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Abstract

Many types of distributed scientific and commercial applications require the sub-
mission of a large number of independent jobs. One highly successful and low cost
mechanism for acquiring the necessary compute power is the “public-resource com-
puting” paradigm, which exploits the computational power of private computers.
Recently decentralized peer-to-peer and super-peer technologies have been proposed
for adaptation in these systems. We designed a super-peer protocol for the execu-
tion of jobs based upon the volunteer requests of workers, and a super-peer overlay
for performing two kinds of matching operations: the assignment of jobs to workers
and the download of input data needed for job execution. This paper analyzes a
dynamic and general scenario, in which: (i) workers can leave the network at any
time; (ii) each job is executed multiple times, either to obtain better statistical accu-
racy or to perform parameter sweep analysis; and, (iii) input data is replicated and
distributed to multiple data caches on-the-fly. A simulation study was performed to
analyze the super-peer protocol and specifically evaluate performance in terms of
execution time, utilization of data centers, load balancing, and ability to efficiently
scale with the number of jobs and the network size.
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1 Introduction

Distributed computing has in recent years become the next technological evo-
lution in the high-performance and consumer computing fields. Grid comput-
ing and Peer-to-Peer (P2P) networking are two sets of such technologies that
have partly addressed issues in that area and even though they have evolved
from different communities, it has started to become desirable in the academic
and industrial arenas to explore possible areas of convergence [31].

The super-peer model has been recently proposed [25][34] to build the infor-
mation system of Grids. This model is naturally appropriate for Grids, as a
large-scale Grid can be viewed as a network composed of small-scale, propri-
etary systems, also referred to as Grid Organizations. Within each Organiza-
tion, the nodes that have the largest capabilities act as super-peers, while the
other nodes use super-peers to access the Grid. Super-peers are interconnected
with each other, thus forming a P2P network at a higher layer.

The term “public resource computing” [1] is used for applications in which jobs
are executed by privately-owned and often donated computers that use their
idle CPU time to support a given, normally scientific, computing project. The
pioneer project in this realm is SETI@HOME [4], which has attracted mil-
lions of participants wishing to contribute to the digital processing of radio
telescope data in the search for extra-terrestrial intelligence. A number of sim-
ilar projects are supported today by the software infrastructure that evolved
out of that project, the Berkeley Open Infrastructure for Network Computing,
or BOINC [2][3][7]. The range of scientific objectives amongst these projects
is very different, ranging from Climateprediction.net [11] focus on long-term
climate prediction to Einstein@HOME’s [17] aim of detecting gravitational
waves. The potential impact of these public resource computing networks is
quite large, for example, in September 2007, the Folding@HOME project [19],
which simulates protein folding, received the Guinness World Records as the
most powerful distributed computing network in the world. This is a major
accomplishment, with its distributed network reaching the petaflop mark for
compute power, and representing 200,000 PCs and over 670,000 PS3 gaming
consoles [5].

This paper extensively describes the extended version of a super-peer based
distributed model, originally proposed by this research group in [15], that
supports applications requiring the distributed execution of a large number
of jobs with similar properties to current public-resource computing systems
like BOINC. Unlike BOINC, the data distribution scheme outlined here does
not rely heavily on any centralized mechanisms for job and data distribution.
To adapt to a P2P environment, the super-peer job submission protocol re-
quires that job execution is preceded by two matching phases, the first for job
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assignment and the second for downloading of input data from data centers,
which are super-peers having data storage facilities.

In the work here, we extend and enhance the data distribution scheme defined
in [15][14] and refine its analysis to account for a more dynamic and general
scenario, in which: (i) workers can leave the network at any time; (ii) each
job is executed multiple times, either to obtain better statistical accuracy
or to perform parameter sweep analysis; and, (iii) input data is replicated
and distributed to multiple data centers on-the-fly, in an effort to improve
protocol performance in terms of data availability, execution time and load
balancing among workers. To demonstrate these concepts, a set of simulation
runs have been performed to evaluate the impact of the replication and caching
mechanisms on performance indices, specifically regarding the overall time
needed to execute the chosen jobs, the average utilization of data centers, the
network load and the average and maximum load of workers.

The remainder of the paper is organized as follows. Section 2 discusses related
work in the field and shows how the proposed architecture here goes beyond
currently supported models. Section 3 presents the super-peer model and the
related protocol, and performance evaluation is given in Section 4. Section
5 describes three application areas that could benefit from the decentralized
and flexible data sharing techniques presented in this paper. Conclusions and
future work are discussed in Section 6.

2 Related Work

Desktop Grids, in the form of volunteer computing systems, have become
extremely popular as a means to garnish many resources for a low cost in terms
of both hardware and manpower. Two of the popular volunteer computing
platforms available today are BOINC and XtremWeb.

BOINC [2] is by far the most popular volunteer computing platform available
today, and to date, over 5 million participants have joined various BOINC
projects. Although the projects that utilize BOINC are diverse in their sci-
entific nature, each one has something in common with the others: they have
work units that can be easily distributed to run autonomously in a highly dis-
tributed and volatile environment. To achieve this task, each project must not
only prepare its data and executable code to work with the BOINC libraries
and client/server infrastructure, but they must also setup and maintain their
own individual servers and databases to manage the projects data distribu-
tion and result aggregation. The core BOINC infrastructure is composed of
a scheduling server and a number of clients installed on users’ machines. To
participate in the network and perform calculations, the client software pe-
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riodically contacts a centralized scheduling server to receive instructions for
downloading and executing a job. After a client completes the given task, it
then uploads resulting output files to the scheduling server and requests more
work.

