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in the Cloud
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Abstract —The increasing pervasiveness of mobile devices along with the use of technologies like GPS, Wi� networks, RFID, and
sensors, allows for the collections of large amounts of movement data. This amount of data can be analyzed to extract descriptive and
predictive models that can be properly exploited to improve urban life. From a technological viewpoint, Cloud computing can play an
essential role by helping city administrators to quickly acquire new capabilities and reducing initial capital costs by means of a
comprehensive pay-as-you-go solution. This paper presents a work�ow-based parallel approach for discovering patter ns and rules
from trajectory data, in a Cloud-based framework. Experimental evaluation has been carried out on both real-world and synthetic
trajectory data, up to one million of trajectories. The results show that, due to the high complexity and large volumes of data involved in
the application scenario, the trajectory pattern mining process takes advantage from the scalable execution environment offered by a
Cloud architecture in terms of both execution time, speed-up and scale-up.

Index Terms —Trajectory Mining, Urban Computing, Cloud Computing, Distributed Data Mining.
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1 INTRODUCTION

1.1 Motivations

Urban computing [1] is the process of acquisition, integra-
tion, and analysis of big and heterogeneous urban data to
tackle the major issues that cities face today, including ai r
pollution, energy consumption, traf�c �ows, human mobil-
ity, environmental preservation, commercial activities a nd
savings in public spending.

From a technological viewpoint, Cloud computing can
play an essential role by helping city administrators to
quickly acquire new capabilities and reducing initial capi tal
costs by means of a comprehensive pay-as-you-go solu-
tion. In fact, by providing applications, infrastructure, net-
working, systems software, middleware and maintenance,
Cloud computing lowers the barrier of entry and enables
city managers to deliver high quality services to their cit-
izens [2], [3], [4]. Working on such a research activity, we
recently developed a Cloud-based framework speci�cally
designed for developing urban computing solutions for
smart cities [5]. The framework includes software layers
for data management, service composition and application
execution, integrated in a Cloud platform that interacts wi th
data source generators like sensors, smart phones and other
wireless devices. The framework includes a set of services
allowing users to gather, collect, process, and analyze urban
data in order to model social and environmental behaviors.
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1.2 Objectives and Contributions

The discovery of mobility models is one of the most chal-
lenging issues in urban computing. It can improve resource
furnishing and management of cities [6], [7], [8]. For ex-
ample, data generated by using mobile devices produce
movement patterns that can be used to support the decisions
of city managers in transport planning, intelligent traf�c
management, route recommendations, etc.

This paper describes the design and implementation of
a parallel data mining methodology for discovering pat-
terns and rules from trajectory data, performed over the
Cloud-based framework presented in [9]. In particular, the
applicative scenario described here focuses on the study
of the trajectories followed by vehicles in an urban area
with the aim to discover knowledge models, and thus to
catch users' mobility behaviours. To this aim, the proposed
algorithm is based on a two-steps approach: �rst, it de-
tects dense regions within a given geographical area, i.e.
more densely passed through regions, and then extracts
trajectory patterns from those regions. The paper describes
in details the design of the work�ow implementing the
application and its execution by a work�ow engine. We
apply the trajectory pattern extraction methodology to bot h
real-world dataset (concerning mobility of citizens withi n an
urban area) and synthetic datasets (built by a trajectory da ta
generator). Experimental evaluation, carried out on a publ ic
Cloud platform, shows that, due to the high complexity and
large volumes of data involved in the application scenario,
the trajectory pattern mining process takes advantage from
scalable execution offered by the Cloud. The results of a
complete experimental evaluation point out advantages in
terms of execution time, speed-up and scale-up.

For the sake of clarity, this paper extends the work pre-
sented in [9] and it provides several original contribution s
with respect to the previous one, as summarized in the
following. First, the trajectory pattern work�ow has been
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enhanced, by exploiting an additional parallelism source
aimed at improving the performance of the approach. In
addition, the experimental testbed has been extended from
64 up to 128 servers, to perform a scalability analysis on
a higher number of nodes. Moreover, the experimental
evaluation has been performed also on synthetic datasets
(other than a real-world dataset), by extending the size of
input data from 80 thousands to 1 million trajectories, in
order to carry out a scalability performance analysis on
large datasets. Finally, an extensive experimental analysis
has been devoted to investigate how the system perfor-
mance, in terms of execution time and speed-up, is related
to the number of computing nodes, the dataset size and
dimension, as well as noise degree inside data.

Achieved results con�rm the feasibility of the approach,
the scalability and ef�ciency of the framework, and also
show that it may be possible to optimize the performance
by choosing the appropriate system and network con�gu-
ration, for example, by tuning the number of workers and
the number of data partitions. It is worth noting that the
Cloud system allows developers and users to analyze large
amount of trajectory data whose size is much higher than
that can be analyzed by the most of the systems found in
literature.

1.3 Plan of the paper

The rest of the paper is organized as follows. Section 2 out-
lines related work in the area of mobility pattern discovery ,
with a particular focus on Cloud-based urban computing.
Section 3 reports the description of the Cloud-based frame-
work and the facilities we used for the design and execution
of data analysis work�ows on the Cloud. Section 4 presents
the trajectory analysis scenario describing the trajectory
pattern detection methodology together with the designed
work�ow. Experimental evaluation both on a real use case
scenario and synthetic datasets is reported in Section 5.
Section 6 concludes the paper and plans further research
works.

2 RELATED WORK

As mentioned before, the objective of this work is twofold:
(i) implementing a Cloud-based software environment for
ef�ciently manage socio-environmental data, with a partic -
ular focus on the urban context of cities, and (ii) de�ning a
methodology to analyze trajectories of mobile users in orde r
to mine social and environmental behaviors. Accordingly,
in this section we will brie�y review some of the most
representative research work in both the areas.

2.1 Cloud-based Urban Computing

Several Cloud enabled tools for urban planning and man-
agement in the smart city context have been recently pro-
posed. Environmental Software and Services (ESS) [2] ex-
ploits the Cloud paradigm to offer a range of services for
environmental planning and management, policy and deci-
sion making, world wide. Analogously, the Environmental
Virtual Observatory pilot (EVOp) [3] uses Clouds to achieve
similar objectives in the soil and water domains.

The European Platform for Intelligent Cities (EPIC) [10]
combines a Cloud computing infrastructure with the knowl-
edge and expertise of the Living Lab approach to deliver
sustainable, user-driven web services for citizens and busi-
nesses.

