
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 4, AUGUST 2009 681

A Swarm Algorithm for a Self-Structured P2P
Information System

Agostino Forestiero, Member, IEEE, and Carlo Mastroianni, Member, IEEE

Abstract— This paper introduces Antares, which is a bio-
inspired algorithm for the construction of a decentralized and
self-organized P2P information system in computational grids.
This algorithm exploits the properties of ant systems, in which
a number of entities/agents perform simple operations at the
local level but together engender an advanced form of “swarm
intelligence” at the global level. Here, the work of ant-inspired
agents is tailored to the controlled replication and relocation of
“descriptors,” that is, documents that contain metadata infor-
mation about grid resources. Agents travel the grid through P2P
interconnections, and replicate and spatially sort descriptors so as
to accumulate those represented by identical or similar indexes
into neighbor grid hosts. The resulting information system is
here referred to as self-structured, because it exploits the self-
organizing characteristics of ant-inspired agents, and the associ-
ation of descriptors with hosts is not predetermined but adapts
to the varying conditions of the grid. This self-structured organi-
zation combines the benefits of both unstructured and structured
P2P information systems. Indeed, being basically unstructured,
Antares is easy to maintain in a dynamic grid, in which joins
and departs of hosts can be frequent events. On the other hand,
the aggregation and spatial ordering of descriptors can improve
the rapidity and effectiveness of discovery operations, which is
a beneficial feature typical of structured systems. Performance
analysis proves that ant operations allow the information system
to be efficiently reorganized, thus improving the efficacy of both
simple and range queries.

Index Terms— Ant algorithms, grid, information dissemina-
tion, information system, peer-to-peer (P2P), resource discovery.

I. INTRODUCTION

GRID COMPUTING [1] is an emerging computing model
that provides the ability to perform higher throughput

computing by taking advantage of many networked com-
puters and distributing process execution across a parallel
infrastructure. Modern grids are based on the service-oriented
paradigm; for example, in the Globus Toolkit 4, based on
the web services resource framework (WSRF [2]), resources
are offered through the invocation of web services, which
boast of enriched functionalities such as lifecycle and state
management.

The information system is an important pillar of a grid
framework, since it provides information that is critical to the
operation of the grid and the construction of applications. In

Manuscript received January 4, 2008; revised June 9, 2008; accepted
November 13, 2008. Current version published August 14, 2009. This research
work is carried out under the FP6 Network of Excellence CoreGRID funded
by the European Commission (Contract IST-2002-004265).

The authors are with the CNR Institute for High Performance Comput-
ing and Networks, 87036 Rende (CS), Italy (e-mail: forestiero@icar.cnr.it;
mastroianni@icar.cnr.it).

Digital Object Identifier 10.1109/TEVC.2008.2011478

particular, users turn to the information system to discover
suitable resources or services that are needed to design and
execute a distributed application, explore the properties of such
resources, and monitor their availability.

Owing to the inherent scalability and robustness of peer-to-
peer (P2P) algorithms, several P2P approaches have recently
been proposed for resource organization and discovery in grid
environments [3], [4]. The ultimate goal of these approaches
is to allow users to rapidly locate grid resources or ser-
vices, either hardware or software, which have the required
characteristics; this is generally reduced to the problem of
finding related descriptors, through which it is possible to
access the corresponding resources. A descriptor may con-
tain a syntactical description of the resource/service [i.e., a
WSDL (web services description language) document] and/or
an ontology description of resource/service capabilities. In
a grid, after issuing a query, users can discover a number
of descriptors of possibly useful resources, and then can
choose the resources that are the most appropriate for their
purposes.

In P2P systems, descriptors are often indexed through bit
vectors, or keys, which can have two different meanings. The
first is that each bit represents the presence or absence of a
given topic [5], [6]: this method is particularly appropriate if
the resource of interest is a document, because it is possible
to define the different topics on which this document focuses.
Alternatively, a resource or service can be mapped by a hash
function into a binary key. If the hash function is locality
preserving, as for example in [7], [8], similar descriptor keys
are assigned to resources having similar characteristics.

In this paper, Ant-Based Algorithm for Resource (Antares)
management in grids, which was formerly presented in [9],
is proposed as an approach for the construction of a grid
information system, which is inspired by the behavior of
some species of ants [10]. The Antares algorithm is able to
disseminate and reorganize descriptors and, as a consequence
of this, it facilitates and speeds up discovery operations. More
specifically, Antares agents concurrently achieve multiple ob-
jectives: 1) they replicate and disseminate descriptors, thus
spreading useful information on the grid; 2) they spatially sort
descriptors, so that descriptors indexed by similar keys are
placed in neighbor hosts, which greatly facilitates discovery
operations; 3) thanks to the self-organizing nature of the
ant-based approach, the agents adapt the reorganization of
descriptors to the ever-changing environment, for example to
the joinings and departures of grid hosts and to the changing
characteristics of resources.

10.1109/$26.00 © 2009 IEEE

Authorized licensed use limited to: UNIVERSITA DELLA CALABRIA. Downloaded on August 21, 2009 at 09:57 from IEEE Xplore. Restrictions apply.

682 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 4, AUGUST 2009

The Antares approach can be positioned along a well-
known research avenue whose objective is to devise possible
applications of nature inspired algorithms [11], in particular
of ant algorithms, i.e., algorithms inspired by the behavior
of ants [10], [12]. We recently proposed an approach for the
reorganization and discovery of resources that are preclassified
in a given number of classes [13], [14]. This enables the
creation of grid regions specialized in a specific resource
type, which improves the performance of discovery operations
but does not allow for the spatial sorting of descriptors,
thus limiting the efficiency of simple and, in addition, range
queries. Conversely, Antares is specifically designed to tackle
the case in which the indexes of resource descriptors are bit
vectors. Since similar resources are assigned similar descriptor
indexes, it is possible to define a similarity measure among
resources, through the comparison of related indexes.

Antares is partly inspired by the work of Lumer and Faieta
[15], who devised a method to spatially sort data items through
the operations of simple robots. As in [15], the reorganization
of descriptors in Antares is achieved by means of ant pick and
drop operations, which are driven by corresponding pick and
drop probability functions. However, the application domain
of Antares is completely different, so the basic approach
of Lumer and Faieta has been adapted to our purposes in
several ways: 1) descriptors are not only sorted, as in [15], but
also replicated, in order to disseminate useful information on
the grid and facilitate search requests. These two objectives
are achieved by the definition of two different modes of
agents, which are called copy and move; 2) Each cell/host
can contain a number of descriptors, not just one item as in
[15], thus enabling the accumulation of descriptors on grid
hosts; 3) Since Antares operates in a distributed computing
environment, agents limit the frequency and range of their
P2P hops in order to reduce the network and computing load;
4) A discovery protocol is defined to exploit the obtained
rearrangement and spatial ordering of descriptors.

P2P information systems are usually classified into un-
structured and structured [16]. The grid information system
constructed with Antares is basically unstructured, in the
sense that descriptors are not required to be mapped onto
specified hosts, but they are freely placed by ants through
their pick and drop operations. This ensures valuable features
such as self-organization, adaptivity, and, as a consequence,
scalability. Conversely, in structured approaches, resources are
assigned to hosts with a well-specified strategy, for example
through a distributed hash table (DHT) [17], by which the
correct location of a resource on the network is obtained
as the result of a hash function. The structured approach
generally speeds up discovery operations but also presents
important drawbacks [18], such as: 1) limited fault tolerance
and scalability, since the disconnection of a peer requires
an immediate reorganization of resources and of peer index
tables; and 2) poor load balancing, because peers that are
assigned the descriptors of the most popular resources can
be easily overloaded.

Though being basically unstructured, Antares features a
self-emerging organization of descriptors, through which some
structured properties emerge, since descriptors are aggregated

and spatially sorted on the basis of their indexes. Therefore, the
resulting information system is referred to as self-structured,
because it exploits the self-organizing characteristics of ant-
inspired agents, and the association of descriptors with hosts is
not predetermined but adapts to the varying conditions of the
grid. Owing to these characteristics, Antares retains important
benefits that are typical of structured systems. In particular, it
enables the use of an informed discovery algorithm, through
which a query message, which is issued to discover resources
indexed by a specified target descriptor, can efficiently explore
the grid and collect information about such resources. The
discovery algorithm is based on a best neighbor approach: at
each step, it drives the query message towards the neighbor
peer that possesses descriptors which are the most similar
to the target descriptor. Since descriptors have been spatially
sorted by Antares agents, in many cases this algorithm allows
the query to reach a grid region in which several useful
descriptors have been accumulated.

Moreover, as opposed to unstructured P2P systems, and
also to many structured ones, Antares naturally supports range
queries, that is, queries issued to discover resources defined
with relaxed constraints. In Antares, a range query is managed
by defining a target descriptor in which one or more bits are
“wildcard bits” that can assume either the value 0 or 1. In
this case, the best neighbor is chosen by masking these bits
and considering only the bits that are given a specified value.
Thanks to the spatial sorting of descriptors, also a range query
can be directed to descriptors that match the target descriptor,
in both valued and wildcard bits.