The BOINC middleware is especially well suited for CPU-intensive applica-
tions but is somewhat inappropriate for data-intensive tasks due to its central-
ized nature that currently requires all data to be served by a group of centrally
maintained servers. BOINC allows a project to configure a fixed and static set
of data servers that are maintained for a particular project and made avail-
able for data distribution. Although this scheme enables a number of servers
to help load balance the network and scales well for the current applications
utilizing BOINC, the topology is static and has a number of problems scal-
ing if more data-intensive applications are introduced. For example, under the
current system, an administrator must dedicate time to configure and main-
tain these data serving machines, which are generally independent for each
BOINC project. Such machines can be costly to purchase and maintain, ad-
ditionally they are centrally administered and therefore cannot generally be
used by other BOINC projects. The real cost, however, generally lies with the
expenditure required to maintain the needed network bandwidth to support
a project, especially given the extremely large scale of some public resource
computing projects.

XtremWeb [8][18] is another Desktop Grid project that, like BOINC, works
well with “embarrassingly parallel” applications that can be broken into many
independent and autonomous tasks. XtremWeb follows a centralized architec-
ture and uses a three-tier design consisting of a Worker, a Coordinator, and
a Client. In contrast to BOINC projects, which are generally tied to a spe-
cific application executable and therefore a particular scientific problem, the
XtremWeb software allows multiple Clients to submit task requests to the sys-
tem. When these requests are dispensed to Workers for execution, the Workers
will retrieve both the necessarily data and executable to perform the analy-
sis. The role of the third tier, called the Coordinator, is to decouple Clients
from Workers and to coordinate tasks execution on Workers. To ease the de-
ployment phase regarding the connection issues raised by firewall and NAT
configuration, Clients and Workers initiate all communications toward the
Coordinator node. Like BOINC, XtremWeb does not utilize a data caching
network or sophisticated P2P algorithm for data propagation.

There are many other desktop grid computing platforms besides BOINC and
XtremWeb that operate on the same basic principles of utilizing volunteers’
donated computer power. Others worth mentioning are Aneka [10] and En-
tropia [9]. Aneka, the successor to Alchemi [24], is a modular and hierarchical
web-services based desktop grid system, built using Microsoft’s .NET frame-
work, that has the advantage of letting users decouple the message passing
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and the application management logic to more easily facilitate a modular and
customizable system. Additionally, Aneka strives to provide users with the
ability to support message passing (MPI), which has generally not been pur-
sued by other desktop grid architectures due to the large latencies involved
and volatile nature of participant nodes. Entropia is another desktop grid en-
vironment, however, it differs from the previously mentioned architectures in
that it provides a virtual machine in which the different client applications
can run. This creates a sandbox that can support different programming lan-
guages and codes, and is achieved by modifying job binaries and to link to
Entropia’s custom DLL libraries, thereby overriding certain calls made to the
host environment.

Peer-to-Peer data sharing networks have proven to be effective in distributing
both small and large files across public computing platforms in a relatively
efficient manner that utilizes both participants’ upload and download band-
width. P2P information systems are usually classified into unstructured and
structured. In unstructured systems, resources are published by peers with no
global planning, so that the network continuously grows and changes as peers
join and leave the system. These systems generally feature the power-law and
scale-free properties analyzed by Albert and Barabasi [6], which incorporate
the preferential attachment behavior (the more connected a node is, the more
likely it is to receive new links) that was proved to exist widely in real net-
works. Conversely, in structured systems, resources are assigned to hosts with
a well-specified strategy, for example through a Distributed Hash Table (DHT)
[30], by which the correct location of a resource on the network is obtained
as the result of a hash function. The structured approach generally speeds
up discovery operations but also presents important drawbacks [29], such as:
(i) limited fault tolerance and scalability, since the disconnection of a peer
requires an immediate reorganization of resources and of peer index tables;
(ii) poor load balancing, because peers that are assigned the most popular
resources can be easily overloaded.

Overall, structured approaches are usually efficient in file sharing P2P net-
works, but structure management can be cumbersome and poorly scalable in
large and dynamic Grids. Moreover, structured algorithms may hinder the
discovery of resources when they are not specified with a name or a code (for
example the name of a file) but are defined with looser constraints, for example
when the CPU speed of a computer or the response time of a Web service are
required to be within a given interval. The latter case is much more frequent
in Grids than in file sharing P2P networks. In particular, in public computing
applications the matching of job queries and job adverts, as described in Sec-
tion 3, is performed through the comparison of several hardware and software
features, which is the reason why unstructured algorithms are preferred to
structured ones in our study.
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Super-peer systems have been proposed to achieve a balance between the
inherent efficiency of centralized networks, and the autonomy, load balancing
and fault-tolerant features offered by P2P networks. In such systems, a “super-
peer” node can act as a centralized resource for a limited number of regular
nodes, in a fashion similar to a current Grid system, whereas the super-peer
overlay network enables distributed computing on much larger scales. Popular
super-peer based networks are the Napster [27] and Kazaa projects [22]. In
[35] performance of super-peer networks is evaluated, and rules of thumb are
given for an efficient design of such networks: the objective is to enhance the
performance of search operations and at the same time to limit bandwidth
and processing load. In [26] a general mechanism for the construction and the
maintenance of a super-peer network is proposed and evaluated. In this work, a
gossip paradigm is used to exchange information among peers and dynamically
decide how many and which peers can efficiently act as super-peers.