The Life 2.0 project [11] offers a set of services rang-
ing from basic geographical positioning systems to sociall y
networked services and to local market-based services. The
project aims to provide solutions that increase opportunit ies
for social contacts among elderly people in their local area ,
by providing new services for elderly people, based on the
use of tracking systems and social network applications.

IBM introduced Smarter City Solutions on the IBM
SmartCloud Enterprise, a public Cloud platform that in-
cludes hardware, network and storage [4]. The platform
provides pay-as-you-go services for urban management
within cities. Those services include application softwar e,
infrastructure, networking, systems software, middlewar e
and maintenance.

2.2 Trajectory Pattern Mining

Discovering periodic patterns from historical object move -
ments is a very challenging task. In [12] an approach to dis-
covery hidden periodic patterns in spatio-temporal data is
proposed. In particular, authors de�ne the spatio-tempora l
periodic pattern mining problem and propose an algorithm
for retrieving maximal periodic patterns. Moreover, they
devise a specialized index structure, aimed at supporting
more ef�cient execution of spatiotemporal queries over the
discovered patterns.

A prediction approach to estimate an object future lo-
cation, based on its pattern information and recent move-
ments, is proposed in [13]. Speci�cally, the discovered tra -
jectory patterns are stored in the TPT, a tree data structure
exploited for an ef�cient and accurate prediction of future
locations. In addition, two query processing techniques ar e
presented, to perform both near and distant time predictive
queries on the TPT structure.

Reference [14] presents a smart driving direction system,
where GPS-equipped taxis are employed as mobile sensors
aimed at probing the traf�c rhythm of a city. In particular,
the main idea is to exploit the intelligence of experienced
taxi drivers so as to provide a user with the practically
fastest route to a given destination at a given departure
time. The system has been tested on a real-world trajectory
dataset generated by over thirty thousands taxis in a period
of 3 months, aimed at evaluating the effectiveness of the
approach.

In [15] authors extend the sequential pattern mining
methodology to analyze moving objects. Some approaches
of different complexity are proposed, that have been
empirically evaluated over real data and synthetic
benchmarks, comparing their strengths and weaknesses.

Differently from the approaches described above, at the
best of our knowledge, our work is novel in two aspects:

1) It is a pioneering work�ow-based approach to mine
trajectory patterns on a real public Cloud platform.
This allows us to provide an integrated method-
ology for ef�ciently manage trajectory data where
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given as input a GPS dataset, the methodology di-
rectly produces as output a set of dense regions and
trajectory patterns for the speci�c dataset. Moreover,
the Cloud allows us to analyze large amounts of
trajectory data whose size is much higher than that
can be analyzed by the most of the systems found
in literature.

2) The experimental tests performed on these large
datasets show that the whole process takes advan-
tages from such a scalable environment, both in
terms of execution time and achieved speed-up.

Moreover, another important distinguishing feature of our
system is that it has been tailored to provide general-
purpose services for urban planning and management
within the city context. Nevertheless, the system has been
designed as a set of modular components allowing easy ex-
tensibility and integration of different heterogeneous co m-
ponents (e.g., software, data sources, etc).

3 A CLOUD-BASED ENVIRONMENT FOR URBAN

COMPUTING

In this section we introduce the architecture of the soft-
ware environment we developed for the implementation
of services aiming at improving the planning, managing
and monitoring of activities within a urban context, such as
healthcare, smart transportation, smart home, smart touri sm
and smart public services. The proposed architecture has
been designed as a middleware layer supporting the in-
tegration and handling of large-scale, fragmented, cross-
thematic environmental and socio-geographic data with
the focus of mining human behavior from such data for
urban planning and management. The Cloud computing
paradigm allows the implementation of the above urban-
related services by facilitating data access and storage across
platforms, providing on-demand computational resources,
and allowing for integrated processing and data analysis.

Figure 1 shows the architecture consisting of a set of
modular layers. At the lower level, the Platform layeris based
on a hybrid Cloud environment that ensures cross-platform
accessibility of environmental data. This layer can be made
more ef�cient and functional by integrating other systems
as MapReduce, Storm and Kafka. TheData Acquisition layer
allows accessing environmental data collected from dis-
parate sources, to monitor urban services such as water
quality, energy usage, etc. At the Data Storage levelthe data
collected is organized in ad-hoc repositories (i.e., historical
archives and real-time repositories). The Software Service
layer is composed of a set of software components exposed
as services, that can use data provided by the lower level
and are invoked by the upper level to compose applications.
The Service Composition layeris responsible to assist users
in designing application work�ows, identify data sources,
and link necessary processing components to enact the
work�ows. Finally, the Smart Urban Application Services layer
offers a set of services for urban management, that can be
used to perform intelligent analysis on environmental data .
For lack of space, no more details are reported in this paper.
A list of the main functionalities of the framework can be
found in [5]. The software architecture has been developed

and deployed on a public Cloud for internal use. Although
it is not available on-line for public access, it can be released
for research purposes to academic or research institutions.

Traffic
Public 
Safety

WaterGIS Weather Health

Cloud Platform

Satellites

Smart 
Mobile 
Devices

Sensors

Cameras
Web Cameras

Workflow Engine

Platform 
Layer

Data 
Acquisition

Layer

Data Storage 
Service 
Layer

Service 
Composition

Layer

Application 
Service 
Layer

Client
Layer

Static
Spatial
Data

Imagery
Real-
Time 
Data

Maps 3-D Trajectories

Social 
Networks

City 
Archives

T
ra

ffi
c

P
re

di
ct

io
n

W
ea

th
er

F
or

ec
as

t

W
at

er
 M

gm
t

E
ne

rg
y 

C
on

su
m

pt
io

n

Visualization

Modelling & 
Simulation

S
m

ar
t H

ea
lth

S
m

ar
t 

T
ou

tis
m

Smart Urban Services

Predictive
Systems

Software 
Service 
Layer

GEOLocate
Google 
Maps

T-Apriori DBScan

Fig. 1. A Cloud-based architecture for urban computing.

