JOURNAL OF BTEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014

Trajectory Pattern Mining for Urban Computing
In the Cloud

Albino Altomare, Eugenio Cesario, Carmela Comito, Fabrizio Marozzo and Domenico Talia, Member, IEEE

Abstract —The increasing pervasiveness of mobile devices along with the use of technologies like GPS, Wi networks, RFID, and
sensors, allows for the collections of large amounts of movement data. This amount of data can be analyzed to extract descriptive and
predictive models that can be properly exploited to improve urban life. From a technological viewpoint, Cloud computing can play an
essential role by helping city administrators to quickly acquire new capabilities and reducing initial capital costs by means of a
comprehensive pay-as-you-go solution. This paper presents a work ow-based parallel approach for discovering patter ns and rules
from trajectory data, in a Cloud-based framework. Experimental evaluation has been carried out on both real-world and synthetic
trajectory data, up to one million of trajectories. The results show that, due to the high complexity and large volumes of data involved in
the application scenario, the trajectory pattern mining process takes advantage from the scalable execution environment offered by a
Cloud architecture in terms of both execution time, speed-up and scale-up.

Index Terms —Trajectory Mining, Urban Computing, Cloud Computing, Distributed Data Mining.

1 INTRODUCTION

1.1 Motivations

Urban computing [1] is the process of acquisition, integra-
tion, and analysis of big and heterogeneous urban data to
tackle the major issues that cities face today, including air
pollution, energy consumption, traf ¢ ows, human mobil-
ity, environmental preservation, commercial activities a nd
savings in public spending.

From a technological viewpoint, Cloud computing can
play an essential role by helping city administrators to
quickly acquire new capabilities and reducing initial capi tal
costs by means of a comprehensive pay-as-you-go solu-
tion. In fact, by providing applications, infrastructure, net-
working, systems software, middleware and maintenance,
Cloud computing lowers the barrier of entry and enables
city managers to deliver high quality services to their cit-
izens [2], [3], [4]. Working on such a research activity, we
recently developed a Cloud-based framework speci cally
designed for developing urban computing solutions for
smart cities [5]. The framework includes software layers
for data management, service composition and application
execution, integrated in a Cloud platform that interacts wi th
data source generators like sensors, smart phones and other
wireless devices. The framework includes a set of services
allowing users to gather, collect, process, and analyze urban
data in order to model social and environmental behaviors.

A. Altomare, E. Cesario and C. Comito are with the InstituteHigh
Performance Computing and Networks (ICAR-CNR). Addresis: Bucci
41c, 87036 Rende (CS), Italy.

E-mail: f altomare,cesario,comii@icar.cnr.it.

F. Marozzo and D. Talia are with the DIMES Department, Unigdy of
Calabria, Rende (CS), Italy. E-mailmarozzo,talig@dimes.unical.it.

Manuscript received April 15, 2015.

1.2 Obijectives and Contributions

The discovery of mobility models is one of the most chal-
lenging issues in urban computing. It can improve resource
furnishing and management of cities [6], [7], [8]. For ex-
ample, data generated by using mobile devices produce
movement patterns that can be used to support the decisions
of city managers in transport planning, intelligent trafc
management, route recommendations, etc.

This paper describes the design and implementation of
a parallel data mining methodology for discovering pat-
terns and rules from trajectory data, performed over the
Cloud-based framework presented in [9]. In particular, the
applicative scenario described here focuses on the study
of the trajectories followed by vehicles in an urban area
with the aim to discover knowledge models, and thus to
catch users' mobility behaviours. To this aim, the proposed
algorithm is based on a two-steps approach: rst, it de-
tects dense regions within a given geographical area, i.e.
more densely passed through regions, and then extracts
trajectory patterns from those regions. The paper describes
in details the design of the work ow implementing the
application and its execution by a work ow engine. We
apply the trajectory pattern extraction methodology to bot h
real-world dataset (concerning mobility of citizens withi nan
urban area) and synthetic datasets (built by a trajectory data
generator). Experimental evaluation, carried out on a publ ic
Cloud platform, shows that, due to the high complexity and
large volumes of data involved in the application scenario,
the trajectory pattern mining process takes advantage from
scalable execution offered by the Cloud. The results of a
complete experimental evaluation point out advantages in
terms of execution time, speed-up and scale-up.