Recently, BitTorrent [12] has become the most widely used and accepted proto-
col for P2P data distribution, gaining commercial support to distribute media
content such as movies, MP3s, and TV shows. Unlike the super-peer architec-
tures mentioned above, BitTorrent relies on a flat network and in its default
implementation uses a centralized tracking mechanism to monitor and coor-
dinate file sharing. In [21] authors show that the BitTorrent protocol features
the following properties: reliability of file transfers even in the context of high
volatility and node churn; scalability even when nodes show low to medium
bandwidth, e.g., as in the Internet; and, ability to distribute large files even
if the node originally serving the files has low communication capabilities.
The possibilities of using BitTorrent with BOINC for data distribution are
explored in [13]. However, it is noted that although this approach has proven
to be quite scalable and efficient for larger files, without modification is not
efficient for small files [33], which might be encountered in existing Desk-
top Grid environments. Additionally, BitTorrent might not be appropriate to
scientific volunteer computing platforms due to its “tit for tat” requirement
that necessitates a ratio between upload and download bandwidth. Although
this requirement is quite effective in enforcing a “fair” sharing policy between
network participants to prevent parasitic behavior [23], it might prove prob-
lematic for volunteer computing platforms where it might be acceptable to
have a worker node’s download disproportionate to its upload. Reasons for
worker nodes not equality participating as upload partners are many, for ex-
ample, there are security implications of opening additional ports for traffic
since every client in the network becomes a server. Further, it is difficult to
establish trust for data providers in the network; that is, it is difficult to stop
people acting as rogue providers and serve false data across the network or
disrupt the network in some way.

The approach proposed in [15], and enhanced in this paper, attempts to com-
bine the strengths of both a volunteer distributed computing approach like
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BOINC with decentralized, yet secure and customizable, P2P data sharing
practices. This approach differs from the centralized BOINC architecture in
that it seeks to integrate P2P networking directly into the system, as job de-
scriptions and input data is provided to a P2P network instead of directly to
the client. Once data enters the P2P network, it is automatically propagated
across the data nodes as required through simple caching schemes. Such a
system helps to distribute data load dynamically in a decentralized fashion,
both in topology and administratively, making it far more suitable to the Grid
domain than static centralized systems. For example, inherent in BOINC-style
networks is the requirement to send a needed data file to several workers mul-
tiple times to provide reliability and fault-tolerance. This replication imposes
an extra and unneeded expenditure of server bandwidth, which can be avoided
through a P2P caching mechanism that replicates the data across the network
when it is first transferred. By replicating the data in such a way, there is an
immediate decrease on the required bandwidth of data servers and also more
advanced data distribution mechanisms can be supported, such as placing the
data in locations where it is most needed on the network. Further, a number
of projects require many nodes to process the same data, albeit with different
parameters, a situation that can also exploit the overlay described here. The
gravitational-wave scenario presented in this paper is an example of such an
algorithm.

3 A Super-Peer Protocol for Job Submission

A data-intensive Grid application can require the distributed execution of a
large number of jobs with the goal to analyze a set of data files. One rep-
resentative application scenario defined for the GridOneD project [20] shows
how one might conduct a massively distributed search for gravitational wave-
forms produced by orbiting neutron stars. In this scenario, a data file of about
7.2 MB of data is produced every 15 minutes and it must be compared with
a large number of templates (between 5,000 and 10,000) by performing fast
correlation. It is estimated that such computations take approximately 500
seconds. Data can be analyzed in parallel by a number of Grid nodes to speed
up computation and keep the pace with data production. A single job consists
of the comparison of the input data file with a number of templates, and in
general it must be executed multiple times in order to assure a given statistical
accuracy.

This kind of application is usually managed through a centralized framework,
in which one server assigns jobs to workers, sends them input data, and then
collects results; however this approach clearly limits scalability. Conversely,
we propose a decentralized protocol that exploits the presence of super-peer
overlays, which are increasing being widely adopted to deploy interconnections
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among nodes in distributed systems and specifically Grid infrastructures.

The super-peer protocol relies on the definitions of different roles that can be
assumed by Grid nodes (i.e., by super-peers or by simple nodes), as detailed
in the following:

• data sources are nodes that receive data from an external sensor, for exam-
ple, a gravitational wave detector in the GridOneD scenario, and provide
this data to nodes for job execution. Each data file is associated with a data
advert, i.e., a metadata document that describes the characteristics of this
file.

• a job manager produces job adverts, i.e., files that describe the characteris-
tics of jobs that must be executed, and it is also responsible for the collection
of resulting output.

• workers are nodes that are available for job execution. A worker first issues
a job query to obtain a job to be executed and then a data query to retrieve
the input data file. A worker can disconnect at any time; if this occurs
during the downloading of a data file or the execution of a job, that task
will not be completed.

• super-peers constitute the backbone of the super-peer overlay. Super-peers
are connected to workers through a centralized topology and connect with
one another through a high level P2P network. In the protocol proposed
here, super-peers play the role of rendezvous nodes, since they compare job
and data description documents (job and data adverts) with queries issued
to discover these documents, thereby acting as a meeting place for job or
data providers and consumers.

• data cachers are super-peers which have the additional ability to cache data
and the associated data adverts. These data caching nodes retrieve data
from the data source or other data caching nodes, and then can directly
provide the data to worker nodes.

In the following, data sources and data cachers are collectively referred to as
data centers, since both are able to provide data to workers. The difference
between them being which phase of the process they are involved in, with data
sources serving data from the very beginning and data cachers serving data
only after retrieving it from another cacher or a data source.

For the purposes of this experiment, we have assumed that only super-peers
can act as data centers, however, the protocol can easily be extended to include
the case in which even simple peers can store and provide data. We envisage
that the same user-driven process is used to configure a peer; that is, each user
can decide if a node will be a super peer or data center, as well as a worker. In
the BOINC scenario, the existing dedicated machines would form the obvious
core data-center backbone and other peers, preferably those with high storage
and network capacities, would elect to also make themselves available to act
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in this mode.

3.1 Job Assignment and Data Download

Figure 1 depicts the messages sequence between workers, super-peers and data
centers for the execution of the job submission protocol on a sample topology
with five super-peers, of which one is a data source and two others are data
cachers. This example describes the behavior of the protocol when a job query
is issued by the worker WA. In this case, dynamic caching is not exploited
because: (i) input data is only available on the data source DS0, i.e., no data
cachers have yet downloaded data; (ii) data cannot be stored by the super-
peer connected to WA, SP1, since it is not a data cacher. The behavior of the
protocol with dynamic caching is explained in Section 3.2.