The implementation of the Service Composition Layer
has been done using the Data Mining Cloud Framework
(DMCF) [16], a software framework for designing and ex-
ecuting data analysis work�ows on the Cloud. DMCF sup-
ports a large variety of processing patterns that can be used
in data mining, including single-task applications, param -
eter sweeping applications, and work�ow-based applica-
tions. Following the approach proposed in [17], DMCF rep-
resents knowledge discovery work�ows as graphs whose
nodes denote resources (datasets, data analysis tools, min-
ing models) and whose edges denote dependencies among
resources. A Web-based user interface allows users to com-
pose their work�ows and to submit them for execution
to the Cloud platform, following a Software-as-a-Service
(SaaS) approach. Data analysis work�ows can be designed
through visual programming, which is a very effective de-
sign approach for high-level users, or through a script-bas ed
language [18], which is an additional and more �exible
programming interface for skilled users.

Infrastructure

Storage Compute

Virtual Web Servers

Fig. 2. Architecture of the Data Mining Cloud Framework.

Figure 2 shows the architecture of the DMCF that in-
cludes different kinds of components grouped into storage
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and compute components. The storage components include:

� A Data Folder that contains data sources and the
results of knowledge discovery processes. Similarly,
a Tool Foldercontains libraries and executable �les for
data selection, pre-processing, transformation, data
mining, and results evaluation.

� The Task Queuecontains the tasks ready for execu-
tion.

� Data Table, Tool Tableand Task Tablecontain metadata
information associated with data, tools, and tasks.

The compute components are:

� A pool of Virtual Compute Servers, which are in charge
of executing the data analysis tasks.

� A pool of Virtual Web Servershost the Web-based user
interface.

The following steps are performed to develop and execute a
knowledge discovery application [19]:

1) A user accesses the Website and designs the appli-
cation (either single-task, parameter sweeping, or
work�ow-based) through a Web-based interface.

2) After application submission, the system creates a
set of tasks and inserts them into the Task Queue on
the basis of the application.

3) Each idle Virtual Compute Server picks a task from
the Task Queue, and concurrently executes it.

4) Each Virtual Compute Server gets the input dataset
from the location speci�ed by the application. To
this end, a �le transfer is performed from the Data
Folder where the dataset is located, to the local
storage of the Virtual Compute Server.

5) After task completion, each Virtual Compute Server
puts the result on the Data Folder.

6) The Website noti�es the user as soon as her/his
task(s) have completed, and allows her/him to ac-
cess the results.

The set of tasks created on the second step depends
on how many data analysis tools are invoked within the
work�ow. Initially, only the work�ow tasks without de-
pendencies are inserted into the Task Queue. All the po-
tential parallelism of the work�ow is exploited by using
the needed Virtual Compute Servers. In addition, multi-
threaded tasks exploit all the cores available on the Virtua l
Compute Servers they are assigned to.

The DMCF architecture has been designed in a suf�-
ciently abstract and generic way to be implemented on
top of different Cloud systems. In this work, we use the
implementation based on Microsoft Azure 1.

To reduce the overhead of data transfers between Data
Folder and the local storage of Virtual Compute Servers, it
is important that data are kept physically close to the virtu al
servers where processing takes place. In the Microsoft Azure
implementation, this is achieved by exploiting the Azure's
Af�nity Group feature, which allows Data Folder and Vir-
tual Compute Servers to be located near to each other in the
same data center for optimal performance.

1. http://azure.microsoft.com

4 THE TRAJECTORY PATTERN MINING METHOD-
OLOGY

This section provides a real-world application scenario as a
case study of urban planning and management within the
proposed framework. In particular, we focused on the study
of the trajectories traced by vehicles or humans, with the ai m
to discover user's behavior and provide useful information
about mobility-related phenomena. To this aim, we propose
a trajectory pattern extraction methodology allowing to
predict future movements of citizens, in order to support
decisions in urban contexts. The set of trajectory patterns
extracted represent a basic building block around which
further tasks can be implemented, including the following
ones:

� Next location prediction.Predict the future location of a
moving object, based on the object recent movements
and trajectory pattern models, to anticipate or pre-
fetch possible services in that location.

� Intelligent traf�c management.Predict traf�c conges-
tion patterns and improve the transportation model
of a city, to reduce the wasted time due to vehicular
traf�c.

� Movement-similarity analysis.Estimate the similarity
between users in terms of location histories so as to
promote services for car sharing, car pooling, etc.

� Travel recommendations.Mine the top interesting loca-
tions and travel sequences among locations, and ex-
ploit such information to recommend the best routes
and itineraries that people can follow to visit a given
location.

In this section we �rst describe the trajectory pattern
extraction methodology to analyze routes drawn by users
during their daily activities. Then, we point out how a work-
�ow mechanism can be used to design the methodology
within a parallel setting, as the one of the proposed Cloud-
based architecture (see Figure 1).

4.1 Trajectory Pattern Detection Approach

Before describing the approach, let us introduce some
notation used in the remainder of the section. Let be
T = < t 1; t2; : : : ; tH > an ordered timestamp list, such that
th < t h+1 ; 80<h<H . A raw trajectory(or simply trajectory) � K

is a spatio-temporal sequence

� K = < (x1K ; y1K ; t1); : : : ; (xHK ; yHK ; tH ) >

where each triple (x iK ; yiK ; t i ) indicates that an object of
the trajectory � K is in the position (x iK ; yiK ) at time t i .
The trajectory length is the number of triples composing
the trajectory (i.e., jT j = H ). A frequent (or dense) region
is an area of points that is more frequently visited by the
object's trajectories with respect to other areas. In particular,
we represent with R j

t the j th dense region at the time t .
A structured trajectory � K is a spatio-temporal sequence,
� K = < R j 1

t 1
; : : : ; Rj H

t H
> , where each element R j i

t i
indicates

that an object of the trajectory � K is in the dense region R j i

at time t i . A trajectory patternis a special association rule, in
the form

R j 1
t 1

^ R j 2
t 2

^ : : : ^ R j r
t r

c�! R j s
t s
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with time constraints t1 < t 2 < : : : < t r < t s . The block on
the left, i.e. R j 1

t 1
^ R j 2

t 2
^ : : : ^ R j r

t r
is the primes, while R j s

t s

is the consequence of the rule. Finally, c is the con�dence
of the rule, meaning that when the premise occurs then the
consequence will occur with probability c.

Now, let us describe the approach adopted to detect tra-
jectory patterns, which is composed of three main steps. To
better describe the whole process, Figure 3 shows a graphic
representation of how trajectory patterns are discovered.
The input data of the analysis is a set of raw trajectories,
that have been obtained by sampling real trajectories traced
by users during their daily activities. The �rst step of the
algorithm consists in the detection of frequent regionsfrom
the original raw trajectory dataset. The goal of this step
is detecting spatial areas more densely passed through,
in order to conduct the further analysis as movements
through areas rather than single points. The second step
consists in the synthesization of the trajectories, by changing
their representation from movements between points into
movements between frequent regions. Precisely, each point
of the original dataset is substituted by the region it belon gs
to. The third step is aimed at extracting trajectory patterns,
in the form of associative rules, analyzing the trajectorie s of
frequent regions obtained at the previous step.
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Fig. 3. Trajectory Pattern Detection Steps.