The rest of the paper is organized as follows. Section II
discusses related work, and Section III describes the Antares
algorithm. Section IV shows that the Antares algorithm suc-
ceeds in the spatial replication and sorting of descriptors. In
fact, event-based simulation proves that agents successfully
generate and disseminate descriptor replicas, and at the same
time that the homogeneity of co-located or nearby located
descriptors is notably increased, meaning that descriptors are
effectively reorganized and sorted on the grid. In Section V,
the performance analysis also proves the Antares’s ability to
resolve efficiently both simple and range queries. Section VI
concludes the paper.

II. RELATED WORK

In most grid systems, resource discovery is implemented
according to centralized or hierarchical approaches, mostly
because the client/server approach is still used today in the
majority of distributed systems and in web service-based
frameworks. However, a hierarchical resource discovery ser-
vice is viable within a single organization or in a small-scale
grid, but it becomes impractical in a large multi-institutional
grid for several reasons [19], among which are the following.

1) Scalability is limited because a significant amount of
memory space must be reserved at the tree root node to
maintain information about a large number of resources.

2) Information servers belonging to different levels of the
hierarchy must carry very different computation and
traffic loads, which leads to challenging problems con-
cerning load imbalance.

Authorized licensed use limited to: UNIVERSITA DELLA CALABRIA. Downloaded on August 21, 2009 at 09:57 from IEEE Xplore. Restrictions apply.

FORESTIERO AND MASTROIANNI: A SWARM ALGORITHM FOR A SELF-STRUCTURED P2P INFORMATION SYSTEM 683

3) The hierarchical organization can hinder the autonomous
administration of servers.

4) Fault-tolerance is limited by the presence of a single
point of failure at the root of the hierarchy.

In the last few years, the P2P paradigm has emerged as an
alternative to centralized and hierarchical approaches. Novel
approaches for the construction of scalable and efficient grid
information systems need to have the following properties
[3], [4], [20]: self-organization (meaning that grid components
are autonomous and do not rely on any external supervisor),
decentralization (decisions are to be taken only on the basis
of local information), and adaptivity (mechanisms must be
provided to cope with the dynamic characteristics of hosts
and resources).

Requirements and properties of “self-organizing grids” are
sketched in [21]. Some of the issues presented in this paper are
concretely applied in this paper: for example, reorganization of
resources in order to facilitate discovery operations and adap-
tive dissemination of information. Another self-organization
mechanism is proposed in [22] to classify grid nodes in groups
on the basis of a similarity measure. Each group elects a
leader node that receives requests tailored to the discovery of
resources which are likely to be maintained by such group.
This is an interesting approach but it still has nonscalable
characteristics: for example, it is required that each grid node
has a link to all the leader nodes, which is clearly problematic
in a very large grid. A self-organizing mechanism is also
exploited in [23] to build an adaptive overlay structure for
the execution of a large number of tasks in a grid.

Similar to the latter work, the Antares algorithm presented in
this paper exhibits several characteristics of mobile agent sys-
tems (MAS) and biological systems. Indeed, many biological
systems can be quite naturally emulated in a distributed system
through the multiagent paradigm ([24]): for example, insects
and birds can be imitated by mobile agents that travel through
the hosts of a grid and perform simple operations. Agent-based
systems may inherit useful and beneficial properties from
biological counterparts; namely, self-organization, decentral-
ization, and adaptivity. Coordination among agents is essential
to improve the effectiveness of their tasks, in particular for
resource discovery. In agent-based systems, communication is
performed either with direct communication among agents, as
in the UWAgents system [25], or with agents migration as in
the MAG (mobile agents for grid computing environments)
middleware [26]. Conversely, Antares exploits the stigmergy
paradigm [27], since agents interact and cooperate through
the modifications of the environment that are induced by their
operations. In fact, the behavior of an agent is driven by the
state of the local region of the grid, which in turn is modified
by the operations of other agents.

Antares is specifically inspired by ant algorithms, a class
of agent systems that can solve very complex problems by
imitating the behavior of some species of ants [10]. Among
such systems, Anthill [28] is tailored to the design, implemen-
tation, and evaluation of P2P applications based on multiagent
and evolutionary programming. It is composed of a collection
of interconnected nests. Each nest is a peer entity that makes
its storage and computational resources available to swarms

of ants, mobile agents that travel the grid to satisfy user
requests. However, while in Anthill, ants are generated after
user requests, in Antares, agents operate continuously and
autonomously, since the reorganization of descriptors must be
performed prior to user requests. Antares agents are simple and
perform simple operations, but a sort of “swarm intelligence”
emerges from their collective behavior.

The two main objectives of Antares are the replication
and dissemination of metadata documents and the discovery
of resources. These issues are obviously correlated, since an
intelligent dissemination can facilitate discovery. Nevertheless,
information dissemination is also functional to other important
requirements, such as fault tolerance, load balancing, reduced
access latency, and bandwidth consumption. Information dis-
semination is indeed a fundamental and frequently occurring
problem in large, dynamic, and distributed systems. In [29], the
authors examine a number of techniques that can improve the
effectiveness of blind search by proactively replicating data. In
particular, two natural but very different replication strategies
are described: uniform and proportional. The uniform strategy,
which replicates everything equally, appears naïve, whereas
the proportional strategy, where more popular items are more
frequently replicated, is designed to perform better but fails to
do so. Actually, it is shown that any strategy that lies between
the two performs better than the two extreme strategies. In
[30] it is proposed to disseminate information selectively to
groups of users with common interests, so that data is sent
only to where it is wanted. In this paper, instead of classifying
users, the proposal is to exploit the classification of resources:
resource metadata documents are replicated and disseminated
with the purpose of creating regions of the network that are
specialized in specific classes of resources. In [31] information
dissemination is combined with the issue of effective replica
placement, since the main interest is to place replicas in
the proximity of requesting clients by taking into account
changing demand patterns. Specifically, a metadata document
is replicated if its demand is higher than a defined threshold
and each replica is placed according to a multicast mechanism
that aims to discover the data server which is the closest
to demanding clients. Antares differs from these and similar
algorithms in that its aim is not only the dissemination but also
the reorganization of descriptors, in order to expedite resource
discovery procedures. Accordingly, in Antares the replication
algorithm is driven by probabilistic choices that cluster and
spatially sort descriptors over the network.

As for the resource discovery issue, Antares puts itself along
the research avenue of P2P resource discovery algorithms.
Structured P2P algorithms are usually efficient in file-sharing
P2P networks, but structure management can be cumbersome
and poorly scalable in large and dynamic grids, especially
when the churn rate, i.e., the frequency of peer disconnec-
tions, is high. Therefore, unstructured protocols seem to be
preferable in grids. Unstructured algorithms can be further
classified into blind and informed [32]. If nodes have no
information on where the resources are actually located, a
search request is performed through a random exploration of
the network; therefore a blind search mechanism is adopted,
such as “flooding” or the “random walk” [33]. If a centralized

Authorized licensed use limited to: UNIVERSITA DELLA CALABRIA. Downloaded on August 21, 2009 at 09:57 from IEEE Xplore. Restrictions apply.

684 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 4, AUGUST 2009

or distributed information service maintains information about
resource location, it is possible to drive search requests through
an informed mechanism, such as the “routing indices” [5] or
the “adaptive probabilistic search” [34]. The Antares discovery
algorithm is informed, since queries are directed towards peers
that contain descriptors more and more similar to the target
descriptors. However, this is not achieved with a centralized
approach, but messages are forwarded only on the basis of
local information. It is the spatial sorting of descriptors that
guarantees a good chance of success, i.e., a high probability of
driving queries to grid hosts that maintain a consistent number
of target descriptors.

Another main objective of Antares is to serve range queries
efficiently. The efficient management of these queries is a
fundamental requirement in grid systems, as users often do not
need to discover well-defined resources but resources having
more loosely specified characteristics. For example, a query
might be issued to discover a supercomputer with CPU speed
comprised in a given range, or a web service whose estimated
service time is within a given interval.

A naïve way to manage range queries is to issue as many
simple queries as are sufficient to cover all the possible values
of target descriptors, and then collect the results. This solution
is clearly inefficient, since it does not exploit the similarity of
the target descriptors specified in the different simple queries.
The efficient execution of range queries is indeed a very tough
issue for grids and P2P systems [35], [36]. This problem
is almost impractical for unstructured systems, since similar
resources are stored on different peers without any pattern or
structure that could facilitate the search procedure. Some types
of structured systems are capable of serving range queries,
but often at the cost of either maintaining complex tree-like
structures [8] or increasing the traffic load by issuing a number
of sub-queries [37]. The Squid discovery protocol [38] uses
a dimension-reducing technique, i.e., the space filling curve
(SFC), to map multi-attribute keywords to a one-dimensional
space, i.e., a ring structure similar to that used by Chord.
This enables Squid to support queries defined through partial
keywords, wildcards, and ranges. However, SFCs have an
important drawback in that close points in the 1D structure are
mapped from close points in the multi-attribute space, but the
reverse is not true. A sub-cube in the multi-attribute space can
be mapped to very distant points that belong to different ring
segments. In the case of a range query, the Squid system must
then forward query messages to all the segments of the ring
that cover the sub-cube of the original multi-attribute space
which is defined by the range query.