The protocol requires that job execution is preceded by two matching phases:
the job-assignment phase and the data-download phase. In the job-assignment
phase the job manager (the node labeled JM in the figure) generates a number
of job adverts, which are XML documents describing the properties of the
jobs to be executed (job parameters, characteristics of the platforms on which
they must be executed, information about required input data files, etc.), and
sends them to the local rendezvous super-peer, which stores the adverts and
possibly propagates them to other super-peers. This corresponds to step 1 in
the figure. Each worker, when ready to offer a fraction of its CPU time (in
this case, worker WA), sends a job query that travels the network through the
super-peer interconnections (step 2). This continues until the message time-
to-live parameter is decremented to 0 or the job query finds a matching job
advert. A job query is expressed by an XML document and typically contains
hardware and software features of the requesting node as well as the CPU
time and memory amount that the node offers. A job query matches a job
advert when the job query parameters are compatible with the information
contained in the job advert. Whenever the job query gets to a rendezvous
super-peer that maintains a matching job advert, the rendezvous assigns the
related job to the requesting worker by directly sending it a job assignment
message (step 3).

In the data-download phase, the worker that has been assigned a job inspects
the job advert, which contains information about the job and the required
input data file, e.g., size and type of data. In a similar fashion to the job
assignment phase, the worker sends a data query message (step 4), which
travels the super-peer network searching for a matching input data file stored
by a data center. Since the same file can be maintained by different data
centers, a data center that successfully matches a data query does not send
data directly to the worker, in order to avoid multiple transmissions of the
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Fig. 1. Super-peer job submission protocol: sample network topology and sequence
of exchanged messages to execute one job at the worker WA. Dynamic caching is
not used because it is assumed here that data cachers have not yet stored data.

same file. Rather, the data center (in this example the data source DS0) sends
only a small data advert to the worker (step 5). In general, a worker can receive
many data adverts from different data centers. The worker then chooses a data
center, according to policies that could rely on the distance of data centers,
their available bandwidth, or some other criteria. After making the choice, the
worker initiates the download operation (step 6). Upon receiving the input
data (step 7), the worker executes the job, reports the results to the job
manager (step 8) and possibly issues another job query.

In both the job-assignment and data-download phases, the unstructured topol-
ogy of the super-peer network can cause the unnecessary duplication of mes-
sages, for example two replica of the same query can be delivered to the same
super-peer. To overcome this problem, and in general to limit the traffic load,
a number of techniques are adopted. (i) The number of hops is limited by
a Time-To-Live (TTL) parameter. For the application discussed in this pa-
per, a TTL value equal to 5 proved to be sufficient. (ii) Each query message
contains a field used to annotate the nodes that the query traverses along its
path. A peer does not forward a query to a neighbor peer that has already
received it. (iii) Each peer maintains a cache memory where it annotates the
IDs of the last received query messages. A peer discards the queries that it
has already received. Techniques (ii) and (iii) are used to avoid the formation
of cycles in the query path, and are complementary, since technique (ii) can
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prevent cycles in particular cases (i.e. when a query, forwarded by a peer, is
subsequently delivered to the same peer), whereas technique (iii) can remove
cycles in other cases (e.g., when two copies of a query, sent by a peer A to
two distinct neighbor peers B and C, are both subsequently delivered to the
remote peer D).

3.2 Dynamic Caching

One of the main features of our super-peer protocol is the dynamic caching
functionality, which allows for the replication of data input files on multiple
data cachers. This leads to well known advantages such as an increased degree
of data availability and improved fault tolerance. Dynamic caching also allows
for a significant amount of time savings in the data download phase. This is
because data queries have a greater chance to find an available data center,
and most workers are able to download data from a neighbor data cacher
instead of a remote data source. Moreover, load balancing among workers is
improved, because the presence of multiple data cachers limits the possible
overloading of workers that are located in the proximity of a data center.

The remaining part of this section illustrates the dynamic caching mechanism,
while performance evaluation is discussed in Section 4. Figure 2 shows how
the protocol handles dynamic caching, both in the replication phase (which
occurs when data is downloaded from a data source and stored by a data
cacher) and in the retrieval phase, which occurs when data is retrieved from a
data cacher by a worker. These two mechanisms are described in Figure 2 by
displaying the messages exchanged when two workers WB and WC , connected
to the same data cacher DC2, issue two job queries at different times, first
WB then WC . For simplicity, only messages related to the download phase are
shown, and they are distinguished by subscripts B and C, corresponding to
the two workers. The data query issued by WB, labeled by 4B, finds a match
in the data source DS0. As opposed to the case described in Figure 1, in this
scenario the super-peer connected to WB is a data cacher, DC2. To let this
data cacher store the data file, the data advert is sent by DS0 not directly to
the worker WB, but rather to DC2. DC2 then replicates and caches the file,
passing it to the worker. Subsequently, DC2 will act as a data source for the
time period in which it maintains the data file in its cache. In this example,
the data query issued by WC , labeled by 4C , can be served directly by the
cacher DC2 instead of the original data source DS0.

To increase performance, a file splitting approach is adopted: data files are
not downloaded as whole units, but are rather split into ordered fragments:
1 Mbytes size in this case. For example, if a query is received by data cacher
DC2 and it does not hold the entire data file, but has already received a part
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Fig. 2. Download phase of the super-peer job submission protocol, with dynamic
caching. After the request of worker WB , the data cacher DC2 retrieves the data
file from the data source DS0, replicates and caches the file, and delivers it to WB.
Subsequently, the request of worker WC is directly server by the data cacher DC2.

of it from DS0, it will not forward the data query, but rather will retain it,
because it will soon receive the remaining fragments from DS0. As it receives
these fragments, DC2 passes them to the requesting worker WC .

A further improvement could be obtained by enabling the parallel download
of data segments from two or more data centers. The benefits and drawbacks
of this enhancement are currently under investigation.