4.2 Trajectory Pattern Detection: a parallel implemen-
tation

The trajectory pattern detection process consists of a se-
quence of steps involving different kinds of data and tools
that can be located over geographically distributed enviro n-
ments. Moreover, some steps can be naturally parallelized,
in order to achieve higher performance . In particular, as it
will be better shown in the experimental evaluation section ,
the frequent regions detection and trajectory synthesizat ion

steps are the most time-consuming and critical tasks. Thus,
our effort consists in the parallelization of this step (tha t has
been done by implementing a Single Program Multiple Data
parallelism pattern).

Now, in order to have a clear view of the whole process,
Figure 4 shows it by exploiting the work�ow formalism,
i.e. a graph in which nodes represent data sources, data
mining tools and algorithms, and edges represent execution
dependencies among nodes. The original data setD is a raw
trajectory data, populated by the trajectories (represent ed
in the previously described format) of persons collected
somehow. In particular, let us suppose that the original
dataset is composed of N trajectories, each one represented
as a sequence ofH (x; y; t )-triples.

The work�ow is composed of four steps (see Figure 4),
as described in the following:
Step 0 - Vertical/Horizontal Data Splitting. The original
trajectory dataset is partitioned by the Time Stamp Splitter
in a vertical way, with respect to the timestamp value. In
other words, the points of the trajectories visited at the ti me
stamp t i 2 T will be gathered in the i th output dataset, for
i = 1 ; :::; H . At the end of this step, H different datasets
are available, each one containing a vertical projection of
D on the timestamp t i . It is worth noticing that this is an
additional step with respect to the sequential case, where no
splitting step is planned. In parallel to the vertical split ting,
the trajectory dataset is horizontally divided in M partitions
by the Trajectory Splitter. Each partition D1; :::; DM contains
a subset of trajectory in D , where jD i j �= 1

M jD j, for i =
1; :::; M . Such data partitioning is aimed at improving the
scalability of the synthesization step.
Step 1 - Frequent Regions Detection. This step is aimed
at detecting, for each timestamp, the regions that are more
densely visited with respect to others (thus, of interest
for the further analysis). In the work�ow this is done by
running H clustering algorithm instances, each one taking
in input a dataset built at the previous step. The �nal result
consists of H clustering models, whereas the clusters of the
th -model represent the detected dense regions of the th -
timestamp (each cluster corresponds to a dense region). The
number of detected regions (i.e., number of clusters) may be
different for each timestamp th .
Step 2 - Trajectory Data Synthesization. This step is aimed
at synthesizing the trajectories to build a structured traj ec-
tory dataset. This task is performed by running the Trajectory
Synthesizertool, whose goal is to create a dataset where
each point of the original trajectories is substituted by th e
dense region it belongs to (discovered at the Step 1). The
�nal dataset, the Trajectory Data (structured)in the �gure,
is populated by trajectories between dense regions (but
between single points).
Step 3 - Trajectory Pattern Extraction. Finally, a Trajectory
Pattern Extractionalgorithm on the dense regions trajectory
data is executed, to discover trajectory patterns from them .
The �nal mining model is a set of associative rules describ-
ing spatio-temporal relations between the movement of the
users under investigation.

5 EXPERIMENTAL EVALUATION

To evaluate the performance and the effectiveness of the
system that has been described in the paper, we carried out
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Fig. 5. Trajectories work�ow composed and executed in the Da ta Mining Cloud Framework (DMCF)

an extensive analysis by executing different experiments i n
various scenarios. Since the proposed algorithm is speci�-
cally designed to deal with large dataset of high cardinalit y
(number of trajectories) and dimensionality (number of
timestamps), it is important to measure its performance
on the basis of such parameters. Also, notice that, since
the computational complexity cannot be analytically de-
vised, experimental performance analysis is critical in th e
approach. To this purpose, it is important to provide an
ef�cient implementation of tools and algorithms that work
effectively even in ”extreme” situations.

The trajectory pattern mining application has been exe-
cuted on a real Cloud environment, exploiting the system
described in Section 3. The whole process, designed as a
work�ow, has been composed and run by the Data Mining
Cloud Framework exploiting up to 128 servers. More details
about experimental setting and work�ow description are
reported in Section 5.1. Experiments have been carried on
both real and synthetic data, and their results are cross val i-
dated across different orders of the data. Section 5.2 presents
the results about the ef�ciency of the approach carried out
on a real-life data set, as well as some example patterns
discovered in a real case. In particular, the algorithm has
been tested on T-Drive, a GPS dataset tracing the movement
of taxies in the urban area of Beijing. Also, several synthet ic
data sets are exploited in Section 5.3 to investigate scalability
and robustness in critical applicative settings. Such data sets
have been built by an ad-hoc trajectory data generator that
we designed and implemented.

5.1 Cloud Experimental Setting and Applicative Work-
�ow

The trajectory pattern mining application has been devel-
oped and executed on the Cloud System described in Sec-
tion 3, exploiting the Data Mining Cloud Framework. We
executed the experiments on the Microsoft Azure platform
using 1 virtual server to run the Data Mining Cloud Frame-
work Website, and up to 128 virtual servers for the Workers.
Each virtual server was equipped with a single-core 1.66
GHz CPU, 1.75 GB of memory, and 225 GB of disk space.

Figure 5 shows a snapshot of the work�ow designed
through the Service Composition Layer. Each node repre-
sents either a data source or a data mining tool, whereas an
edge represents an execution dependency among nodes. For
what concerns the algorithms, the Frequent Regions Detection
step has been implemented by using DBScan [20], a density-
based clustering algorithm, whereas the Trajectory Pattern
Extractionstep has been performed by T-Apriori, our ad-hoc
modi�ed version of the well-known Apriori algorithm [21].
Moreover, some nodes are labeled by the array notation,
which is a compact way to represent multiple instances of
the same dataset or tool. For example, the ”DBScan[128]”-
labeled node represents 128 parallel instances of the al-
gorithm, each one belonging to a different path of the
work�ow.