Though being basically unstructured, the Antares self-
structured information system supports range queries. In fact,
since descriptors indexed by similar keys are likely to be lo-
cated in neighbor hosts, a single range query can discover and
collect several target descriptors in the same region of the grid.
This feature will be discussed at the end of the performance
evaluation section. To the best of our knowledge, Antares is
the first effort to serve range queries in a nonstructured P2P
system, thus avoiding all the problems and limitations, which
are already mentioned in the Introduction and in this section,
which are inherited by the structured P2P approach.

Fig. 1. Algorithm performed by ant-inspired agents.

III. THE ANTARES ALGORITHM

The main purpose of the Antares algorithm is to disseminate
resource descriptors over the Grid and at the same time achieve
a logical organization of grid resources by spatially sorting the
corresponding descriptors according to the their indexes.

The Antares information system is progressively and con-
tinuously constructed by a number of ant-inspired agents,
which travel the grid through P2P interconnections and copy
and reorganize descriptors. Though agent operations are very
simple, and agents are unaware of the significance of what they
do, a form of swarm intelligence emerges from their combined
work, which is typical of ant systems and of many biological
systems in general.

A high-level description of the algorithm is given in the
flowchart of Fig. 1. Whenever an agent arrives at a new Grid
host, it operates as follows: 1) if the agent does not carry any
descriptor, it evaluates the pick probability function for every
resource descriptor stored in this host, so as to decide whether
or not to pick these descriptors; 2) if the agent already carries
some descriptors, it evaluates the drop probability function
for each of these descriptors, so as to decide whether or not
to leave them in the current host. After picking descriptors,
the agent will carry them until it drops them into another
host, and then will try to pick other descriptors from another
host. An agent can replicate descriptors, or simply move
them, depending on the “mode” with which it operates, the
copy or move mode. This will be better discussed in the
following.

Authorized licensed use limited to: UNIVERSITA DELLA CALABRIA. Downloaded on August 21, 2009 at 09:57 from IEEE Xplore. Restrictions apply.

FORESTIERO AND MASTROIANNI: A SWARM ALGORITHM FOR A SELF-STRUCTURED P2P INFORMATION SYSTEM 685

The pick and drop operations are driven by the correspond-
ing probability functions that are defined and discussed in
Sections III-A and III-B. Subsequently, Section III-C intro-
duces the self-organizing mechanism that allows agents to
switch from the replication (copy) to the relocation (move)
modality. Finally, Section III-D discusses the mechanisms
used to tackle the dynamic nature of the Grid and achieve
a continuous turn-over of agents.

A. Pick Operation

Whenever an agent arrives at a new grid host, and it does
not carry any descriptor, it evaluates the pick probability
function and decides whether or not to pick one or more
descriptors from the current host. Specifically, the agent
checks each descriptor maintained in the current host, and
evaluates its average similarity with all the descriptors
maintained by the hosts in the visibility region. The visibility
region includes all the hosts that are located within the
visibility radius, i.e., which are reachable from the current
host with a given number of hops. This radius is an algorithm
parameter, and is set here to 1, in order to limit the amount
of information exchanged among hosts.

The aim of the pick operation is to take a descriptor from
a peer if it is dissimilar to the other descriptors located in the
visibility region, so that this descriptor can be moved by the
agent and placed in another region beside other similar de-
scriptors. As soon as the possible initial equilibrium is broken
(descriptors having different keys begin to be accumulated in
different grid regions), a further reorganization of descriptors
is increasingly driven, because the probability of picking an
“outlier” descriptor further increases.

To obtain this effect, the picking probability, as well as
the dropping probability discussed later, is defined starting
from the similarity function f reported in (1), and its value
is inversely proportional to the value of f . The function f
measures the average similarity of a given descriptor d with
all the other descriptors d located in the visibility region R. In
(1), Nd is the overall number of descriptors maintained in the
region R, while H(d, d̄) is the Hamming distance between
d and d . The parameter α defines the similarity scale [15];
here it is set to B/2, which is half the value of the maximum
Hamming distance between vectors having B bits. The value
of f assumes values ranging between −1 and 1, but negative
values are truncated to 0.

The pick probability function, Ppick, is given in (2). In this
formula, the parameter kp, whose value lies between 0 and
1, can be tuned to modulate the degree of similarity among
descriptors. In fact, the pick probability is equal to 0.25 when
f and kp are comparable, while it approaches 1 when f is
much lower than kp (i.e., when d is extremely dissimilar from
the other descriptors) and 0 when f is much larger than kp

(i.e., when d is very similar to others descriptors). In this
paper, kp is set to 0.1, as in [10]

f (d̄, R) = 1

Nd
·
∑
dεR

(
1 − H(d, d̄)

α

)
(1)

Ppick =
(

kp

kp + f

)2

. (2)

After evaluating the pick probability function, the agent
computes a random real number between 0 and 1, and then
it executes the pick operation if this number is lower than
the value of the pick function. As the local region accumu-
lates descriptors having similar keys, it becomes more and
more likely that “outlier” descriptors will be picked by an
agent.

The pick operation can be performed in two different modes,
copy and move. If the copy mode is used, the agent, when
executing a pick operation, leaves the descriptor on the current
host, generates a replica of it, and carries the new descriptor
until it drops it into another host. Conversely, with the move
mode, an agent picks the descriptor and removes it from
the current host, thus preventing an excessive proliferation of
replicas. The use of these two modes is better discussed in
Section III-C.

B. Drop Operation

The drop probability function Pdrop is evaluated by an agent
when it carries some previously picked descriptors, arrives at
a new grid host, and must decide whether or not to deposit
these descriptors. As with the pick function, it is first used to
break the initial equilibrium and then to strengthen the spatial
sorting of descriptors.

For each carried descriptor, the agent separately evaluates
the drop probability function that, as opposed to the pick
function, is directly proportional to the similarity function f
defined in (1), i.e., to the average similarity of this descriptor
with the descriptors maintained in the visibility region.

The Pdrop is given in (3). The parameter kd is set to a
higher value than kp, specifically to 0.5, in order to limit
the frequency of drop operations. Indeed, it was observed
that if the drop probability function tends to be too high,
it is difficult for an agent to carry a descriptor for an
amount of time sufficient to move it into an appropriate grid
region.

As for the pick operation, the agent first evaluates Pdrop,
then extracts a random real number between 0 and 1, and, if
the latter number is lower than Pdrop, drops the descriptor in
question into the current host

Pdrop =
(

f

kd + f

)2

. (3)

As a final remark concerning pick and drop probability
functions, it is worth specifying that the values of mentioned
parameters (kp, kd , α) have an impact on the velocity and
duration of the transient phase of the Antares process, but
they have little influence on the performance observed under
steady conditions. In other words, Antares was found to be
robust with respect to the variation of these parameters.

C. Replication and Relocation of Descriptors

The effectiveness of Antares is evaluated through the spatial
homogeneity function H . Specifically, for each peer p of the
grid, the average homogeneity Hp of the descriptors located in
the visibility region of p, Rp, is calculated. This is obtained,
as shown in (4), by averaging the Hamming distance between

Authorized licensed use limited to: UNIVERSITA DELLA CALABRIA. Downloaded on August 21, 2009 at 09:57 from IEEE Xplore. Restrictions apply.

686 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 4, AUGUST 2009

every couple of descriptors in Rp and then subtracting the
obtained value from B, which is equal to the maximum
Hamming distance. Thereafter, the value of Hp is averaged
over the whole Grid, as formalized in (5)

Hp = B − AV G{d1,d2εRp}(H(d1, d2)) (4)

H = 1

Np
·

∑
pεgrid

Hp. (5)

The objective of Antares is to increase the homogeneity
function as much as possible, because it would mean that
similar descriptors are actually mapped and aggregated into
neighbor hosts, and therefore an effective sorting of descriptors
is achieved.

Simulation analysis showed that the homogeneity function
is better increased if each agent works in both its operational
modes, copy and move. In the first phase of its life, an agent
is required to copy the descriptors that it picks from a grid
host, but when it realizes from its own activeness that the
sorting process is at an advanced stage, it begins simply to
move descriptors from one host to another, without creating
new replicas. In fact, the copy mode cannot be maintained for
a long time, since eventually every host would store a very
large number of descriptors of all types, thus weakening the
efficacy of spatial reorganization. The algorithm is effective
only if each agent, after replicating a number of descriptors,
switches from copy to move.