4 Performance Evaluation

A simulation analysis was performed by means of an ad hoc event-based sim-
ulator, written in C++, in order to evaluate the performance of the cache-
enabled super-peer protocol.

The simulation scenario is described by the parameters described in Table 1.
The parameter values of the representative astronomy scenario mentioned in
Section 3 are used for the test case (for example, file size, job execution time,
etc.).

The number of workers is set to 250, 500 and 1000 in different simulation tests.
It is assumed that an average of 10 workers are connected to a super-peer, so
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the number of super-peers varies from 25 to 100. Data is initially provided
by one data source and can be cached by several data cachers. The overall
number of data centers (the data source plus the data cachers) varies from 1
to half the number of super-peers.

Workers can disconnect and reconnect to the network at any time. This implies
that a data download or job execution fails upon the disconnection of the
corresponding worker. Table 1 specifies the assumed average connection and
disconnection times of workers.

The number of jobs varies from 100 to 1000. In our application scenario, each
job corresponds to the analysis of a portion of the gravitational waveforms
received from the detector. Scientific analysis can require multiple execution
of every single job, either to enhance statistical accuracy or minimize the
effect of malicious executions. The parameter Nexec is defined as the minimum
number of executions that must be performed for each job and is set to 10 in
this analysis. To achieve this objective, redundant job assignment is exploited:
each job advert can be matched and assigned to workers up to a number of
times equal to the parameter MTL, or Matches To Live, whose value must
be not lower than Nexec. The job manager assigns a job until either the MTL
parameter is decremented to 0 or the job manager receives the results for at
least Nexec executions of this job. A proper choice of MTL can compensate for
possible disconnections of workers and consequent job failures.

It is assumed that local connections (i.e. between a super-peer and a local
simple node) have a larger bandwidth and a shorter latency than remote
connections. To compute the download time with a proper accuracy, a data file
is split in 1 MB segments, as mentioned in Section 3.2, and for each segment
the download time is calculated assuming that the downstream bandwidth
available at a data center is equally shared among all the download connections
that are simultaneously active from this data center to different workers.

Simulations have been performed to analyze the overall execution time, i.e.
the time needed to execute all the jobs at least Nexec times and return related
results to the job manager. The overall execution time, Texec, is crucial to
determine the rate at which data files can be retrieved from the detector and
sent to the network, so as to guarantee that the workers are able to keep the
pace with data production.

We also computed the average utilization index of data centers, U , which is
defined as the fraction of time that a data center is actually utilized, i.e., the
fraction of time in which at least one download connection, from a worker or
a data cacher, is active with this data center. The value of U is averaged on
all the data centers and is an important efficiency index that helps to evaluate
the convenience of adding more data centers to the network.
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Table 1
Simulation scenario

Scenario feature Value

Number of workers, Npeer 250 to 1000

Average number of workers connected to the one super-peer 10

Average number of neighbors of a super-peer (power law topology) 4

Average connection time of workers 4 h

Average disconnection time of workers 1

Percentage of super-peers that are also data centers up to 50%

Size of input data files 7.2 Mbytes

Latency between two adjacent super-peers 100 ms

Latency between a super-peer and a local worker 10 ms

Bandwidth between two adjacent super-peers 1 Mbps

Bandwidth between a super-peer and a local worker 10 Mbps

Number of jobs, Njob 100 to 1000

Number of executions requested for each job, Nexec 10

Matches to live, MTL 10 to 25

Mean job execution time 500 s

Another important figure is the network load caused by the exchange of mes-
sages among workers, super-peers and data centers. This was computed as the
average number of messages transmitted on the network per time unit, and it
is denoted as Lnet.

Finally, load balancing among workers was analyzed, since an efficient and
fair management of a scientific project should assign comparable computation
loads to the different workers.

4.1 Redundant Submission of Jobs

A first set of simulation was performed for a network with 1000 workers and
100 super-peers, among which one is a data source and 49 are data cachers.
The purpose is to investigate the effectiveness of the redundant submission of
jobs, in other words the impact of the Matches To Live (MTL) parameter on
performance indices. MTL is set to values ranging from 10 to 25, while Nexec

is fixed to 10.
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Figure 3 shows the overall execution time vs. the MTL value, with the number
of jobs Njob ranging from 100 to 1000. The execution time tends to decrease as
the value of MTL increases, then it gets stabilized. The reason of this is that
a larger MTL allows to better compensate for the possible failures of jobs due
to peer disconnections. This effect is not more evident when the MTL exceeds
a threshold: in fact very large values of MTL are not exploited because the
job manager stops the assignments of job adverts when output data related
to Nexec executions have been received, as explained in the previous section.

Note also that the execution time could not be computed for values of MTL
lower than 14 (or lower than 13 if Njob is 100). In such cases, worker disconnec-
tions do not allow to perform at least Nexec executions for each job. Therefore,
the redundant approach is not only useful to decrease the execution time, but
it is even necessary to complete the required job executions. An alternative
approach could be based on the resubmission of jobs after the elapsing of a
timer set by the job manager. However this approach would waste much more
time than the approach examined here, which is based on a redundant job
assignment made in advance by the job manager.
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Fig. 3. Overall execution time vs. the value of MTL, for different numbers of jobs.

Figure 4 shows that the average utilization of data centers, and hence the
efficiency of the protocol, increases with the amount of computation assigned
to workers, i.e., with the number of jobs and, more slightly, with the MTL
value. To understand this, it must be considered that data cachers are not
heavily utilized in the first phase of the process, because they have not yet
retrieved data from the data source, whereas they are fully exploited only
after they have retrieved such data. Therefore, the utilization of data centers
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Fig. 4. Average utilization of data centers vs. the value of MTL, for different numbers
of jobs.

is high only when the number of required job executions is large enough to
make the caching of data convenient. On the other hand, when the amount
of computation is low, the time interval required by data cachers to retrieve
data files is relevant with respect to the overall execution time, therefore data
cachers are not exploited for a large fraction of time, which explains the low
values of the utilization index.