For the sake of clarity, this paper extends the work pre-
sented in [9] and it provides several original contribution s
with respect to the previous one, as summarized in the
following. First, the trajectory pattern work ow has been

JOURNAL OF BTEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014

enhanced, by exploiting an additional parallelism source
aimed at improving the performance of the approach. In
addition, the experimental testbed has been extended from
64 up to 128 servers, to perform a scalability analysis on
a higher number of nodes. Moreover, the experimental
evaluation has been performed also on synthetic datasets
(other than a real-world dataset), by extending the size of
input data from 80 thousands to 1 million trajectories, in
order to carry out a scalability performance analysis on
large datasets. Finally, an extensive experimental analysis
has been devoted to investigate how the system perfor-
mance, in terms of execution time and speed-up, is related
to the number of computing nodes, the dataset size and
dimension, as well as noise degree inside data.

Achieved results con rm the feasibility of the approach,
the scalability and ef ciency of the framework, and also
show that it may be possible to optimize the performance
by choosing the appropriate system and network con gu-
ration, for example, by tuning the number of workers and
the number of data partitions. It is worth noting that the
Cloud system allows developers and users to analyze large
amount of trajectory data whose size is much higher than
that can be analyzed by the most of the systems found in
literature.

1.3 Plan of the paper

The rest of the paper is organized as follows. Section 2 out-
lines related work in the area of mobility pattern discovery
with a particular focus on Cloud-based urban computing.
Section 3 reports the description of the Cloud-based frame-
work and the facilities we used for the design and execution
of data analysis work ows on the Cloud. Section 4 presents
the trajectory analysis scenario describing the trajectory
pattern detection methodology together with the designed
work ow. Experimental evaluation both on a real use case
scenario and synthetic datasets is reported in Section 5.
Section 6 concludes the paper and plans further research
works.

2 RELATED WORK

As mentioned before, the objective of this work is twofold:
(i) implementing a Cloud-based software environment for
ef ciently manage socio-environmental data, with a partic -
ular focus on the urban context of cities, and (ii) de ning a
methodology to analyze trajectories of mobile users in orde r
to mine social and environmental behaviors. Accordingly,
in this section we will briey review some of the most
representative research work in both the areas.

2.1 Cloud-based Urban Computing

Several Cloud enabled tools for urban planning and man-
agement in the smart city context have been recently pro-
posed. Environmental Software and Services (ESS) [2] ex-
ploits the Cloud paradigm to offer a range of services for
environmental planning and management, policy and deci-
sion making, world wide. Analogously, the Environmental
Virtual Observatory pilot (EVOp) [3] uses Clouds to achieve
similar objectives in the soil and water domains.

2

The European Platform for Intelligent Cities (EPIC) [10]
combines a Cloud computing infrastructure with the knowl-
edge and expertise of the Living Lab approach to deliver
sustainable, user-driven web services for citizens and busi-
nesses.

The Life 2.0 project [11] offers a set of services rang-
ing from basic geographical positioning systems to sociall y
networked services and to local market-based services. The
project aims to provide solutions that increase opportunit ies
for social contacts among elderly people in their local area,
by providing new services for elderly people, based on the
use of tracking systems and social network applications.

IBM introduced Smarter City Solutions on the IBM
SmartCloud Enterprise, a public Cloud platform that in-
cludes hardware, network and storage [4]. The platform
provides pay-as-you-go services for urban management
within cities. Those services include application softwar e,
infrastructure, networking, systems software, middlewar e
and maintenance.

2.2 Trajectory Pattern Mining

Discovering periodic patterns from historical object move -
ments is a very challenging task. In [12] an approach to dis-
covery hidden periodic patterns in spatio-temporal data is
proposed. In particular, authors de ne the spatio-tempora |
periodic pattern mining problem and propose an algorithm
for retrieving maximal periodic patterns. Moreover, they
devise a specialized index structure, aimed at supporting
more ef cient execution of spatiotemporal queries over the
discovered patterns.

A prediction approach to estimate an object future lo-
cation, based on its pattern information and recent move-
ments, is proposed in [13]. Speci cally, the discovered tra -
jectory patterns are stored in the TPT, a tree data structure
exploited for an ef cient and accurate prediction of future
locations. In addition, two query processing techniques ar e
presented, to perform both near and distant time predictive
queries on the TPT structure.

Reference [14] presents a smart driving direction system,
where GPS-equipped taxis are employed as mobile sensors
aimed at probing the traf ¢ rhythm of a city. In particular,
the main idea is to exploit the intelligence of experienced
taxi drivers so as to provide a user with the practically
fastest route to a given destination at a given departure
time. The system has been tested on a real-world trajectory
dataset generated by over thirty thousands taxis in a period
of 3 months, aimed at evaluating the effectiveness of the
approach.