The work�ow shown in Figure 5 implements the trajec-
tory analysis steps shown in Figure 4. The initial dataset,
Trajectory Data, is partitioned into H (i.e.,= jT j) subsets
using the Time Stamp Splittertool, where H is equal to
the number of timestamps (the points in the trajectory).
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In the example shown in Figure 5, H = 128. This step,
corresponding to the Step 0 of the work�ow shown in
Figure 4, produces H data partitions. Now, each partition
T rajP artition [i ], i = 1 ; :::; H , is analyzed by an instance
of DBScan and produces a ClusteringModel (Step 1).
Each clustering model is a set of clusters/dense regions, for
a given timestamp. The TrajectorySynthetizertool analyzes
all models and the initial dataset, so as to generate the
Structured Trajectory Data, where each point of the original
trajectories is substituted by the dense region it belongs
to (Step 2). Finally, the T-APriori gets in input this dataset
to extract trajectory patterns and, thus, produces the �nal
results (Step 3).

Experimental tests have been executed on both real and
synthetic data, having in mind two different goals. The
experimental evaluation on real data has been performed
to show a concrete scenario on which our approach can be
applied on (it concerns mobility aspects of a big city like Be i-
jing) and the practical usefulness of the system in real urba n
cases. With this aim, we will show the discovered dense
regions and the most frequent mobility patterns traveled in
the real city scenario. In order to perform a more complete
scalability analysis (that we could not achieve on the real
dataset due to its limited cardinality), we will test the
system also on synthetic datasets to deal with higher orders
of magnitude under different settings and with respect to
several data sizes (up to one million trajectories).

The goal of the evaluation is to assess the execution
time and scalability of the whole task, by analyzing the
time elapsed in each step and comparing the performances
obtained by both sequential and parallel executions. In par -
ticular, we evaluated the results by exploiting the followi ng
performance metrics:

� Turnaround time: the total execution time of the dis-
tributed algorithm varying the number of running
nodes, that is, the elapsed time from task submission
until the �nal result is returned to it;

� Speed-up: the ratio of the turnaround time elapsed
by exploiting 1 node to the turnaround time on n
nodes, which measures how much performance gain
is achieved by parallelizing a given application over
a sequential implementation;

� Scale-up: the execution time when the problem size is
increased linearly with the number of servers, which
quanti�es the capability of a system to handle larger
data sets when (computational) resources are added
to accommodate that growth;

� Ef�ciency: the ratio between speedup and the number
of processing nodes, which measures the percentage
of time for which processing nodes are usefully ex-
ploited for computation (and not for communication
tasks or even idling).

In the following we will describe the achieved results,
obtained by an extensive evaluation carried out in various
experimental scenarios.

5.2 Real-life Data

In this section we explore a trajectory analysis case study,
by applying the pattern mining detection method described

in the previous section over a real dataset. In particular,
we report the results obtained by the execution of the
methodology on T-Drive, a real-life GPS dataset tracing the
movement of taxies in the urban area of Beijing. A detailed
description of the dataset is reported in Section 5.2.1. The
description of the analysis and the most important results
(dense areas and mobility patterns) carried on T-Drive are
reported in Section 5.2.2.

5.2.1 Data Description.
The input dataset chosen for the experiments is the T-Drive
Trajectory Data Sample[22], [23], a collection of GPS traces de-
scribing the movement of GPS-equipped taxis in the urban
area of Beijing, China. The temporal span of the dataset is
one week. The number of vehicles tracked is 10,357. We have
about 15 millions of locations (geographic points) and the
total area covered by the trajectories reaches almost 9 million
kilometers. Starting from this dataset, we extracted a subset
of 80,000 trajectories, obtained by sampling taxi positions
every 5 minutes. Then, from this dataset we created four
different ones, all of 80,000 trajectories, that differentiate
only for the length of the trajectories. In particular, we bu ilt
datasets whose trajectories are traced by 16, 32, 64 and 128
samples (i.e., timestamps), referred in the following as T16,
T32, T64 and T128, respectively. Those four datasets have
been used in the experimental evaluation.

Before the analysis of the trajectories, a pre-processing
has been performed to clean, select and transform data to
make it suitable for analysis. First, we cleaned collected
data by removing all the points with unreliable position
(i.e., coordinates with latitude-longitude equals to 0.0 o r
7.0 are evident mistakes). Then, to avoid any other kind of
geo-localization errors, we selected only data points fall ing
in a bounded area limiting the city, by removing points
outside this area. Overall data errors amounted to about
0.7% of points. Finally, we transformed data by partitionin g
each trajectory in a daily route, because we were interested
to discover daily patterns inside data. The �nal dataset
contains about 61,500 daily trajectories, each one containing
the set of points traced by a single taxy during a day. The
total data size amounts to about 882 MB.

5.2.2 Experimental Results.
First, we measured the turnaround times of the application
for the four considered datasets, using from 1 to 128 virtual
servers. Figure 6 shows such results. Therefore, the shown
plots can also be seen as a comparison between a parallel
and a sequential solution. In particular, Figure 6(a) shows
how the turnaround time decreases with higher number of
virtual machines, for different dataset sizes. For instanc e,
for the 16 timestamp dataset the turnaround time decreases
from around 8.3 hours obtained on a single server, to about
34 minutes on 16 servers. For the 32 timestamp dataset the
turnaround time diminishes from 17 hours to 38 minutes.
For the 64 timestamp dataset the turnaround time decreases
from 35 hours to 40 minutes. Finally, with the 128 times-
tamp, the turnaround time ranges from about 68 hours to
about 45 minutes using 128 virtual machines. Figure 6(b)
shows how the turnaround time increases with respect to
the dataset size, for a different number of virtual machines .
The graph shows that the time required to execute the entire
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Fig. 6. T-Drive: Turnaround times in different scenarios.
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Fig. 7. T-Drive: Speed-up and Scale-up.

work�ow increases proportionally with the increase of the
input size. On the contrary, the time required to execute the
entire work�ow decreases proportionally with the increase
of computing resources.