After this preliminary set of experiments, it was decided to set MTL to a
constant value, in order to better evaluate the effect of other parameters and
configuration options. The value of MTL was set to the lowest value for which
the overall execution time is at most 10% higher that the “steady” execution
time, for every tested value of Njob. This steady value was set as the execution
time obtained with MTL equal to 50, beyond which no further variations of
Texec can be perceived. According to this strategy, the MTL was then set to
20. Furthermore, this value allows for the successful execution of jobs in most
of the considered scenarios, as will also be discussed in the next section.

4.2 Performance of Data Caching

A second set of experiments aimed at evaluating the effectiveness of the dy-
namic caching mechanism described in Section 3.2. Simulations were per-
formed for a network analogous to that examined in Section 4.1, except that
the number of available data centers, Ndc, is varied from 1 to half the number
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of super-peers: one of these data centers is the data source, the others are
data cachers. Furthermore, the MTL value was fixed at 20. This analysis es-
sentially compares how our approach may affect a BOINC-like network if the
administrator provides more data cachers into the network.

Figure 5 shows the values of the overall execution time calculated for this
scenario. The time decreases as more data centers are made available in the
network, for two main reasons: (i) data centers are less heavily loaded and
therefore data download time decreases, (ii) workers can exploit a higher par-
allelism both in the downloading phase and during the execution of jobs.
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Fig. 5. Overall execution time vs. the number of data cachers, for different numbers
of jobs.

Depending on the number of jobs to be executed, it is possible to determine a
suitable number of data centers, beyond which the insertion of a further data
center produces a very low decrease of execution time, or even a small increase
of it. For example, if the number of jobs is 1000, a significant reduction of Texec

is perceived as the number of data centers is increased up to a value of 50,
whereas if the number of jobs is 100 or 250, 30 data centers are sufficient
to achieve a good performance level, and adding more data centers is not
effective.

Figure 5 does not report results for some combinations of the number of data
centers and the number of jobs, because the disconnections of workers do not
allow for the completion of all the required job executions. Specifically, if the
number of jobs is 250 or larger, the number of data centers should be at least
15, while, if the number of jobs is 100, 10 data centers are sufficient. In fact, if
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only a few data centers are available, each of these is likely to be overloaded by
a large number of workers’ requests; as a consequence, the download time in-
creases and the disconnection of a worker during the download phase becomes
a more probable event.

It is very hard to deduce the overall execution time in an analytical way,
due to the large number of network parameters (e.g., the number of workers
and super-peers, the bandwidth and latency between nodes and so on, see
Table 1) and the complexity of the super-peer protocol described in Section 3.
However, we made several tests with different application scenarios and used
Matlab tools to obtain a mathematical expression that is able to approximate
simulation results as much as possible and at the same time is coherent with
the dynamics of the protocol. We derived the expression shown in formula (1),
that relates the overall execution time to the number of jobs to execute, Njob,
and to the number of available data centers, Ndc.

Texec = C1log(Ndc) + C2

Njob

Ndc

+ C3

Njob

(Ndc)2
(1)

Very interestingly, we found that this expression is valid for all the performed
tests, regardless of the values of the other network parameters. Of course, the
impact of these parameters is encompassed by the values of the coefficients
that appear in formula (1).

The expression in the formula is composed of three terms, each of which can
be associated to a basic characteristic of the protocol. In particular, the first
term relates to the dissemination of input data to the network data centers.
This term is logarithmic with respect to Ndc, because each data cacher, after
retrieving data from a data center, is able to provide this data to a number of
other data cachers. Due to the log-type relation, this term increases slightly
with the number of data centers. The second term takes into account the
time needed by workers to download data files from a single data center and
execute the corresponding jobs (indeed we can consider one data center, since
operations are made in parallel on different data centers). Specifically, this
term is proportional to the average number of jobs which require a download
operation from a single data center, Njob/Ndc. Finally, the third term gives
an estimation of the additional amount of time that is required by worker
disconnections. This “extra” time corresponds for the most part to the time
taken by download operations that have to be re-executed because they failed
during their first try. In fact, the third term comes out as the product of
the time that would be taken if all the download operations failed (which is
proportional to Njob/Ndc) and the probability that a single download operation
actually fails. It was found that this probability is inversely proportional to
the number of data centers, since download operations are longer and more
at risk of failure as the number of data centers decreases. The third term
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takes into account only the possibility of repeating a download operation just
once. The impact of multiple repetitions of download operations is actually
negligible if the failure probability is much lower than 1. In conclusion, the
overall execution time is the sum of three terms, of which the first increases
with the number of data centers while the other two decrease. However, the
effect of the first term is relatively low, except for the cases in which the
number of data centers is large and the number of jobs is small, as can be seen
in Figure 5. In fact, in such cases the overall execution time slightly increases
with the number of data centers.

Figure 6 shows the average utilization of data centers for the same scenario.
This index decreases as the number of data centers increases and, in contrast
with the execution time, curves do not get to a relatively stable value. This
is another useful indication for setting a proper number of data centers. For
example, consider the submission of 500 jobs. While the overall execution
time can be decreased until the number of data centers is increased to about
40, the utilization index continue to decrease as more data centers are made
available. With 50 data centers there would be a worse exploitation of data
centers and no significative reduction in the execution time, from which it can
be concluded that an appropriate number of data centers is indeed 40.
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Fig. 6. Utilization of data centers vs. the number of data cachers, for different
numbers of jobs.