In [15] authors extend the sequential pattern mining
methodology to analyze moving objects. Some approaches
of different complexity are proposed, that have been
empirically evaluated over real data and synthetic
benchmarks, comparing their strengths and weaknesses.

Differently from the approaches described above, at the
best of our knowledge, our work is novel in two aspects:

1) Itis a pioneering work ow-based approach to mine
trajectory patterns on a real public Cloud platform.
This allows us to provide an integrated method-
ology for ef ciently manage trajectory data where

JOURNAL OF BTEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014

given as input a GPS dataset, the methodology di-
rectly produces as output a set of dense regions and
trajectory patterns for the speci c dataset. Moreover,
the Cloud allows us to analyze large amounts of
trajectory data whose size is much higher than that
can be analyzed by the most of the systems found
in literature.

2) The experimental tests performed on these large
datasets show that the whole process takes advan-
tages from such a scalable environment, both in
terms of execution time and achieved speed-up.

Moreover, another important distinguishing feature of our
system is that it has been tailored to provide general-
purpose services for urban planning and management
within the city context. Nevertheless, the system has been
designed as a set of modular components allowing easy ex-
tensibility and integration of different heterogeneous co m-
ponents (e.g., software, data sources, etc).

3 A CLOUD-BASED ENVIRONMENT FOR URBAN
COMPUTING

In this section we introduce the architecture of the soft-
ware environment we developed for the implementation
of services aiming at improving the planning, managing
and monitoring of activities within a urban context, such as
healthcare, smart transportation, smart home, smart touri sm
and smart public services. The proposed architecture has
been designed as a middleware layer supporting the in-
tegration and handling of large-scale, fragmented, cross-
thematic environmental and socio-geographic data with
the focus of mining human behavior from such data for
urban planning and management. The Cloud computing
paradigm allows the implementation of the above urban-
related services by facilitating data access and storage acoss
platforms, providing on-demand computational resources,
and allowing for integrated processing and data analysis.
Figure 1 shows the architecture consisting of a set of
modular layers. At the lower level, the Platform layeris based
on a hybrid Cloud environment that ensures cross-platform
accessibility of environmental data. This layer can be made
more ef cient and functional by integrating other systems

as MapReduce, Storm and Kafka. The Data Acquisition layer

allows accessing environmental data collected from dis-
parate sources, to monitor urban services such as water
quality, energy usage, etc. At the Data Storage levehe data
collected is organized in ad-hoc repositories (i.e., historical

archives and real-time repositories). The Software Service

layeris composed of a set of software components exposed
as services, that can use data provided by the lower level
and are invoked by the upper level to compose applications.

The Service Composition layas responsible to assist users

in designing application work ows, identify data sources,
and link necessary processing components to enact the

work ows. Finally, the Smart Urban Application Services layer

offers a set of services for urban management, that can be
used to perform intelligent analysis on environmental data .
For lack of space, no more details are reported in this paper.
A list of the main functionalities of the framework can be
found in [5]. The software architecture has been developed

and deployed on a public Cloud for internal use. Although
it is not available on-line for public access, it can be released
for research purposes to academic or research institutions.

@

Smart Urban Serwces

Client
Layer

| Visualization I
Modelling &
Simulation
Predictive

lems

| Service

Application
Service
Layer

Smart Healtl
Smart
Toutism

Workflow Engine Composition
Layer

Software
Service
Layer

Soclal
Ne(works

Smarl
Moblle

DBScan

GEOLocate |

Google |

Maps
Devices)\, \

Y e Y« Y ane Y < Y <
)y EEEEEE
Sensors |;
S'anc Real- Data_
Imagery Time 3D | | Trajectories: Acquisition
Data Layer

Spaual
Cloud Platform | Pietiorm

T-Apriori |

Data Storage
Service
Layer

Cameras
Web Cameras

Fig. 1. A Cloud-based architecture for urban computing.