Figure 7 shows execution speed-up and scale-up val-
ues. More in detail, Figure 7(a) shows that the speed-up
is linear with all datasets, up to the case of 16 nodes:
this represents a good trend. For an higher number of
nodes, the speed-up is not linear because of the in�uence
of the sequential steps of the application. In fact, for the
32 timestamp dataset, it ranges from 2.0 using 2 servers, to
27.4 using 32 servers, while for the 64 timestamp dataset
the speed-up ranges from 2.0 to 52.4. Finally, with the 128
timestamp it ranges from 2.0 to 78.5 by using 128 servers.
Figure 7(b) measures the application scale-up by showing
the turnaround times obtained when the size of the input
dataset increases proportionally to the number of virtual
servers exploited for the computation (i.e., 16 timestamps on
16 servers up to 128 timestamps on 128 servers). The results
show that the total turnaround time is almost constant up
to 64 timestamps on 64 servers and slightly increases in
the case 128 timestamps/128 servers. This demonstrates
that the amount of data that can be analyzed in a given
amount of time increases, almost linearly, with the number
of computing resources available. Other than showing the
total turnaround time, Figure 7(b) shows the time required
by each step of the work�ow. We can notice that in each

scenario the Dense Region Detection step takes most of the
total time and this time is almost constant in all the four sce -
narios. This is due to the fact that the parallelization degr ee
of clustering algorithm executions (i.e., DBScan) increases
proportionally with the dataset size. On the other side,
the time required by Data Splitting and Pattern Discovery
steps, that are implemented as sequential tasks, increases
for larger dimensions of the dataset. The same behaviour
holds for the Trajectory Synthesization step, even if it has
been parallelized: this last issue is better explained below.

Now, let us describe the in�uence of the vertical and
horizontal data splitting on the whole execution time. Fig-
ure 8 shows the turnaround time and speed-up when pro-
cessing the T128 dataset on 128 nodes. In detail, we can
observe in Figure 8(a) that when only vertical splitting is
done, the turnaround time amounts to 3115 seconds. Im-
plementing both horizontal and vertical splitting decreas es
the turnaround time to 2707 seconds, that is obviously due
to a reduction in the trajectory synthesization step. This
improves also the speed-up trend, that increases from 78.5
to 90.2 (as can be observed in Figure 8(b)). Nevertheless,
horizontal splitting bene�ts are not proportional to the it s
parallelism degree. The last consideration is better high-
lighted in Figure 9, which reports the execution time taken
by the synthesizer versus the number of horizontal parti-
tions, when processing the T128 dataset with 128 vertical
partitions (and 128 running nodes). Speci�cally, the elaps ed
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time decreases with the the parallelism degree but till 8
horizontal partitions.
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We evaluate also the overhead introduced by the Data
Mining Cloud Framework. We de�ned as overhead the time
required by the system to perform preliminary operations
(e.g., getting the task from the Task Queue, downloading
the libraries and the input from the Cloud storage) and �nal
operations (e.g., update of the Task Table, upload of the out-
put results in the Cloud storage) of each step of a work�ow
to execute. The overhead increases with the number of tasks
and the size of the datasets involved in the computation. In
fact, the more the tasks involved, the longer the time elapsed
for their submission, monitoring, �nalization, etc. Simil arly,
the higher the data size, the longer the cumulative time
spent for its transfer. This trend is con�rmed in Figure 10,
that shows the turnaround and the overhead times, when
the size of the input dataset increases proportionally to th e
number of virtual servers. We can observe that the overhead
takes only a very small amount of the total turnaround
time. For example, the overhead of the analysis of the 16
timestamp dataset takes 47 seconds on a total execution time
of 2045 seconds, while the 128 timestamp dataset takes 220
seconds on a total of about 2707 seconds. This means that
the system overhead is just the 2:3% and the 8:1% of the
total execution, respectively.

Finally, through the visualization module of the pro-
posed framework, we show some dense regions (i.e., the
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Fig. 10. T-Drive: Overhead time vs data sizes.

most congested areas of the city) discovered through the
T-Drive dataset analysis. Figure 11 shows some examples,
for different time windows (3 hours) of the day. Interest-
ingly, such images show how the taxi mobility and traf�c
congestion changes over the morning and afternoon. For
example, we can observe that, during the early morning
(around 6 AM and 9 AM), a low number of dense regions
have been discovered, the most of them localized in south
and west areas of the city (Figures 11(a) and 11(b)). During
the day, the distribution of vehicles increases and the traf �c
becomes more chaotic in several areas. In particular, we
can observe (Figures 11(c) and 11(d)) that from the late
morning to the afternoon many regions in the city have an
high concentration of taxies. We can clearly recognize the
main streets that are exploited during these times: several
highways crossing the central area of the city, as well as a
circular highway around the city center (clearly observabl e
in Figures 11(d)) and an highway toward the airport. It is
worth pointing out that the dense regions do not necessarily
indicate traf�c problems in those areas. These regions repr e-
sent dense movement of cars, which can hint the possibility
of traf�c jams or congestions. Further analysis, focused on
these speci�c areas, are needed to have a more precise
indication of possible traf�c problems.

Figure 12 shows some examples of the most popular
routes discovered in T-Drive by the TPM algorithm. To
detect the most popular itineraries, we concentrate the



JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 10

(a) time: 6:00 AM (b) time: 9:00 AM (c) time: 12:00 AM (d) time: 3:00 PM

Fig. 11. T-Drive: Dense regions discovered in T-Drive, w.r.t. several morning and afternoon time windows.

analysis on routes around the city center and those going
from the city center to strategic venues like the airport and
the train stations. Figure 12(a) highlights the main extrac ted
mobility patterns followed by taxi drivers leaving the cent er
toward airport (i.e., rules R12

12:00 �! R32
13:30 , R21

12:30 �! R32
13:30 ,

R10
17:30 �! R3

19:00 , R22
18:00 �! R3

19:00 , etc.). It is evident that
vehicles departing from different locations in the city cen ter
(R12

12:00 ; R21
12:30 ; R10

17:30 ; R22
18:00 , etc.) converge toward two re-

gions (i.e., R32
13:30 and R3

19:00 ). On the other side, the pattern
in Figure 12(b) shows a popular itinerary from the airport to
a train station in the city center. The pattern is composed of 3
trips. The �rst one ( R73

11:00 �! R23
12:00 ) goes from the airport to

a popular venue in the sub-urban south area of the city. The
second trip (R23

12:00 �! R24
13:00 ) goes from this sub-urban area

to the city center and the last one (R24
13:00 �! R9

13:30 ) from
the city center to the train station. This pattern represent s
the most crowded route to get the central train station from
the airport.
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Fig. 12. Travel patterns discovered in T-Drive.