A self-organization approach, which in some sense is similar
to that used in [39], enables each agent to tune its activeness,
in our case to perform a mode switch, only on the basis of
local information. Our approach is inspired by the observation
that agents perform more operations when the system entropy
is high, because descriptors are distributed randomly, but
operation frequency gradually decreases as descriptors are
properly reorganized. The reason for this is that the values
of Ppick and Pdrop functions, which are defined in (2) and (3),
decrease as descriptors are correctly replaced and sorted on
the grid.

With a mechanism inspired by ants and other insects,
each agent maintains a pheromone base (a real value) and
increases it when its activeness tends to decrease; the agent
switches to the move mode as soon as the pheromone level
exceeds a defined threshold Th . In particular, at given time
intervals, specifically every 2000 s,1 each agent counts the
number of times that it has evaluated the pick and drop
probability functions Nattempts, and the number of times that it
has actually performed pick and drop operations Noperations.
At the end of each time interval, the agent makes a de-
posit into its pheromone base, which is inversely propor-
tional to the fraction of performed operations. An evaporation
mechanism is used to give a greater weight to the recent
behavior of the agent. Specifically, at the end of the i-th

1The choice of updating the pheromone level at every time interval, instead
of at every single agent operation, was made to fuse multiple observations into
a single variable, so giving a higher statistical relevance to the decisions of the
agent. The 2000 s value allows on average 33.3 operations to be aggregated,
since the average interval between two agent movements is set to 60 s.

time interval, the pheromone level �i is computed with (6)
and (7)

�i = Ev · �i−1 + φi (6)

φi = 1 − Noperations

Nattempts
. (7)

The evaporation rate Ev is set to 0.9 [39], whereas φi is
the amount of pheromone deposited in the last time interval.
The pheromone level can assume values between 0 and 10:
the superior limit can be obtained by equalizing �i to �i−1
and setting φi to 1. As soon as the pheromone level exceeds
the threshold Th (whose value must also be set between 0
and 10), the agent switches its mode from copy to move. The
value of Th can be used to tune the fraction of agents that
work in the copy mode, and consequently the replication and
dissemination of descriptors, since these agents are able to
generate new descriptor replicas. Specifically, the number of
agents in copy increases with the value of the threshold Th .

D. Management of Peer Disconnections

In a dynamic grid, peers can go down and reconnect again
with varying frequencies. To account for this, the average
connection time of each peer is generated according to a
Gamma probability function, with an overall average value set
to the parameter Tpeer. Use of the Gamma distribution assures
that the grid contains very dynamic hosts, which frequently
disconnect and rejoin the network, as well as much more stable
hosts.

As a consequence of this dynamic nature, two issues are
to be tackled. The first is related to the management of new
resources provided by new or reconnected hosts. Indeed, if all
the replication agents switch to the move mode, it becomes
impossible to replicate and disseminate descriptors of new
resources; as a consequence, agents cannot be allowed to live
forever, and must gradually be replaced by new agents that set
off in the copy mode. The second issue is that the system must
remove “obsolete descriptors,” i.e., descriptors of resources
provided by hosts that have left the system, and therefore are
no longer available.

Simple mechanisms are adopted to cope with these two
issues. The first is to correlate the lifecycle of agents to the
lifecycle of peers. When joining the grid, a host generates
a number of agents given by a discrete Gamma stochastic
function, with average Ngen, and sets the life-time of these
new agents to the average connection time of the peer itself.
This setting ensures that 1) a proper turnover of agents is
achieved, because old agents die when their lifetimes expire
and new agents are generated by reconnecting peers and 2)
the relation between the number of peers and the number of
agents is maintained with time: more specifically, the overall
number of agents is approximately equal to the number of
active peers multiplied by Ngen. The agent turnover allows for
the dissemination of descriptors of new resources, since new
agents start in the copy mode.

A second mechanism ensures that, every time a peer dis-
connects from the grid, it loses all the descriptors previously
deposited by agents, thus contributing to the removal of

Authorized licensed use limited to: UNIVERSITA DELLA CALABRIA. Downloaded on August 21, 2009 at 09:57 from IEEE Xplore. Restrictions apply.

FORESTIERO AND MASTROIANNI: A SWARM ALGORITHM FOR A SELF-STRUCTURED P2P INFORMATION SYSTEM 687

obsolete descriptors. Finally, a soft state mechanism [40] is
adopted to avoid the accumulation of obsolete descriptors in
very stable nodes. To keep information up to date, the soft
state paradigm uses refresh messages that are sent periodi-
cally from the information source to the hosts that maintain
the replicas. In Antares, information refresh is performed as
follows. Each host checks the descriptors stored locally and
starts the refresh procedure for the descriptors that have been
deposited by agents since a given period of time. For these
descriptors, the host contacts the peers that publish the related
resources and requests refresh messages from them containing
updated information about the state of those resources. The
refresh interval and the minimum age of resources that must
be updated should be set depending on the load of refresh
messages that can be tolerated and the frequency at which
resources can change their state.

It is worth mentioning that the described approach for
handling a dynamic grid implicitly manages any unexpected
peer fault, because this occurrence is processed in exactly the
same way as a peer disconnection. Indeed, the two events are
indistinguishable, since 1) a peer does not have to perform
any procedure before leaving the system, and 2) in both cases
(disconnection and fault) the descriptors that the peer has
accumulated so far are removed.

IV. EVALUATION OF DISSEMINATION

AND SPATIAL SORTING

The performance of the Antares algorithm was evaluated
with an event-based simulator written in Java. Simulation
objects are used to emulate grid peers and Antares agents.
Each object reacts to external events according to a finite state
automaton and responds by performing specific operations
and/or by generating new messages/events to be delivered to
other objects.2

A Grid network having a number of hosts Np equal to
2500 is considered in this paper. Hosts are linked through
P2P interconnections, and each host is connected to four peer
hosts on average. The topology of the network was built
using the well-known scale-free algorithm defined by Albert
and Barabasi [41], which incorporates the characteristic of
preferential attachment (the more connected a node is, the
more likely it is to receive new links) that was proved to
exist widely in real networks. The average connection time
of a peer, Tpeer (see Section III-D), is set to 100 000 s. The
number of grid resources owned and published by a single
peer is obtained with a Gamma stochastic function with an
average value equal to 15.

Resources are characterized by metadata descriptors indexed
by bit vectors (keys) having B bits, with 2B − 1 possible
values. These values, as mentioned in Section I, can result
from a semantic description of a resource, in which each
bit represents the presence of a specific topic, or from the

2This simulator is available on line at http://antares.icar.cnr.it. The reader
can set network and protocol parameters, run his/her own simulations, and
view the results. The simulator also allows saving and comparing results
obtained in different scenarios, even dissimilar to those analyzed in this paper.

application of a locality preserving hash function.3 In both
cases, it is guaranteed that similar keys are given to descriptors
of similar resources.

The mean number of agents generated by a single peer Ngen
is set to 0.5; as a consequence, the average number of agents
Na that travel the Grid is approximately equal to Np/2, as
discussed in Section III-D. The average time Tmov between
two successive agent movements is set to 60 s, whereas the
maximum number of P2P hops that are performed within a
single agent movement Hmax is set to 3, in order to limit the
traffic generated by agents. It is assumed that the average link
delay, i.e., the time needed by an agent to perform a hop, is
100 ms, with a Gamma probability distribution.

A set of performance indices are defined to evaluate the
performance of the Antares algorithm. The overall homo-
geneity function H , which is defined in Section III-C, is
used to estimate the effectiveness of the algorithm in the
reorganization of descriptors. The Nd index is defined as the
mean number of descriptors maintained by a grid host. Since
new descriptors are only generated by agents that work in
the copy mode (see Section III-C), the number of such agents
Ncopy is another interesting index that helps to understand what
happens in the system. Finally, the processing load and the
traffic load are also computed.

Performance indices have been obtained by varying several
parameters, for example, the average number of resources pub-
lished by a host and the frequency of agent movements. It was
found that the qualitative behavior of Antares is not affected by
these parameters, which confirms its robustness. Furthermore,
Antares is scalable: since each agent operates only on the
basis of local information, performance is not significantly
affected by the size of the network, as shown in Section IV-A.
Robustness and scalability derive from the decentralized, self-
organizing, and adaptive features of Antares, and in general
of the swarm intelligence paradigm.

In this paper, we choose to show performance indices versus
time, obtained when varying two important parameters: Tpeer,
the average connection time of a peer, which has been intro-
duced in Section III-D, and B, the number of bits of descriptor
indices. Corresponding results are described in Sections IV-A
and IV-B, respectively. The performance evaluation of simple
and range queries will be discussed in Section V.

A. Performance Versus the Average Peer Connection Time

In the first set of tests, the value of B was set to 4, while
tested values of Tpeer were varied from 35 000 to 1 000 000 s.
For comparison purposes, the case in which peers never
disconnect was also tested. This kind of analysis is useful
because it helps to understand the mechanisms through which
the information system is constructed, and also because it is
possible to assess the algorithm ability to adapt the mapping of
descriptors to the continuous modifications of the environment.
Simulations were executed with Th equal to 9.0, which means
that each agent sets off in the copy mode and passes to the

3A key with all bits equal to 0 is not permitted to make the approach
consistent with both these definitions.