The implementation of the Service Composition Layer
has been done using the Data Mining Cloud Framework
(DMCF) [16], a software framework for designing and ex-
ecuting data analysis work ows on the Cloud. DMCF sup-
ports a large variety of processing patterns that can be used
in data mining, including single-task applications, param -
eter sweeping applications, and work ow-based applica-
tions. Following the approach proposed in [17], DMCF rep-
resents knowledge discovery work ows as graphs whose
nodes denote resources (datasets, data analysis tools, min
ing models) and whose edges denote dependencies among
resources. A Web-based user interface allows users to com-
pose their work ows and to submit them for execution
to the Cloud platform, following a Software-as-a-Service
(SaaS) approach. Data analysis work ows can be designed
through visual programming, which is a very effective de-
sign approach for high-level users, or through a script-bas ed
language [18], which is an additional and more exible
programming interface for skilled users.

Data Folder Tool Folder

Virtual Compute Servers

@@@E&

Virtual Web Servers

Storage

..

Task Queue

B

Tool Table

B

Data Table

%

Task Table

Infrastructure

User

Fig. 2. Architecture of the Data Mining Cloud Framework.

Figure 2 shows the architecture of the DMCF that in-
cludes different kinds of components grouped into storage

JOURNAL OF BTEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014
and compute components. The storage components include:

A Data Folderthat contains data sources and the
results of knowledge discovery processes. Similarly,
a Tool Foldercontains libraries and executable les for

data selection, pre-processing, transformation, data
mining, and results evaluation.

The Task Queuecontains the tasks ready for execu-
tion.

Data Table Tool Tableand Task Tableontain metadata
information associated with data, tools, and tasks.

The compute components are:

A pool of Virtual Compute Serversvhich are in charge
of executing the data analysis tasks.

A pool of Virtual Web Server$ost the Web-based user
interface.

The following steps are performed to develop and execute a
knowledge discovery application [19]:

1) A user accesses the Website and designs the appli-
cation (either single-task, parameter sweeping, or
work ow-based) through a Web-based interface.
After application submission, the system creates a
set of tasks and inserts them into the Task Queue on
the basis of the application.

Each idle Virtual Compute Server picks a task from
the Task Queue, and concurrently executes it.

Each Virtual Compute Server gets the input dataset
from the location specied by the application. To
this end, a le transfer is performed from the Data
Folder where the dataset is located, to the local
storage of the Virtual Compute Server.

After task completion, each Virtual Compute Server
puts the result on the Data Folder.

The Website noties the user as soon as her/his
task(s) have completed, and allows her/him to ac-
cess the results.

2)

5)

6)

The set of tasks created on the second step depends
on how many data analysis tools are invoked within the
work ow. Initially, only the work ow tasks without de-
pendencies are inserted into the Task Queue. All the po-
tential parallelism of the work ow is exploited by using
the needed Virtual Compute Servers. In addition, multi-
threaded tasks exploit all the cores available on the Virtua |
Compute Servers they are assigned to.

The DMCF architecture has been designed in a suf-
ciently abstract and generic way to be implemented on
top of different Cloud systems. In this work, we use the
implementation based on Microsoft Azure *.

To reduce the overhead of data transfers between Data
Folder and the local storage of Virtual Compute Servers, it
is important that data are kept physically close to the virtu al
servers where processing takes place. In the Microsoft Azure
implementation, this is achieved by exploiting the Azure's
Af nity Group feature, which allows Data Folder and Vir-
tual Compute Servers to be located near to each other in the
same data center for optimal performance.

1. http://azure.microsoft.com

4

4 THE TRAJECTORY PATTERN MINING METHOD-
OLOGY

This section provides a real-world application scenario as a
case study of urban planning and management within the
proposed framework. In particular, we focused on the study
of the trajectories traced by vehicles or humans, with the ai m
to discover user's behavior and provide useful information
about mobility-related phenomena. To this aim, we propose
a trajectory pattern extraction methodology allowing to
predict future movements of citizens, in order to support
decisions in urban contexts. The set of trajectory patterns
extracted represent a basic building block around which
further tasks can be implemented, including the following
ones:

Next location predictionPredict the future location of a
moving object, based on the object recent movements
and trajectory pattern models, to anticipate or pre-
fetch possible services in that location.

Intelligent traf c managementPredict traf c conges-
tion patterns and improve the transportation model
of a city, to reduce the wasted time due to vehicular
traf c.

Movement-similarity analysisEstimate the similarity
between users in terms of location histories so as to
promote services for car sharing, car pooling, etc.
Travel recommendationbline the top interesting loca-
tions and travel sequences among locations, and ex-
ploit such information to recommend the best routes
and itineraries that people can follow to visit a given
location.