5.3 Synthetic Data

The proposed trajectory mining algorithm has been also
tested on synthetic data, in order to carry out a scalability
performance analysis on big datasets, up to millions of
trajectories traced by hundreds of timestamp points (both
high-cardinality and high-dimensional trajectory data). To
do that, we developed an ad-hoc data generator allowing to
create trajectory data adhering to some suitable parameters
(i.e., number of trajectories and timestamps, noise degree,
etc.) tuned by input values. A detailed description of the
data generator is reported in Section 5.3.1, while scalability
analysis on synthetic data is described in Section 5.3.2.

5.3.1 Synthetic Data Generator: implementation details.

The goal of the data generator is to build trajectory data set ,
whose characteristics (number of trajectories, patterns,noise
degree, etc.) can be tuned by input values. In particular, th e
trajectory generation process has been made parametric to
the following parameters: the number N and the average
length L of trajectories, the number R of base regions for
each timestamp, the number P of patterns to force within
the data, the percentage � of outlier regions and the degree
� of overlapping among regions of different patterns. The �
value represents the percentage of regions (with respect to
their total number) that will be considered as noise and will
populate the outlier set, while � is the probability that noise
regions will be used during the trajectory generation step.

The synthetic trajectory data generation process works
as follows. First, a set of pre-de�ned dense regions, BRS ,
and a set of outlier regions, ORS are generated. The
elements in the �rst group, named also target or oracle
regions, are considered as ground truth areas and will be
exploited as base regions for the synthetic mobility patter ns,
while the elements in ORS will be exploited for adding
noise and perturbations inside data. More formally, the
goal is generating trajectories over the timestamp sequence
T = < t 1; t2; : : : ; tH > , where th < t h+1 ; 80<h<H . Ini-
tially, two sets of regions are generated, the base region set
BRS = f BR t 1 ; : : : ; BR t H g and the outlier region setORS =
f ORt 1 ; : : : ; ORt H g, where each BR t i and ORt i represents
the (base and outlier, respectively) region sets for the tim es-
tamp t i . Base regions are distinctive for the patterns, while
outlier regions will be used to create noise and perturbatio ns
during the trajectory generation. Set sizes are �xed such
that outlier regions amount to almost � percent of the total
number of regions: i.e., jORt i j = � � (jORt i j + jBR t i j), for
each timestamp t i . To assign at each pattern a set of regions
that can be distinctive for it, all the base regions are equal ly
partitioned among patterns, i.e. BR t i = f BR 1

t i
; : : : ; BR P

t i
g,

for each timestamp t i . A base region BR p
t i

represents the
region (exclusively) belonging to the pattern p at time t i . For
such a reason, there is no spatial intersection among regions
referring to the same timestamp, i.e. BR pk

t i
\ BR pj

t i
= ; , for

each pattern pk 6= pj and BR pk
t i

\ ORt i = ; , 81� k � P .
After such initialization phase, the generation of traject o-

ries proceeds as follows. In order to create a balanced num-
ber of trajectories among patterns, for each pth pattern N=P
trajectories are created, where the lengthL of each trajectory
is �xed from a normal distribution with mean H and �xed
variance. A trajectory belonging to the pattern p is generated
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Fig. 13. Synthetic Data Results. Turnaround time for different data sizes.

as follows: for each timestamp t i , with i = 1 ; : : : ; L � H ,
� percent of points are randomly picked from the outlier
region set ORt i , while the remaining from the base region
set BR p

t i
. The �nal result is a dataset composed of N tra-

jectories, built from P generative patterns, with � degree of
overlapping (i.e., noise) among regions of different patte rns.
Table 1 reports the input parameters for the data generator,
with a brief description and the range of values �xed during
the experiments.

TABLE 1
Trajectory Generation Parameters

Parameter Meaning Values

N No. of trajectories to be generated 250K-1M

L Average length of trajectories 16-128

R No. of base regions 10

P No. of generative trajectory patterns 10

� Noise degree (%) 0-15

� Overlap degree (%) 5-20

5.3.2 Experimental Results.
We generated several trajectory data sets through our
ad-hoc generator. In particular, since we can increase the
problem size in either the number of data points N and
the number of timestamps (or dimensions) T , we can
study the scalability with respect to both parameters. In
addition, it is interesting to analyze how the number of
outlier regions as well as the noise introduced in the data
can affect the algorithm results. We report three sets of
experiments, where we vary N , T and the couple (� ,� )
values, respectively.

Varying N. First, we study scalability and speed-up per-
formances when the number of trajectories is varied. We
generated three different datasets by varying N from 250K
to 1000K. All the other parameters have been �xed as
follows: T = 128, R = 10 , � = 20%, � = 10%, P = 10 .
We tag such datasets asN 250K , N 500K and N 1000K .
After some preliminary experiments carried on the Cloud,
we have realized that it is not feasible to analyze such
high cardinality datasets on a small number of nodes. For
example, the execution time of a single instance of DBScan
to analyze a one-timestamp partition of N 500K dataset

takes on average 8 hours. So, the sequential time to analyze
128 partitions would take around 41 days. For such a reason,
we carried out real experiments with 32, 64 and 128 Cloud
nodes and analytically inferred the time needed to perform
the whole analysis by exploiting a lower number of nodes.

Figure 13(a) shows the turnaround times of the whole
discovery pattern process for the three considered cases,
using from 1 up to 128 virtual servers. We can observe that
the turnaround time strongly decreases for all datasets wit h
the number of available servers. In particular, it is impres -
sive that the time needed to analyze one million trajectorie s
(i.e.,N 1000K ) would require 7181 hours (about 299 days) of
processing time on a single server, while it decreases to only
63 hours (less than three days) on 128 servers. Figure 13(b)
shows the parallel execution time varying the number N
of trajectories, achieved by exploiting 128 virtual server s. In
particular, it is shown the time required by each step of the
analysis process. It is evident that the dense region detection
takes more than 99% of the total execution time, with a
quadratic order increasing with respect to the data sizes
N (according to the temporal complexity of the DBScan
algorithm). The synthesization step has a linear increasing
trend with respect to N , but its contribution to the total
time amount to less than 1%. The other two steps, i.e. data
splitting and pattern discovery, take a negligible time.