Figure 7 shows the number of messages per second that circulate on the net-
work. It can be noticed that the network load gets larger with the number of
jobs, but the relative increase is much less than proportional. For example, if
the number of data centers is 40, and the number of jobs is doubled from 500
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to 1000, the network load only increases from 504 to 533 messages per second.
This is a first hint about the good scalability characteristics of the protocol,
that will be further examined in Section 4.3.
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Figure 8 helps to examine the load balancing features of the protocol. Figure

21



8 reports the maximum number of jobs executed by a single worker (i.e., the
number of jobs performed by the most active worker), and the average figure,
calculated as the overall number of job executions divided by the number of
workers. It is interesting to note that the a wider availability of data centers
improves load balancing among workers, as the maximum number of jobs
executed on a worker decreases and approaches the average number. In fact,
with few data centers, the workers which are closer to them tend to execute
more jobs, because the download phase is faster. However, if more data centers
are available, the differences among workers are attenuated, in particular when
the overall computation load is high.

Two more issues are strictly correlated with the use of data caching algorithms:
the choice of the data replacement policy and the frequency of miss/hit events.
In the application example examined in this paper, as well as in many other
scientific applications, data is “read only” and is never modified by workers.
Therefore, a sophisticated data replacement policy is not actually required.
It is only necessary to provide the data source, and subsequently the data
cachers, with the gravitational waveforms data as long as it is retrieved by the
detectors. Of course, as old data has been thoroughly processed by workers,
it can be discarded by the data source and the data cachers, to make more
room for new data. This coarse-grained replacement process is controlled by
the Job Manager node.

A cache miss event occurs whenever a data cacher contacted by a worker has
not yet retrieved data, and must download it from another data cacher or
from the data source. Conversely, if the data cacher has the data, a cache hit
event occurs. As data is disseminated among the data cachers, the frequency
of hit events becomes increasingly high. This is confirmed by Figure 9, which
shows the percentage of cache hits in the first 500 seconds of execution of the
applications. Of course, this percentage gets to 100% as soon as data has been
retrieved by all the data cachers. it is also interesting to notice that in the
transient phase the percentage of hit events decreases as more data cachers
are made available on the network, since a longer time interval is necessary
to distribute data to the cachers. Therefore, the presence of a large number
of data cachers can slow down the execution of jobs in the very first phase,
during the distribution of data to the cachers, but obviously this slowdown
is immediately compensated in the steady phase, when workers can find the
required data on any cacher of the network.

4.3 Scalability Analysis

An additional set of simulations were performed to evaluate the behavior of
the protocol in variable-sized networks, to specifically examine its scalability.
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We analyzed Grids having 250, 500 and 1000 workers, that is with 25, 50
and 100 super-peers, respectively. As in the previous simulations, one data
source is available, while the overall number of data centers, including this
data source and the data cachers, is varied from 1 to half the number of super-
peers (the maximum value is approximated to 13 in the case of 25 super-peers).
The required number of executions of each job, Nexec, is set to 10, while the
maximum number of assignments per job, MTL, is set to 20.

Two different scenarios are taken into consideration. In the first, the number
of jobs is constant, and set to 500, while the number of workers is increased:
this is useful to verify if the availability of more workers can actually improve
performance. In the second scenario, the number of jobs and the number of
workers are increased with the same pace: this analysis is particularly useful
to verify if the protocol is able to sustain an increase in the problem size in the
case that the average computational load of a worker is maintained constant.

Figure 10 shows results related to the first scenario. Because of the high range
of the values obtained, a logarithmic scale is adopted for the y axis. This figure
shows that, with a constant problem size, that is, a fixed number of jobs,
the availability of a larger number of workers actually improves performance,
on condition that a proportional number of data centers are installed. For
example, if half the number of super-peers are set up as data centers, the
execution time is reduced by about 50% (from 11023 seconds to 5421 seconds)
if the number of workers is increased from 250 to 1000. The performance gain
is therefore relevant.
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of jobs. The network size is proportional to the amount of computation.

Figure 11 reports the overall execution time for the second scalability test,
namely the test with variable problem size, which aims to verify if it is effective
to increase the number of workers proportionally to the amount of computa-
tion load. Here the number of workers is maintained equal to the number of
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jobs, each of which - it is useful to recall - must be executed at least 10 times.
Again, the results obtained when using a fixed percentage of data centers are
to be compared. The dashed line in figure 11 connects points obtained when
the mentioned percentage is set to 50% and shows that the proposed approach
is satisfactory scalable. In fact, the execution time is equal to 5770 seconds
when the number of jobs (and the number of workers) is 250, while it increases
to 6886 seconds with 500 jobs, and to 8301 with 1000 jobs. Therefore, if the
amount of computation is doubled, the execution time increases by only 19%,
while if it is quadruplicated, the execution time increases by only 43% per
cent. Analogous results are obtained for different percentages of data centers
in the network. This proves the good scalability of the approach presented in
this paper, as the pace at which the execution time increases is much lower
than the corresponding increase in the problem size.
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Fig. 12. Maximum number of jobs performed by a worker vs. the number of data
centers, for different numbers of jobs. The network size is proportional to the amount
of computation.

Scalability actually derives from the ability of the protocol to fairly distribute
the computational load to workers, even when the problem and the network
size increase. This can be observed in Figure 12: the dashed line highlights the
values of the maximum number of jobs executed by a worker, obtained when
the number of data centers is equal to 50% of super-peers. The maximum
number of jobs is 25.2 in a network with 250 workers, and increases very
slightly with the computational load: specifically, it increases to 30.0 and to
31.1 as the number of jobs increases to 500 and 1000, respectively.
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5 Applied Decentralized Data Caching for Applications

There are many different applications and communities that would benefit
from the decentralized and flexible data sharing techniques described in this
paper. With new data management technologies, scientific users would be
able to use Desktop Grids to explore new types of data-intensive application
scenarios that were overly prohibitive before, given their large data transfer
needs. In this section we will briefly describe three application areas that we
are currently working with to enable data access in this manner. In the process
of providing these case-studies, we will attempt to briefly show the reader the
current limitations of these systems, and how P2P data sharing would further
enable these application areas.