Authorized licensed use limited to: UNIVERSITA DELLA CALABRIA. Downloaded on August 21, 2009 at 09:57 from IEEE Xplore. Restrictions apply.

688 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 4, AUGUST 2009

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

0 100000 200000 300000 400000 500000

O
ve

ra
ll

ho
m

og
en

ei
ty

 f
un

ct
io

n,
 H

Time (s)

Tpeer = 35000
Tpeer = 50000

Tpeer = 100000
Tpeer = 200000
Tpeer = 500000

Tpeer = 1000000
no Peer disc

Fig. 2. Overall homogeneity function, vs. time for different values of the
average connection time Tpeer .

move mode as soon as its pheromone, starting from 0, exceeds
the threshold of 9.0 (see Section III-C).

Fig. 2 reports the trend of H , which is the overall homo-
geneity function, assuming that the Antares process starts at
time 0. The descriptors are initially distributed in a completely
random fashion, but subsequently they are reorganized and
spatially sorted by agents. It appears that the work of Antares
agents make the H index increase from about 2 (i.e., B/2) to
much higher values. After a transient phase, the value of H be-
comes stable: it means that the system reaches an equilibrium
state despite the fact that peers go down and reconnect, agents
die and others are generated, etc. In other words, the algorithm
adapts to the varying conditions of the network and is robust
with respect to them. Note that the stable value of H decreases
as the network becomes more dynamic, with lower values
of Tpeer, because the reorganization of descriptors performed
by agents is partly hindered by environmental modifications.
However, even with the lowest value of Tpeer that we tested,
i.e., 35 000, the increase of H is about 25%, whereas it is more
than 55% with Tpeer equal to 1 000 000.

Fig. 3 depicts Ncopy, which is the number of agents that
operate in the copy mode, also called copy agents in the
following. This analysis is interesting because these agents are
responsible for the replication of descriptors, whereas agents
in the move mode are exclusively devoted to the relocation and
spatial sorting of descriptors. When the process is initiated, all
the agents (about 1250, half the number of peers) are generated
in the copy mode, but subsequently several agents switch to
move as soon as their pheromone value exceeds the threshold
Th . This corresponds to the sudden drop of curves that can be
observed in the left part of Fig. 3. Thereafter, the number of
copy agents becomes stabilized, even with some fluctuations;
this equilibrium is reached because the number of new agents
that are generated by grid hosts (these agents always set off
in the copy mode) and the number of agents that switch from
copy to move become balanced.

Fig. 3 also shows that the number of copy agents increases
as the grid is more dynamic. Indeed, a higher turnover of
agents is obtained when peers disconnect and reconnect with
a higher frequency, because more agents die if more peers
disconnect (indeed, the lifetime of agents is correlated to the

0

500

1000

1500

2000

0 100000 200000 300000 400000 500000

N
um

be
r

of
 a

ge
nt

s
in

 c
op

y,
 N

co
py

Time (s)

Tpeer = 35000
Tpeer = 50000

Tpeer = 100000
Tpeer = 200000
Tpeer = 500000

Tpeer = 1000000
no Peer disc

Fig. 3. Number of agents that operate in the copy mode vs. time for different
values of the average connection time Tpeer.

lifetime of peers), and at the same time more agents are
generated by reconnecting peers (see Section III-D). Since
new agents set off in the copy mode, this leads to a larger
number of copy agents, as appears in Fig. 3. This is also due
to another reason: as the rate of peer disconnections increases,
the reorganization process is partly hindered, pick and drop
functions assume lower values, and therefore agent operations
become more frequent. The result is that the pheromone value
increases more slowly, as evident in (6) and (7), and fewer
agents switch to the move mode. Note that in a static network
with no peer disconnections, all agents work in the move mode
after a short transient phase. Indeed, in this case no new agents
are generated after the process is initiated.

Fig. 4 reports Nd , which is the average number of de-
scriptors that are maintained by a grid host at a given time.
One of the main objectives of Antares is the replication and
dissemination of descriptors. This objective is achieved; in
fact, the value of Nd increases from an initial value of about
15 (equal to the average number of resources published by
a host) to much higher values. As for the other indices, the
trend of Nd undergoes a transient phase, and then it becomes
stabilized, even though with some fluctuations.

The value of Nd is determined by two main phenomena: on
the one hand, a large number of copy agents tend to increase
Nd , because they are responsible for the generation of new de-
scriptor replicas. On the other hand, a frequent disconnection
of peers tends to lower Nd , because a disconnecting peer loses
all the descriptors that it has accumulated so far, see Section
III-D. These two phenomena work in opposite directions as
the value of Tpeer decreases; in a more dynamic network there
are more copy agents, which tends to increase Nd , but more
descriptors are thrown away by disconnecting peers, which
tends to decrease Nd .

The result is that the stable number of Nd is relatively small
both when the peer connection time is very low and when
it is very high or infinite, i.e., with no peer disconnections.
Interestingly, a higher degree of replication can be reached
for intermediate values of Tpeer, which are more realistic on
grids. Indeed, the figure shows that even if curves are more
wrinkled than those examined so far (probably due to the two
underlying and contrasting mechanisms discussed above), the

Authorized licensed use limited to: UNIVERSITA DELLA CALABRIA. Downloaded on August 21, 2009 at 09:57 from IEEE Xplore. Restrictions apply.

FORESTIERO AND MASTROIANNI: A SWARM ALGORITHM FOR A SELF-STRUCTURED P2P INFORMATION SYSTEM 689

10

15

20

25

30

35

40

45

50

55

60

0

10
00

00

20
00

00

30
00

00

40
00

00
50

00
00

60
00

00

70
00

00

80
00

00

N
um

be
r

of
 d

es
cr

ip
to

rs
 p

er
 p

ee
r,

 N
d

Time (s)

Tpeer = 35000
Tpeer = 50000

Tpeer = 100000
Tpeer = 200000
Tpeer = 500000

Tpeer = 1000000
no Peer disc

Fig. 4. Average number of descriptors maintained by a grid host vs. time
for different values of the average connection time Tpeer.

1.6

1.8

2

2.2

2.4

2.6

2.8

3

5000004000003000002000001000000

O
ve

ra
ll

ho
m

og
en

ei
ty

 f
un

ct
io

n,
 H

Time (s)

Np = 1000
Np = 2500
Np = 4000
Np = 5500
Np = 7000

Fig. 5. Overall homogeneity function vs. time for different values of the
number of peers Np .

value of Nd first increases as Tpeer increases from 35 000 to
about 100 000, and then it decreases again for higher values
of Tpeer.

The scalability properties of Antares were analyzed by
varying the number of peers Np from 1000 to 7000. In-
terestingly, the size of the network has no detectable effect
on the performance, specifically on the overall homogeneity
index. This is observed in Fig. 5, in which the curves cor-
responding to the different values of Np are almost com-
pletely overlapped. The scalable nature of Antares, which
derives from its decentralized and self-organizing character-
istics, is therefore confirmed. Similar considerations can be
made for other performance indices, which are not reported
here.

The processing load L p is defined as the average number
of agents per second that arrive at a node at the end of a
complete movement (which can include several P2P hops) and
are processed by a peer. It does not depend either on the churn
rate or on the network size, but only on the average number
of agents generated by a reconnecting peer Ngen and on the
frequency of their movements across the grid 1/Tmov. L p is
calculated by multiplying the overall number of agents Na by
the frequency of their movements 1/Tmov, thereby obtaining
the number of times per second that an agent arrives at any
peer, and then dividing the result by the number of peers Np,

0

0.01

0.02

0.03

0.04

0.05

5000004000003000002000001000000

T
ra

ff
ic

 lo
ad

 (
ag

en
ts

/s
)

Time (s)

Hmax = 1
Hmax = 3
Hmax = 5
Hmax = 7

Fig. 6. Network traffic vs. time for different values of the parameter Hmax.

thus obtaining the number of times per second that an agent
arrives at a specific peer

L p = Na

Np · Tmov
≈ Ngen

Tmov
. (8)

In the described scenario, since the average value of Tmov
is equal to 60 s, and Ngen is set to 0.5, each peer receives
and processes about one agent every 120 s, which can be
considered an acceptable load. This theoretical result has been
confirmed by simulation data. Note that the processing load
does not depend on other system parameters such as the
network size, the average number of resources published by a
node, and so on, which confirms the scalability properties of
the Antares algorithm.

Finally, the traffic load is defined as the number of agents
that go through a node per unit time. As shown in Fig. 6,
the traffic load increases with the value of Hmax, which is the
maximum number of P2P hops that are performed within a
single agent movement. It was also found, however, that the
reorganization of descriptors is accelerated if agent movements
are longer, because they can explore the network more quickly.
Therefore, the choice of Hmax depends on a compromise
between the desired efficiency of the reorganization process
and the traffic load that can be tolerated.

