely. Despite being easy to use in practice,
state-based CRDTs can be expensive on dissemination when the state is not small.
Consequently, it is recommended to use the delta-state CRDT alternative that signifi-
cantly reduces the dissemination cost if a convenient causal anti-entropy protocol can
be deployed. Furthermore, hybrid models of these variants can have tradeoff proper-
ties, and are interesting to study in the future work. Finally, it would be promising to
investigate the feasibility of CRDTs in other system models and research areas like
Edge Computing or Blockchain.

References

[11 Gilbert S, Lynch N. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. Acm Sigact News. 2002;33(2):51-
59.

[2] Shapiro M, Preguica N, Baquero C, et al. A comprehensive study of
convergent and commutative replicated data types. Inria—Centre Paris-
Rocquencourt; INRIA; 2011.

[3] Almeida PS, Shoker A, Baquero C. Efficient state-based crdts by delta-
mutation. In: International Conference on Networked Systems. Springer;
2015. p. 62-76.

[4] Almeida PS, Shoker A, Baquero C. Delta state replicated data types. Journal
of Parallel and Distributed Computing. 2018;111:162-173.

[5] Carlos Baquero PSA, Shoker A. Making Operation-Based CRDTs
Operation-Based. In: Distributed Applications and Interoperable Systems
- 14th IFIP WG 6.1 International Conference, DAIS 2014, Held as Part of
the 9th International Federated Conference on Distributed Computing Tech-
niques, DisCoTec 2014, Berlin, Germany, June 3-5, 2014, Proceedings; 2014.
p- 126-140. Available from: http://dx.doi.org/10.1007/978-3-662-43352-2_
11.

[6] Carlos Baquero PSA, Ali Shoker javayu title = Pure Operation-Based Repli-
cated Data Types;.

[71 Marti Fraiz J. dataClay: next generation object storage. 2017;.

[8] Marti J, Queralt A, Gasull D, et al. Dataclay: A distributed data store
for effective inter-player data sharing. Journal of Systems and Software.
2017;131:129-145.

[9] Terry D. Replicated data consistency explained through baseball. Com-
mun ACM. 2013;56(12):82—89. Available from: http://doi.acm.org/10.1145/
2500500.

[10] Goodman JR. Cache consistency and sequential consistency. University of
Wisconsin-Madison, Computer Sciences Department; 1991.
[11] Lamport L, et al. Paxos made simple. ACM Sigact News. 2001;32(4):18-25.

14

[12]

[13]
[14]

[15]

[16]

[17]

[18]

Book title

Abadi D. Consistency Tradeoffs in Modern Distributed Database System
Design: CAP is Only Part of the Story. IEEE Computer. 2012;45(2):37-42.
Available from: https://doi.org/10.1109/MC.2012.33.

Vogels W. Eventually consistent. =~ Communications of the ACM.
2009;52(1):40-44.

Lamport L. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM. 1978;21(7):558-565.

DeCandia G, Hastorun D, Jampani M, et al. Dynamo: amazon’s highly avail-
able key-value store. In: ACM SIGOPS operating systems review. vol. 41.
ACM; 2007. p. 205-220.

Davey BA, Priestley HA. Introduction to lattices and order. Cambridge uni-
versity press; 2002.

Vitor Enes, Carlos Baquero, Paulo Sergio Almeida, and Ali Shoker. Join De-
compositions for Efficient Synchronization of CRDTs after a Network Parti-
tion. In: In the Proceedings of the ECOOP Programming Models and Lan-
guages for Distributed Computing Workshop. PMLDC’16. ACM; 2016. .
Bailis P, Fekete A, Franklin MJ, et al. Coordination Avoidance in Database
Systems. PVLDB. 2014;8(3):185-196. Available from: http://www.vldb.org/
pvldb/vol8/p185-bailis.pdf.

https://www.researchgate.net/publication/330992850