5.1 Einstein@HOME

The Einstein@HOME [17] is a scientific data analysis project employing the
BOINC infrastructure to analyze gravitational wave data. Currently the project
is employing the traditional HTTP server mirroring solution used by other
BOINC projects to distribute its data sets. The system is able to cope with
user demand with a small number of data mirrors, however, if the data in-
put is significantly increased through new detectors, or larger data sets are
introduced to perform higher resolution analysis, these data mirroring solu-
tions can quickly become prohibitively costly. By applying a P2P approach
for this project, it would allow the system to scale proportionately as the load
or number of users increases, thus make the system completely dynamic and
self-organising. One key advantage of such an approach is that maintenance
and administrative overhead is virtually non-existent and it therefore becomes
extremely inexpensive to run and to introduce increased data or explore new
algorithms that might require a more robust data intensive solution.

5.2 Distributed Audio Retrieval

The Distributed Audio Retrieval using Triana (DART) [16] project is a joint
collaboration between Cardiff University and the Laboratory for Creative arts
and Technologies (LCAT) at Louisiana State University (LSU). DART is work-
ing to build a decentralized overlay for processing audio information through
its Music Information Retrieval (MIR) mechanisms. To do this, the system
makes use of peer-to-peer technologies to create a network, similar to BOINC
projects. In DART, users provide CPU cycles for analysis of their local audio
files, which provides audio metadata to the network that is then used to enable
the system to make music recommendations based on collaborative filtering
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and music information retrieval techniques. The local processing on the net-
work participants is achieved though the use of Triana workflows that can be
uploaded to the members in the network.

The DART music recommendation system therefore is a process-intensive ap-
plication, where potentially thousands of audio files (typically in MP3 for-
mat) can be analyzed on users’ machines. The algorithms for statistical and
audio-based analysis are Triana workflows. These workflows are bundled into
a semi-self contained package and propagated onto the network for execution.
One large component to this system is the fanning out of the workflow descrip-
tions and associated code to all of the peers in the network for analysis. Since
such code might comprise of dozens of complex spectral and temporal analysis
tools, such workflow packages can be tens of megabytes in size. Therefore, to
support the scale of DART’s intended audience (potentially tens of thousands
of participants), there is a need to avoid any centralized structure for content
distribution. Rather, a decentralized, yet secure data center approach like the
one described in this paper would sufficiently solve the project’s data needs.

5.3 Enabling Desktop Grids for e-Science (EDGeS)

EDGeS is a new FP7 funded infrastructures project to build bridges between
Desktop Grid and Service Grid systems and enable their interoperability.
The EDGeS project started in January 2008, and is working to develop tools
to bridge the technologies on computational Grids with desktop Grids. The
Aneka framework [10] relates to some degree to EDGeS in that it provides a
framework for creating services that can support multiple overlays, each sup-
porting a desktop Grid. However, EDGeS differs by providing a translational
toolkit for deploying applications written for a Grid infrastructure on Desktop
Grid and vice verse. Specifically, the consortium will interconnect the largest
European Service Grid infrastructure (EGEE) with existing desktop Grid sys-
tems, such as BOINC and XtremWeb. At the core of the EDGeS toolkit is a
bridge mechanism that will enable users to transparently execute applications
on any arbitrary platform involved in the EDGeS infrastructure.

With respect to the EDGeS data management, one of the hurdles to this
integration is the ability to transfer traditional jobs that would run on Ser-
vice Grids to Desktop Grid environments due to the bandwidth and space
requirements that would be imposed upon the Desktop Grid nodes. Unlike
a traditional Desktop Grid project, which has a centralized server providing
data to worker nodes, in the EDGeS project, jobs would be sent to a Desktop
Grid from a Service Grid through a bridge mechanism that translates the job
to enable it to be enacted on a Desktop Grid environment. In this scenario,
a new network requirement would be placed upon Service Grid systems and

27



the techniques described in this paper provide useful input to the ongoing
development of the core P2P data sharing infrastructure [32][28] that is being
used as the basis for the data center layer of EDGeS.

6 Conclusions

In this paper we presented a decentralized architecture for data-intensive scien-
tific computing and evaluated it. This research has been undertaken according
to the “public resource computing” paradigm, where resources are distributed
and generally donated by network volunteers. To take full advantage of the
entire spectrum of client-side capabilities in these types of networks, where
participants generally not only have idle CPU cycles, but also substantial
network bandwidth, we have presented a super-peer data distribution scheme
that attempts to leverage the available resource capabilities for the submission
of a very large number of jobs. In the scenario presented here, a large number
of dispersed worker nodes execute the required tasks, while a smaller group
of nodes are configured to store and provide input data files to workers. Job
assignment and data distribution is performed through the rendezvous role of
super-peers, which match job and data queries, issued by workers, to job and
data adverts that describe the characteristics of tasks and data files.

To provide support for this scheme, a number of simulations have been per-
formed to evaluate the impact of application and network parameters on per-
formance indices such as the overall time to execute and network load. Results
for our test-case show availability of several data centers and the use of dy-
namic caching brings benefits to applications, including scalability. During
this process, we have also observed that there is a balance between a larger
number of data servers and the effective utilization of a single data center.
Given the network and data parameters, the optimal number of data centers
for a given problem space can be identified, helping to maximize the return on
investment when deploying new data centers. By using a system like the one
described in this paper, BOINC-like applications are able to replicate their
current static data server functionality through a dynamic and decentralized
data distribution system. This enables projects to automatically scale their
data needs without additional administrative overhead as their user-base or
problem size increases.

Future work in this area will investigate a number of interesting research
avenues, such as: (i) the evaluation of the pros and cons of parallel downloading
of data segments from two or more data centers; and, (ii) the performance
evaluation of using a super-peer schema for scenarios where input data is
progressively being fed into the network from an external source as a data
stream.
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