In this section we rst describe the trajectory pattern
extraction methodology to analyze routes drawn by users
during their daily activities. Then, we point out how a work-
ow mechanism can be used to design the methodology
within a parallel setting, as the one of the proposed Cloud-
based architecture (see Figure 1).

4.1 Trajectory Pattern Detection Approach

Before describing the approach, let us introduce some
notation used in the remainder of the section. Let be

th <th+1;80<h<n - A raw trajectory(or simply trajectory) g
is a spatio-temporal sequence

where each triple (Xik ;Yik ;tj) indicates that an object of
the trajectory g is in the position (Xik ;Yik) at time tj.
The trajectory lengthis the number of triples composing
the trajectory (i.e., jTj = H). A frequent (or dense) region
is an area of points that is more frequently visited by the
object's trajectories with respect to other areas. In particular,
we represent with R} the j dense region at the time t.
A structured trajectory x is a spatio-temporal sequence,
k =< R Ry >, where each elementR}! indicates
that an object of the trajectory is in the dense region R/
at time t;j. A trajectory patternis a special association rule, in
the form

1A pi2A ---A PRI € pIs
Rt1 th Rtr! Rts

JOURNAL OF BTEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014

with time constraints t; <t, <:::<t [<ts. The block on
the left, i.e. Ri} A R{Z A 111~ Ry’ is the primes, while R}:
is the consequence of the rule. Finally, c is the con dence
of the rule, meaning that when the premise occurs then the
consequence will occur with probability c.

Now, let us describe the approach adopted to detect tra-
jectory patterns, which is composed of three main steps. To
better describe the whole process, Figure 3 shows a graphic
representation of how trajectory patterns are discovered.
The input data of the analysis is a set of raw trajectories,
that have been obtained by sampling real trajectories traced
by users during their daily activities. The rst step of the
algorithm consists in the detection of frequent regiorfsom
the original raw trajectory dataset. The goal of this step
is detecting spatial areas more densely passed through,
in order to conduct the further analysis as movements
through areas rather than single points. The second step
consists in the synthesization of the trajectoriebBy changing
their representation from movements between points into
movements between frequent regions. Precisely, each point
of the original dataset is substituted by the region it belon gs
to. The third step is aimed at extracting trajectory patterns
in the form of associative rules, analyzing the trajectorie s of
frequent regions obtained at the previous step.

y

Raw o
Trajectories
X

" Frequent
Regions
{__Detection i

! 1
: |

{ Trajectory ty t t3 4 t

Step 2 Data

Structured
Trajectories

|

(" Trajectory)
1 Patterns
i Extraction

Fig. 3. Trajectory Pattern Detection Steps.

4.2 Trajectory Pattern Detection: a parallel implemen-
tation

The trajectory pattern detection process consists of a se-
guence of steps involving different kinds of data and tools

that can be located over geographically distributed enviro n-
ments. Moreover, some steps can be naturally parallelized,
in order to achieve higher performance . In particular, as it

will be better shown in the experimental evaluation section
the frequent regions detection and trajectory synthesizat ion

5

steps are the most time-consuming and critical tasks. Thus,
our effort consists in the parallelization of this step (tha t has
been done by implementing a Single Program Multiple Data
parallelism pattern).

Now, in order to have a clear view of the whole process,
Figure 4 shows it by exploiting the work ow formalism,
i.e. a graph in which nodes represent data sources, data
mining tools and algorithms, and edges represent execution
dependencies among nodes. The original data setD is a raw
trajectory data, populated by the trajectories (represented
in the previously described format) of persons collected
somehow. In particular, let us suppose that the original
dataset is composed of N trajectories, each one represented
as a sequence ofH (x;y;t)-triples.

The work ow is composed of four steps (see Figure 4),
as described in the following:

Step 0 - Vertical/Horizontal Data Splitting. The original
trajectory dataset is partitioned by the Time Stamp Splitter
in a vertical way, with respect to the timestamp value. In
other words, the points of the trajectories visited at the ti me
stamp t; 2 T will be gathered in the i output dataset, for
i 1;::;H. At the end of this step, H different datasets
are available, each one containing a vertical projection of
D on the timestamp t;. It is worth noticing that this is an
additional step with respect to the sequential case, where no
splitting step is planned. In parallel to the vertical split ting,
the trajectory dataset is horizontally divided in M partitions
by the Trajectory Splitter Each partition D;:::; Dy contains
a subset of trajectory in D, where jDij = Miij, for i =
1;::;; M . Such data partitioning is aimed at improving the
scalability of the synthesization step.