B. Performance Versus the Granularity of
Resource Classification

In the second set of simulation tests, the value of Tpeer
was set to 100 000 s, and the value of B was varied from 3
to 6. Since the number of different descriptor keys is equal
to 2B − 1, this analysis allows us to understand how the
reorganization and replication process can be affected by the
different levels of detail through which resources are described
and distinguished from each other. As in previous simulations,
the pheromone threshold Th was set to 9.0.

Fig. 7 reports the values of H, which is the overall homo-
geneity function discussed in Section III-C. It confirms that the
work of Antares agents makes this index increase from about
B/2 to much higher values. It is interesting to note that the
increase in H hardly depends on the value of B, which means
that the algorithm is able to reorganize descriptors regardless
of the accuracy with which resources are described.

Authorized licensed use limited to: UNIVERSITA DELLA CALABRIA. Downloaded on August 21, 2009 at 09:57 from IEEE Xplore. Restrictions apply.

690 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 4, AUGUST 2009

1

1.5

2

2.5

3

3.5

4

0 100000 200000 300000 400000 500000

O
ve

ra
ll

ho
m

og
en

ei
ty

 f
un

ct
io

n,
 H

Time (s)

B = 3
B = 4
B = 5
B = 6

Fig. 7. Overall homogeneity function vs. time for different values of the
number of bits in resource descriptors, B.

0

10

20

30

40

50

60

70

80

0 100000 200000 300000 400000 500000

N
um

be
r

of
 d

es
cr

ip
to

rs
 p

er
 p

ee
r,

 N
d

Time (s)

B = 3
B = 4
B = 5
B = 6

Fig. 8. Average number of descriptors maintained by a grid host vs. time
for different values of the number of bits in resource descriptors B.

Fig. 8 reports Nd , which is the average number of descrip-
tors that are maintained by a grid host, and shows that this
index decreases as the value of B increases. The intuitive ra-
tional of this is the following: if the classification of resources
is more refined, i.e., with a larger value of B, it becomes more
difficult to discriminate among resources of different types, so
pick and drop probability functions assume lower values and
the replication process is attenuated. Conversely, with a lower
value of B, an agent that carries a descriptor has more chances
to find a region in which other descriptors having the same
binary key have already been clustered.

This conjecture is confirmed by the results reported in
Fig. 9, which depicts Fpick and Fdrop, which are the number
of pick and drop operations per second that are performed
by all the agents. Indeed, more operations are performed for
lower values of B. Another interesting outcome is that, for a
fixed value of B, the frequencies of pick and drop operations
converge to similar values, confirming that the system reaches
an equilibrium despite all the underlying dynamic phenomena.

V. RESOURCE DISCOVERY ALGORITHM

In a distributed system, users often need to locate resources
belonging to a given class (e.g., a computer or a web service
with given characteristics) and, after retrieving a number of
them, they can choose the resources that best fit their needs.

0

1

2

3

4

5

6

0 100000 200000 300000 400000 500000

N
um

be
r

of
 o

pe
ra

tio
ns

/s

Time (s)

Fpick - B=3
Fpick - B=4
Fpick - B=5
Fpick - B=6
Fdrop - B=3
Fdrop - B=4
Fdrop - B=5
Fdrop - B=6

Fig. 9. Number of pick and drop operations performed per second by all the
agents, for different values of the number of bits in resource descriptors B.

Accordingly, a query message is issued by a peer, on behalf of
a user, to search for “target descriptors,” that is, for resource
descriptors having a given value of their binary index. The
query must be forwarded through the network, hop by hop, so
as to discover as many target descriptors as possible.

Thanks to the spatial sorting of descriptors achieved by
Antares agents, the discovery procedure can be simply man-
aged by forwarding the query, at each step, towards the “best
neighbor,” which is the neighbor peer that maximizes the
similarity between the descriptors stored locally and the target
descriptor. More specifically, each peer calculates a “centroid”
descriptor. This descriptor is a vector of B real numbers
lying between 0 and 1, and is obtained by averaging all the
descriptor indexes of the local peer. The value of each centroid
element is calculated by averaging the values of the bits, in the
same position, of all the descriptors stored in the local peer.
For example, the centroid descriptor of a peer that maintains
the three descriptors [1, 0, 0], [1, 0, 0], and [0, 1, 0] is a
descriptor having an index [0.67, 0.33, 0].

Before forwarding a query, a peer (say, peer pA) calculates
the cosine of the angle between the query target descriptor,
and the centroids of all the neighbor peers. This value gives
a hint about how much the descriptors of the neighbor peers
are similar to the target descriptor. Thereafter, pA forwards
the query to the peer, say pM , that maximizes this cosine
similarity index. At the next step, pM will do the same so that
step by step the query approaches a region of the grid where
it is more and more likely to discover several useful “results,”
that is, target descriptors. The search is terminated whenever it
is no longer advantageous to forward the query, that is, when
the best neighbor is no better than the peer where the query
has arrived so far. At this point, a queryHit message is issued
and returns to the requesting peer by following the same path,
and collecting on its way all the results that it finds.

This discovery algorithm, even though very simple and
demands very little computing and memory resources, is very
efficient as it exploits the continuous work of mobile agents
that reorganize descriptors on the grid. This is confirmed by
Fig. 10, which depicts what can be called the “similarity
improvement,” obtained as the difference between the “arrival
similarity” and the “departure similarity.” These are the co-
sine similarities between the query target descriptor and the

Authorized licensed use limited to: UNIVERSITA DELLA CALABRIA. Downloaded on August 21, 2009 at 09:57 from IEEE Xplore. Restrictions apply.

FORESTIERO AND MASTROIANNI: A SWARM ALGORITHM FOR A SELF-STRUCTURED P2P INFORMATION SYSTEM 691

0

0.05

0.1

0.15

0.2

0.25

0 100000 200000 300000 400000 500000

Si
m

ila
ri

ty
 im

pr
ov

em
en

t

Time (s)

B = 3
B = 4
B = 5
B = 6

Fig. 10. Similarity improvement for different values of the number of bits
in resource descriptors B.

1

2

5

10

20

50

100

200

0 100000 200000 300000 400000 500000

A
ve

ra
ge

 n
um

be
r

of
 r

es
ul

ts
, N

re
s

Time (s)

B = 3
B = 4
B = 5
B = 6

Fig. 11. Average number of results for different values of the number of
bits in resource descriptors B. To improve the figure clearness, a log scale is
used for the y-axis.

descriptor of the local centroid, respectively, calculated at the
end and at the beginning of the query journey. Fig. 10 shows
that the objective of the discovery algorithm, which of course
is to increase the similarity difference as much as possible,
is actually achieved. In fact, as the system evolves the cosine
similarity is more than quadrupled with values of B equal to
3, 4, and 5, whereas the improvement is slightly lower with
B equal to 6.

The ultimate objective of queries is to collect as many target
descriptors as possible. The average number of results per
query Nres is shown in Fig. 11. Thanks to the similarity im-
provement obtained by queries, the number of results remark-
ably increases with time, meaning that discovery operations
are more and more efficient as descriptors are spatially sorted
by agents. The number of results is obviously inversely propor-
tional to B, since the fraction of target descriptors with respect
to the totality of descriptors available on the network is on
average equal to 1/(2B −1). In other words, a finer classifica-
tion of resources corresponds to a lower probability of finding
a target descriptor. Therefore, the value of B should be set
on the basis of each particular application domain, taking into
considerations that classification in larger classes can facilitate
discovery, whereas, on the other hand, the definition of smaller
classes can improve the quality of the discovered resources.

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 100000 200000 300000 400000 500000

M
ea

n
re

sp
on

se
 ti

m
e

(s
)

Time (s)

B = 3
B = 4
B = 5
B = 6

Fig. 12. Average response time of queries for different values of the number
of bits in resource descriptors B.

Finally, Fig. 12 shows the average response time, which is
taken as the time interval between the query generation and
the arrival of the queryHit message. It is assumed here that
the time taken by a query or queryHit to perform a hop is
100 ms, with a Gamma probability distribution. The response
time increases in the first phase, and then becomes stabilized at
values between 600 and 650 ms, regardless of the value of B.
The response time increase should not be seen as a negative
effect (response times are in any case acceptable) but as a
consequence of the fact that, with descriptor reorganization,
queries can be successfully driven towards target descriptors
for a larger number of hops.

A. Performance of Range Queries

So far, only simple queries, which are issued to find specific
target descriptors, have been analyzed. However, as discussed
in Section II, the efficient resolution of range queries is
a fundamental requirement of grid information systems. In
Antares, a range query is defined as a query in which the bit
vector of the target descriptor contains one or more “wildcard”
bits that can assume either 0 or 1. This means that a range
query can return descriptors having 2W possible values, if
W :W < B is the number of wildcard bits. Of course, the
assignment of bit vectors to descriptors must ensure that the
vectors that correspond to similar resources are also similar to
one another. This can be done by using the binary Gray code,
in which two successive indexes always differ by only one bit.