Figure 14(a) shows the execution speed-up values, for
different number of trajectories. The speed-up is almost
linear with all datasets, up to the case of 32 nodes. Anyhow,
for a higher number of nodes, it maintains a notable trend.
On the N 1000K dataset it achieves the value of 113:54
for 128 nodes. This result shows a high scalability of both
the framework and the parallelization strategy. Figure 14( b)
shows the application ef�ciency, vs the number of servers
and for different number of trajectories. As shown in the
�gure, ef�ciency maintains a good trend and notable values
even for high number of running servers. For example, for
the largest dataset the ef�ciency on 32 servers is equal to
0.92 whereas on 128 servers it is equal to 0.89. So, the 92%
and 89% of the computing power of each used server is
exploited, respectively. Moreover, it is noticed that the e f�-
ciency increases with the trajectory length (�xed the numbe r
of servers). This means that the distributed architecture i s
increasingly convenient when the problem size increases,
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Fig. 14. Synthetic Data Results. Speed-up and ef�ciency vs t he number of available servers, for different data sizes.
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Fig. 15. Synthetic Data Results. Speed-up and ef�ciency vs t he number of available servers, for different number of timestamps (Dataset N500K).

which is a another sign of good scalability properties.

Varying T. Second, we study the speed-up behavior when
the number of timestamps T tracing the trajectories is
varied. We generated four different trajectory datasets by
varying the number T of timestamps from 16 to 128. All the
other parameters have been �xed as follows: N = 500K ,
R = 10 , � = 20%, � = 10%, P = 10 . We label such
datasets asT16, T32, T64 and T128. Figure 15(a) shows
the execution speed-up values. The speed-up is linear with
all datasets, up to the case of 32 nodes. In particular, for
the 32 timestamp dataset, the speed-up increases from 1.97
using 2 servers to 29.10 using 32 servers, that represents
a very notable trend. It is worth noting that the speed-up
keeps a good trend even for higher data dimensionality. In
fact, for the 128 timestamp case, it increases from 1.97 using
2 servers to 111.33 exploiting 128 servers. This results in a
very good scalability of the framework, even with respect
to trajectories traced by a high number of timestamps.
Figure 15(b) shows the ef�ciency, vs the number of servers
and for different trajectory lengths (i.e., number of times -
tamps). It shows notable values, both for high number of
running servers and high data dimensionality. For example,
for the 128 timestamps case (T128), the achieved ef�ciency
on 32, 64 and 128 servers results equal to 0.91, 0.88 and
0.86, respectively. These values show good scalability and
ef�ciency of the framework, even when processing high-
dimensional data.

Varying � and � . Finally, let us study the results when the

overlap ( � ) and outlier ( � ) degrees are varied. As described
in Section 5.3.1,� is the percentage of regions in R that will
be considered as noise (and that are assigned to the outlier
set), while � is the probability that points belonging to noise
regions are added to the trajectories (during the generatio n
step). First, we generated several datasets by varying � ,
from 0% to 20%. Figure 16 shows the execution time of
Dense Regions Detection step on such datasets, versus�
and for different data set sizes. It is worth noting that the
elapsed time does not have notable changes with respect to
� variations, nevertheless it is obviously strongly depende nt
on the number of trajectories to be analyzed.
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Now, we analyze the results when varying both � and � .
To do that, we generated several datasets, with � varying
from 0% to 80% and � from 5% to 20%. All the other
parameters have been �xed as follows: N = 125K , T = 10 ,
R = 12 , P = 10 . We run the algorithm on such datasets.
Figures 17(a) and 17(b) show the distribution of points
among dense regions, after the dense regions detection step.

In particular, each histogram in Figure 17(a) shows the
number of points that have been assigned to base regions
and outlier regions, with different values of � and � . The
main conclusion is that the dense region detection step is
able to discover dense regions adhering to the generative
patterns; in particular, the main issues that can be derived
from these plots are:

� considering the particular no-noise case, i.e. � = 0 , all
the points are assigned to base regions; in this case, in
fact, independently from the number of outliers ( � ),
data are generated by selecting the points only from
the base region set; during the processing step, the
density-based clustering algorithm is able to discover
the generative dense regions in an accurate manner;

� the noise degree� in�uences the percentage of points
that are noisy with respect to the total number, while
� leads the number of regions noise is distributed
on; this is clearly highlighted by the histograms
corresponding to � = 5%; 10%and 15%: it is evident
that for a �xed � , higher is � , greater is the number
of discovered regions hosting noisy points.

On the other side, Figure 17(b) shows the number of
points that have been assigned to the 12 discovered regions,
varying � and for � = 20%. The �gure shows that in the
no-noise case (� = 0 ) the clusters are quite balanced in
the number of grouped points. For higher values of � the
produced clusters are more and more unbalanced in size,
resulting in few big clusters (grouping most of the points of
the considered trajectories) and several smaller non signi�-
cant ones (that actually do no represent dense regions). As
such, from those smaller clusters it is not possible to extract
trajectory patterns.

6 CONCLUSION

In the paper we presented a Cloud-based software environ-
ment speci�cally designed for urban computing supporting

smart city applications. The environment has been designed
as a composition of different services allowing users to
gather and collect environmental data, and process and
analyze them in order to mine social and urban behaviors.
Within such system we have designed and implemented a
parallel methodology, modeled by the work�ow formalism,
for pattern discovery from trajectory data. The main idea
of the methodology consists in (i) �nding the more densely
passed through regions in a given geographical area, and
(ii) then extracting trajectory patterns from those regions in
the form of association rules. In particular, the applicati ve
scenario described in the paper focuses on the study of
trajectories followed by vehicles in an urban area with
the aim to discover knowledge models, and thus to catch
users'mobility behaviors. The paper describes in details
the design of the work�ow implementing the application
and its execution by a work�ow engine integrated in the
environment. Experimental evaluation of the framework,
performed both on a real-world dataset (concerning mo-
bility of citizens within an urban area) and on several
synthetic datasets, shows the scalability and ef�ciency of
the approach. Speci�cally, the trajectory pattern mining
process takes advantage from a Cloud architecture in terms
of both execution time, speed-up and scale-up. It is worth
noting that the Cloud system allows developers and users to
analyze large amount of trajectory data whose size is much
higher than that can be analyzed by the most of the systems
found in literature.

As future work, we plan to extend some functionalities
of the system for implementing new urban computing ap-
plications, including the following ones: (i) predict the future
locationof a moving vehicle based on the trajectory pattern
models obtained from the analysis; (ii) travel recommenda-
tions exploiting mobility models to suggest the best routes
that vehicles can follow to reach a given place; (iii) intelligent
traf�c managementpredicting traf�c congestion patterns to
reduce the wasted time due to vehicular mobility. Finally,
the trajectory mining algorithm will be modi�ed and ex-
tended to include automatic parameter setting in the dense
region discovery step of the mining work�ow.
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