Step 1 - Frequent Regions Detection. This step is aimed
at detecting, for each timestamp, the regions that are more
densely visited with respect to others (thus, of interest
for the further analysis). In the work ow this is done by
running H clustering algorithm instances, each one taking
in input a dataset built at the previous step. The nal result
consists of H clustering models, whereas the clusters of the
th-model represent the detected dense regions of the ty-
timestamp (each cluster corresponds to a dense region). The
number of detected regions (i.e., number of clusters) may be
different for each timestamp t,.

Step 2 - Trajectory Data Synthesization. This step is aimed
at synthesizing the trajectories to build a structured traj ec-
tory dataset. This task is performed by running the Trajectory
Synthesizertool, whose goal is to create a dataset where
each point of the original trajectories is substituted by th e
dense region it belongs to (discovered at the Step 1). The
nal dataset, the Trajectory Data (structured)in the gure,
is populated by trajectories between dense regions (but
between single points).

Step 3 - Trajectory Pattern Extraction. Finally, a Trajectory
Pattern Extractionalgorithm on the dense regions trajectory
data is executed, to discover trajectory patterns from them.
The nal mining model is a set of associative rules describ-
ing spatio-temporal relations between the movement of the
users under investigation.

5 EXPERIMENTAL EVALUATION

To evaluate the performance and the effectiveness of the
system that has been described in the paper, we carried out

JOURNAL OF BTEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014

Trajectory |
[

Splitter

L Time Stamp Time Stamp 1
— Partition [t,]
<)
Dense
Trajectory Regions

Data(raw) Detection

Time Stamp

Ti tamp 2
Partition [t;] ime Stamp

Dense Reaion:

—>|

Dense Repiions
m Custers

Trajectory
Synthesizer

<
. Dense (Trajectory
Timestamp ! | Trajectory Trajectory
 —— - —> —>
Splitter ! Redlons Clusters . 5| Synthesizer Pattern Patterns.
Detection Extraction
Trajectory
Time Stamp Time Stamp H Data
Pan [td Dense Region: (structured)
] Dense | Traj
e rajectory
. : Clusters |
i Detection ;
| | | | |
[| | [|
Step 0 Step -Step 2 -‘Step 3

Fig. 4. Trajectory Pattern Detection Work ow.

Data Mining Cloud Framework

App submission App monitoring

Data/Tool management

clusthode r
adgnghaces

ClustModel[128]

s [EY o M)
e L =] e

TfmestampSplitter TrajPartition[128] DBscan [128]
sjectogfData PS: dataset

narzPariton.

aiectoryData norzPartan

G LS

HorizPartition[128]

-
&

TrajectoryData HorizontalSplitter

TrajectorySynthetizer |
PS. honzPartition

actionSet 'y tequentiemSer g =

STrajDats TAPriori

1 sTraPadon
¥

STrajDataPartition[128] Merger FrequentTtemSet

Fig. 5. Trajectories work ow composed and executed in the Da ta Mining Cloud Framework (DMCF)

an extensive analysis by executing different experiments in
various scenarios. Since the proposed algorithm is speci -
cally designed to deal with large dataset of high cardinalit y
(number of trajectories) and dimensionality (number of
timestamps), it is important to measure its performance
on the basis of such parameters. Also, notice that, since
the computational complexity cannot be analytically de-
vised, experimental performance analysis is critical in th e
approach. To this purpose, it is important to provide an
ef cient implementation of tools and algorithms that work
effectively even in "extreme” situations.

The trajectory pattern mining application has been exe-
cuted on a real Cloud environment, exploiting the system
described in Section 3. The whole process, designed as a
work ow, has been composed and run by the Data Mining
Cloud Framework exploiting up to 128 servers. More details
about experimental setting and work ow description are
reported in Section 5.1. Experiments have been carried on
both real and synthetic data, and their results are cross vali-
dated across different orders of the data. Section 5.2 presents
the results about the ef ciency of the approach carried out
on a real-life data set, as well as some example patterns
discovered in a real case. In particular, the algorithm has
been tested on T-Drive, a GPS dataset tracing the movement
of taxies in the urban area of Beijing. Also, several synthetic
data sets are exploited in Section 5.3 to investigate scalalility
and robustness in critical applicative settings. Such data sets
have been built by an ad-hoc trajectory data generator that
we designed and implemented.