The discovery algorithm discussed in the previous section
is slightly modified for the management of range queries.
To select the best neighbor peer, the cosine similarity is
still calculated between the target descriptor and the centroid
descriptors of the neighbor peers, but this time these indexes
are preprocessed by discarding the bits that are defined as
wildcards in the target descriptor. Therefore, only the centroid
bits that correspond to valued bits in the target descriptor are
useful to drive the query message. As for simple queries, a
range query terminates its journey when it is no more possible
to find a better neighbor. The queryHit message will come
back and collect all the descriptors that match the range query.

To evaluate the effectiveness of range queries, B was fixed
to 4 and peers were made to issue three kinds of queries:

Authorized licensed use limited to: UNIVERSITA DELLA CALABRIA. Downloaded on August 21, 2009 at 09:57 from IEEE Xplore. Restrictions apply.

692 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 4, AUGUST 2009

0

20

40

60

80

100

120

140

160

0 200000 400000 600000 800000

N
um

be
r

of
 r

es
ul

ts
, N

re
s

Time (s)

Simple queries
Queries with 1 Wildcard Bit

Queries with 2 Wildcard Bits

Fig. 13. Average number of results of range queries with B = 4 and different
numbers of wildcard bits.

simple queries; range queries with 1 wildcard bit, chosen
randomly; and range queries with 2 wildcard bits, also chosen
randomly. The corresponding average number of results is
shown in Fig. 13. It appears that, in a steady situation, a
range query with 1 wildcard bit discovers about 110 results,
that is 53% more results than a simple query, which discovers
about 75 results on average. Two simple queries (precisely,
the queries in which the wildcard bit of the target descriptor
is respectively set to 0 and to 1, and all the other bits are not
varied) would together discover more results, 150 on average,
but at the cost of doubling the whole discovery procedure,
thus increasing the processing and traffic load. Similarly, a
range query with two wildcard bits is able to discover 106%
more results than a simple query. Thus, range queries are not
able to discover all the results that would be found with the
corresponding number of simple queries (which is equal to
2W), but provide an efficient way to discover many more
results than a simple query in just one shot, which is the
actual objective of a range query. It can be concluded that
the resource management of Antares facilitates this objective.

B. Future Enhancements of Antares

It must be remarked that the discovery algorithm, especially
for range queries, has been kept very simple in order to
assess the effectiveness of resource reorganization and to
fairly compare simple and range queries. However, several
enhancements can be adopted to increase the number of results
returned by discovery operations. A first enhancement could
aim to overcome the problem of local maxima, which in some
cases can limit the effectiveness of discovery operations. This
can be done by enabling “long hops” of queries when they are
still far from the target descriptors. This way, a query could
overcome a local maximum and approximate the objective
more quickly. The parallel issue of several query messages
can further improve the query performance, though at the
cost of increasing the network traffic. The long hop strategy
could be adopted for only a fraction of these messages. A
second enhancement could be a better investigation of an
interesting region. For example, when a query terminates its
journey, the queryHit message could explore all the neighbor

peers and collect other useful results there, before initiating
the return journey. In fact, owing to the gradual sorting of
descriptors, these neighbor peers are likely to maintain a
consistent number of target descriptors. This technique could
be particularly useful in the case of range queries since target
descriptors are generally spread in a larger region with respect
to simple queries. These two enhancements are currently under
examination.

Another interesting avenue for future research is the ex-
tension of Antares to the reorganization and discovery of
multi-attribute resources. If it is assumed that a resource is
characterized by M independent attributes (for example a
computer could be characterized by its CPU rate and memory
size), and each attribute can be mapped to a specific key
through a locality preserving hash function. Therefore, the
descriptor of a resource is associated with M keys, one
for each attribute. The reorganization of descriptors can be
performed by Antares agents in the same way as described
in this paper, but descriptor keys related to different attributes
are reorganized and sorted independently of each other. The
descriptor of a resource can be accessed via any of its
attributes, by searching the related key. A similar schema is
adopted in the MAAN system [7], which enhances Chord in
order to support the multi-attribute case. To serve a multiple
attribute query, two strategies can be envisaged, like in [7],
and are currently under examination.

1) With an iterative approach, a subquery is issued for
every attribute of the multi-attribute query, and the final
result is obtained as the intersection of the results of all
the subqueries.

2) With the dominant attribute approach, only one sub-
query, which corresponds to the most selective attribute
in the multi-attribute query, is issued. Each discovered
descriptor that matches this subquery is immediately
matched to the subqueries that correspond to the other
attributes. Only the descriptors that satisfy all the sub-
queries are returned to the requester.

The latter strategy can considerably reduce the number of hops
necessary to solve the multi-attribute query, but requires a
larger computation load to process each candidate descriptor.

VI. CONCLUSION

In this paper, we introduced and evaluated Antares, which
is an algorithm inspired by ant behavior and whose aim is to
build a P2P information system of a grid. Through the evalua-
tion of simple probability functions (pick and drop), a number
of ant-inspired agents replicate and move the descriptors of
grid resources from host to host, and this way disseminate
and reorganize these descriptors on the network.

Antares achieves an effective reorganization of information,
since descriptors are spatially sorted on the network and, in
particular, descriptors indexed by equal or similar binary keys
are placed in neighbor grid hosts. This was confirmed in
the paper through the analysis of performance measures, in
particular of a homogeneity index based on the Hamming
distance between binary vectors. The reorganization of de-
scriptors performed by Antares spontaneously adapts to the

Authorized licensed use limited to: UNIVERSITA DELLA CALABRIA. Downloaded on August 21, 2009 at 09:57 from IEEE Xplore. Restrictions apply.

FORESTIERO AND MASTROIANNI: A SWARM ALGORITHM FOR A SELF-STRUCTURED P2P INFORMATION SYSTEM 693

ever changing environment, for example to the joins and
departs of grid hosts and to the changing characteristics of
resources. For these characteristics, the Antares approach has
been named “self-structured.”

We hope that this paper can open novel and promising
avenues for the construction of distributed information sys-
tems and related discovery algorithms. In particular, Antares
features two noteworthy properties, that are interesting en-
hancements with respect to most existing strategies: 1) it
does not rely on any centralized support, but it is fully
decentralized, self-organizing and scale-free, thanks to its
bio-inspired nature and its swarm intelligence characteristics,
and 2) being basically unstructured, it avoids the typical
problems of structured systems, but still retains some of
their important benefits, such as the efficient management of
simple and range queries, thus proposing itself as a good
compromise between the two strategies, structured and un-
structured, which are generally deemed as complementary to
each other.

ACKNOWLEDGMENT

We would like to thank G. Spezzano for his help in defining
the bio-inspired algorithms presented in this paper.

REFERENCES

[1] I. Foster and C. Kesselman, The Grid 2: Blueprint for a New Computing
Infrastructure. San Francisco, CA: Morgan Kaufmann, 2003.

[2] The Globus Alliance. (2006). The Web Services Resource Framework
[Online]. Available: http://www.globus.org/wsrf/

[3] A. Iamnitchi, I. Foster, J. Weglarz, J. Nabrzyski, J. Schopf, and M.
Stroinski, “A peer-to-peer approach to resource location in grid environ-
ments,” in Grid Resource Management, Norwell, MA: Kluwer-Nijhoff,
2003.

[4] I. J. Taylor, From P2P to Web Services and Grids: Peers in a
Client/Server World. New York: Springer-Verlag, 2004.

[5] A. Crespo and H. Garcia-Molina, “Routing indices for peer-to-peer
systems,” in Proc. 22nd Int. Conf. Distributed Computing Syst. ICDCS
’02, Jul. 2002, pp. 23–33.

[6] C. Platzer and S. Dustdar, “A vector space search engine for web ser-
vices,” in Proc. 3rd Eur. Conf. Web Services ECOWS 2005, Washington,
D.C.: IEEE Comput. Soc., 2005, pp. 62–71.

[7] M. Cai, M. Frank, J. Chen, and P. Szekely, “Maan: A multi-attribute
addressable network for grid information services,” J. Grid Comput.,
vol. 2, no. 1, pp. 3–14, Mar. 2004.

[8] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat, “Design
and implementation tradeoffs for wide-area resource discovery,” in
Proc. 14th IEEE Int. Symp. High Performance, Raleigh, NC: Research
Triangle Park, Jul. 2005, pp. 113–124.

[9] A. Forestiero, C. Mastroianni, and G. Spezzano, “Antares: An ant-
inspired P2P information system for a self-structured grid,” in Proc. 2nd
Int. Conf. Bio-Inspired Models Network, Inform. Comput. Syst. Bionetics
2007, Budapest, Hungary, Dec. 2007, pp. 151–158.

[10] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From
Natural to Artificial Systems. New York: Oxford Univ. Press, 1999.

[11] J. M. Whitacre, R. A. Sarker, and Q. T. Pham, “The self-organization
of interaction networks for nature-inspired optimization,” IEEE Trans.
Evol. Comput., vol. 12, no. 2, pp. 220–230, May 2007.