5.1 Cloud Experimental Setting and Applicative Work-
ow

The trajectory pattern mining application has been devel-
oped and executed on the Cloud System described in Sec-
tion 3, exploiting the Data Mining Cloud Framework. We
executed the experiments on the Microsoft Azure platform
using 1 virtual server to run the Data Mining Cloud Frame-
work Website, and up to 128 virtual servers for the Workers.
Each virtual server was equipped with a single-core 1.66
GHz CPU, 1.75 GB of memory, and 225 GB of disk space.

Figure 5 shows a snapshot of the work ow designed
through the Service Composition Layer. Each node repre-
sents either a data source or a data mining tool, whereas an
edge represents an execution dependency among nodes. For
what concerns the algorithms, the Frequent Regions Detection
step has been implemented by using DBScan [20], a density-
based clustering algorithm, whereas the Trajectory Pattern
Extractionstep has been performed by T-Apriori, our ad-hoc
modi ed version of the well-known Apriori algorithm [21].
Moreover, some nodes are labeled by the array notation,
which is a compact way to represent multiple instances of
the same dataset or tool. For example, the "DBScan[128]"-
labeled node represents 128 parallel instances of the al-
gorithm, each one belonging to a different path of the
work ow.

The work ow shown in Figure 5 implements the trajec-
tory analysis steps shown in Figure 4. The initial dataset,
Trajectory Data is partitioned into H (i.e.= jTj) subsets
using the Time Stamp Splittertool, where H is equal to
the number of timestamps (the points in the trajectory).

JOURNAL OF BTEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014

In the example shown in Figure 5, H = 128. This step,
corresponding to the Step 0 of the work ow shown in
Figure 4, produces H data partitions. Now, each partition
TrajPartition [i],i = 1;::;H, is analyzed by an instance
of DBScan and produces a ClusteringModel (Step 1).
Each clustering model is a set of clusters/dense regions, for
a given timestamp. The TrajectorySynthetizertool analyzes
all models and the initial dataset, so as to generate the
Structured Trajectory Datawhere each point of the original
trajectories is substituted by the dense region it belongs
to (Step 2). Finally, the T-APriori gets in input this dataset
to extract trajectory patterns and, thus, produces the nal
results (Step 3).

Experimental tests have been executed on both real and
synthetic data, having in mind two different goals. The
experimental evaluation on real data has been performed
to show a concrete scenario on which our approach can be
applied on (it concerns mobility aspects of a big city like Be i-
jing) and the practical usefulness of the system in real urban
cases. With this aim, we will show the discovered dense
regions and the most frequent mobility patterns traveled in
the real city scenario. In order to perform a more complete
scalability analysis (that we could not achieve on the real
dataset due to its limited cardinality), we will test the
system also on synthetic datasets to deal with higher orders
of magnitude under different settings and with respect to
several data sizes (up to one million trajectories).

The goal of the evaluation is to assess the execution
time and scalability of the whole task, by analyzing the
time elapsed in each step and comparing the performances
obtained by both sequential and parallel executions. In par -
ticular, we evaluated the results by exploiting the followi ng
performance metrics:

Turnaround time the total execution time of the dis-
tributed algorithm varying the number of running
nodes, that is, the elapsed time from task submission
until the nal result is returned to it;

Speed-upthe ratio of the turnaround time elapsed
by exploiting 1 node to the turnaround time on n
nodes, which measures how much performance gain
is achieved by parallelizing a given application over
a sequential implementation;

Scale-upthe execution time when the problem size is
increased linearly with the number of servers, which
qguanti es the capability of a system to handle larger
data sets when (computational) resources are added
to accommodate that growth;

Ef ciency: the ratio between speedup and the number
of processing nodes, which measures the percentage
of time for which processing nodes are usefully ex-
ploited for computation (and not for communication
tasks or even idling).

In the following we will describe the achieved results,
obtained by an extensive evaluation carried out in various
experimental scenarios.

5.2 Real-life Data

In this section we explore a trajectory analysis case study,
by applying the pattern mining detection method described

7

in the previous section over a real dataset. In particular,

we report the results obtained by the execution of the

methodology on T-Drive, a real-life GPS dataset tracing the
movement of taxies in the urban area of Beijing. A detailed

description of the dataset is reported in Section 5.2.1. The
description of the analysis and the most important results

(dense areas and mobility patterns) carried on T-Drive are
reported in Section 5.2.2.

5.2.1 Data Description.

The input dataset chosen for the experiments is the T-Drive
Trajectory Data SamplR2], [23], a collection of GPS traces de-
scribing the movement of GPS-equipped taxis in the urban
area of Beijing, China. The temporal span of the dataset is
one week. The number of vehicles tracked is 10,357. We have
about 15 millions of locations (geographic points) and the
total area covered by the trajectories reaches almost 9 million
kilometers. Starting from this dataset, we extracted a subset
of 80,000 trajectories, obtained by sampling taxi positions
every 5 minutes. Then, from this dataset we created four
different ones, all of 80,000 trajectories, that differentiate
only for the length of the trajectories. In particular, we bu it
datasets whose trajectories are traced by 16, 32, 64 and 128
samples (i.e., timestamps), referred in the following as T 16,
T32 T64and T128 respectively. Those four datasets have
been used in the experimental evaluation.

Before the analysis of the trajectories, a pre-processing
has been performed to clean, select and transform data to
make it suitable for analysis. First, we cleaned collected
data by removing all the points with unreliable position
(i.e., coordinates with latitude-longitude equals to 0.0 or
7.0 are evident mistakes). Then, to avoid any other kind of
geo-localization errors, we selected only data points fall ing
in a bounded area limiting the city, by removing points
outside this area. Overall data errors amounted to about
0.7% of points. Finally, we transformed data by partitionin g
each trajectory in a daily route, because we were interested
to discover daily patterns inside data. The nal dataset
contains about 61,500 daily trajectories, each one contairing
the set of points traced by a single taxy during a day. The
total data size amounts to about 882 MB.

5.2.2 Experimental Results.

First, we measured the turnaround times of the application
for the four considered datasets, using from 1 to 128 virtual
servers. Figure 6 shows such results. Therefore, the shown
plots can also be seen as a comparison between a parallel
and a sequential solution. In particular, Figure 6(a) shows
how the turnaround time decreases with higher number of
virtual machines, for different dataset sizes. For instance,
for the 16 timestamp dataset the turnaround time decreases
from around 8.3 hours obtained on a single server, to about
34 minutes on 16 servers. For the 32 timestamp dataset the
turnaround time diminishes from 17 hours to 38 minutes.
For the 64 timestamp dataset the turnaround time decreases
from 35 hours to 40 minutes. Finally, with the 128 times-
tamp, the turnaround time ranges from about 68 hours to
about 45 minutes using 128 virtual machines. Figure 6(b)
shows how the turnaround time increases with respect to
the dataset size, for a different number of virtual machines .
The graph shows that the time required to execute the entire

JOURNAL OF BTEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014

250000 [

200000

150000 ~

100000 -

Turnaround time (sec.)

¢
50000 [}

64 128
Number of servers

(@) Turnaround time vs the number of available
servers, for different data sizes.

Fig. 6. T-Drive: Turnaround times in different scenarios.

T T
128 Linear
T16 .
T32 o
T64 -m---
T128 —+—
=%
=]
=
S 64
Qo
0 //
32
/(
16

148 16 32 64 128

Number of servers

(a) Speed-up vs the number of available servers, for
different dataset sizes.

Fig. 7. T-Drive: Speed-up and Scale-up.

work ow increases proportionally with the increase of the
input size. On the contrary, the time required to execute the
entire work ow decreases proportionally with the increase
of computing resources.

Figure 7 shows execution speed-up and scale-up val-
ues. More in detail, Figure 7(a) shows that the speed-up
is linear with all datasets, up to the case of 16 nodes:
this represents a good trend. For an higher number of
nodes, the speed-up is not linear because of the in uence
of the sequential steps of the application. In fact, for the
32 timestamp dataset, it ranges from 2.0 using 2 servers, to
27.4 using 32 servers, while for the 64 timestamp dataset
the speed-up ranges from 2.0 to 52.4. Finally, with the 128
timestamp it ranges from 2.0 to 78.5 by using 128 servers.
Figure 7(b) measures the application scale-up by showing
the turnaround times obtained when the size of the input
dataset increases proportionally to the number of virtual
servers exploited for the computation (i.e., 16 timestamps on
16 servers up to 128 timestamps on 128 servers). The results
show that the total turnaround time is almost constant up
to 64 timestamps on 64 servers and slightly increases in
the case 128 timestamps/128 servers. This demonstrates
that the amount of data that can be analyzed in a given
amount of time increases, almost linearly, with the number
of computing resources available. Other than showing the
total turnaround time, Figure 7(b) shows the time required