[12] M. Dorigo, E. Bonabeau, and G. Theraulaz, “Ant algorithms and
stigmergy,” Future Generation Comput. Syst., vol. 16, no. 9, pp. 851–
871, 2000.

[13] A. Forestiero, C. Mastroianni, and G. Spezzano, “So-grid: A self-
organizing grid featuring bio-inspired algorithms,” ACM Trans. Au-
tonomous Adaptive Syst., vol. 3, no. 2, May 2008.

[14] A. Forestiero, C. Mastroianni, and G. Spezzano, “Reorganization and
discovery of grid information with epidemic tuning,” Future Generation
Comput. Syst., vol. 24, no. 8, pp. 788–797, 2008.

[15] E. D. Lumer and B. Faieta, “Diversity and adaptation in populations
of clustering ants,” in Proc. SAB94, 3rd Int. Conf. Simulation Adaptive
Behavior: From Animals to Animats 3, Cambridge, MA: MIT Press,
1994, pp. 501–508.

[16] S. Androutsellis-Theotokis and D. Spinellis, “A survey of peer-to-peer
content distribution technologies,” ACM Comput. Surveys, vol. 36, no.
4, pp. 335–371, 2004.

[17] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in Proc. Conf. Applicat., Technol., Architectures Protocols Comput.
Commun. SIGCOMM ’01. New York: ACM, pp. 149–160.

[18] G. Sakaryan, M. Wulff, and H. Unger, “Search methods in P2P networks:
A survey,” in Proc. Innovative Internet Community Syst., (IICS ’04),
LNCS vol. 3473/2006. Guadalajara, Mexico: Springer-Verlag, Mar.
2006.

[19] C. Mastroianni, D. Talia, and O. Verta, “Designing an information
system for grids: Comparing hierarchical, decentralized p2p and super-
peer models,” Parallel Comput., vol. 34, no. 10, pp. 593–611, Oct. 2008.

[20] M. Marzolla, M. Mordacchini, and S. Orlando, “Peer-to-peer systems
for discovering resources in a dynamic grid,” Parallel Comput., vol. 33,
no. 4–5, pp. 339–358, 2007.

[21] D. C. Erdil, M. J. Lewis, and N. Abu-Ghazaleh, “An adaptive approach
to information dissemination in self-organizing grids,” in Proc. Int. Conf.
Autonomic Autonomous Syst. ICAS ’06, Silicon Valley, CA, Jul. 2006,
pp. 55–60.

[22] A. Padmanabhan, S. Wang, S. Ghosh, and R. Briggs, “A self-organized
grouping (SOG) method for efficient grid resource discovery,” in Proc.
6th IEEE/ACM Int. Workshop Grid Comput., Seattle, WA, Nov. 2005,
pp. 312–317.

[23] A. J. Chakravarti, G. Baumgartner, and M. Lauria, “The organic grid:
Self-organizing computation on a peer-to-peer network,” IEEE Trans.
Syst., Man, Cybern., Part A, vol. 35, no. 3, pp. 373–384, May 2005.

[24] K. Sycara, “Multiagent systems,” Artificial Intell. Mag., vol. 10, no. 2,
pp. 79–93, 1998.

[25] M. Fukuda and D. Smith, “UWAgents: A mobile agent system optimized
for grid computing,” in Proc. 2006 Int. Conf. Grid Comput. Applicat.,
Las Vegas, NV, Jun. 2006, pp. 107–113.

[26] R. F. Lopes, F. J. da Silva, and B. B. de Sousa, “MAG: A mobile agent
based computational grid platform,” in Proc. Int. Conf. Grid Cooperative
Comput. (GCC ’05), Beijing, China, Nov.–Dec. 2005, pp. 262–273.

[27] P. Grassé, “La reconstruction du nid et les coordinations inter-
individuelles chez belicositermes natalensis et cubitermes sp. la théorie
de la stigmergie: Essai d’interprétation du comportement des termites
constructeurs.” Insectes Sociaux, no. 6, pp. 41–84, 1959.

[28] O. Babaoglu, H. Meling, and A. Montresor, “Anthill: A framework for
the development of agent-based peer-to-peer systems,” in Proc. 22nd Int.
Conf. Distributed Comput. Syst. ICDCS ’02, Washington, D.C.: IEEE
Comput. Soc., pp. 15–22.

[29] E. Cohen and S. Shenker, “Replication strategies in unstructured peer-
to-peer networks,” in Proc. Special Interest Group Data Commun. ACM
SIGCOMM ’02, Pittsburgh, PA, pp. 177–190.

[30] A. Iamnitchi and I. Foster, “Interest-aware information dissemination in
small-world communities,” in Proc. 14th IEEE Int. Symp. High Perfor-
mance Distributed Comput., HPDC., Raleigh, NC: Research Triangle
Park, Jul. 2005, pp. 167–175.

[31] M. S. Aktas, G. C. Fox, and M. Pierce, “Fault tolerant high performance
information services for dynamic collections of grid and web services,”
Future Generation Comput. Syst., vol. 23, no. 3, pp. 317–337, 2007.

[32] D. Tsoumakos and N. Roussopoulos, “A comparison of peer-to-peer
search methods,” in Proc. 6th Int. Workshop Web Databases WebDB
’03, San Diego, CA, Jun. 2003, pp. 61–66.

[33] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and repli-
cation in unstructured peer-to-peer networks,” in Proc. 16th Int. Conf.
Supercomput. ICS ’02, New York: ACM, Jun. 2002, pp. 84–95.

[34] D. Tsoumakos and N. Roussopoulos, “Adaptive probabilistic search for
peer-to-peer networks,” in Proc. 3rd IEEE Int. Conf. P2P Comput. P2P
’03, Linköping, Sweden, Sep. 2003, pp. 102–109.

[35] A. S. Cheema, M. Muhammad, and I. Gupta, “Peer-to-peer discovery of
computational resources for grid applications,” in Proc. 6th IEEE/ACM
Int. Workshop Grid Comput., Seattle, WA, 2005, pp. 179–185.

[36] A. Gupta, D. Agrawal, and A. El Abbadi, “Approximate range selection
queries in peer-to-peer systems,” in Proc. 1st Biennial Conf. Innovative
Data Syst. Research, Asilomar, CA, 2003.

[37] A. Andrzejak and Z. Xu, “Scalable, efficient range queries for grid infor-
mation services,” in Proc. 2nd IEEE Int. Conf. Peer-to-Peer Computing
P2P ’02, Washington, D.C.: IEEE Comput. Soc., pp. 33–40.

Authorized licensed use limited to: UNIVERSITA DELLA CALABRIA. Downloaded on August 21, 2009 at 09:57 from IEEE Xplore. Restrictions apply.

694 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 4, AUGUST 2009

[38] C. Schmidt and M. Parashar, “Enabling flexible queries with guarantees
in p2p systems,” IEEE Internet Comput., vol. 8, no. 3, pp. 19–26, May–
Jun. 2004.

[39] H. V. D. Parunak, S. Brueckner, R. S. Matthews, and J. A. Sauter,
“Pheromone learning for self-organizing agents,” IEEE Trans. Syst., Man
Cybern., Part A, vol. 35, no. 3, pp. 316–326, May 2005.

[40] P. Sharma, D. Estrin, S. Floyd, and V. Jacobson, “Scalable timers for soft
state protocols,” in Proc. 16th Annu. Joint Conf. IEEE Comput. Commun.
Soc., INFOCOM ’97, vol. 1. Washington, DC: IEEE Comput. Soc., pp.
222–229.

[41] A.-L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” Sci., vol. 286, no. 5439, pp. 509–512, Oct. 1999.

Agostino Forestiero received the Laurea degree in
computer engineering and the Ph.D. degree in com-
puter engineering from the University of Calabria,
Cosenza, Italy, in 2002 and 2007, respectively.

He is a currently Research Fellow at the CNR
Institute for High Performance Computing and Net-
works, Rende, Italy. He has published or presented
more than 30 scientific papers on international jour-
nals and conferences. His research interests include
grid computing, peer-to-peer networks, and swarm
intelligence.

Dr. Forestiero is a member of the IEEE Computer Society. He has served
as a Program Committee Member of several conferences.

Carlo Mastroianni received the Ph.D. in com-
puter engineering from the University of Calabria,
Cosenza, Italy, in 1999.

He has been a Researcher with the CNR Institute
for High Performance Computing and Networks,
Rende, Italy, since 2002. His research interests focus
on distributed systems and networks, and in partic-
ular grid computing, peer-to-peer networks, content
distribution networks, and multiagent systems. He
has published or presented more than 80 scientific
papers in international journals and conferences.

Dr. Mastroianni is a member of the ACM and the IEEE Computer So-
ciety. He has served as Chair or Program Committee Member of several
conferences.

Authorized licensed use limited to: UNIVERSITA DELLA CALABRIA. Downloaded on August 21, 2009 at 09:57 from IEEE Xplore. Restrictions apply.

