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a b s t r a c t

As deployed Grids increase from 10s to 1000s of nodes, the construction of an efficient and
scalable information system is a key issue, as it is vital for providing querying and discov-
ery services. Today most Grids adopt a centralized or hierarchical model for their informa-
tion system, but this model is characterized by poor scalability, resiliency and
load-balancing features. Nowadays the research and development community is heading
towards the use of scalable information systems based on distributed models such as
the decentralized peer-to-peer (P2P) model and the super-peer model. If the former is
adopted, each node can act both as a client and a server as it can generate discovery
requests and also respond to requests issued by other peers. Requests and responses are
forwarded with a hop-by-hop mechanism by ad hoc Grid Services hosted by Grid nodes.
The super-peer model is a recently proposed approach that combines features of central-
ized and P2P models. A super-peer acts as a server for a single Grid organization, and pub-
lishes metadata describing the resources provided by the nodes of that organization. At the
same time, super-peers connect to each other to form a P2P network at a higher level. This
paper analyzes information systems based on three alternative models: the hierarchical,
the decentralized P2P, and the super-peer model. A performance evaluation of such models
is reported, and afterwards a performance comparison is discussed in order to analyze the
pros and cons of each solution.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Grid computing is an emerging computing model that provides the ability to perform higher throughput computing by
taking advantage of many networked computers and distributing process execution across a parallel infrastructure. Grids
use the resources of many separate computers connected by the Internet network to solve large-scale computation prob-
lems. In a Grid computing environment, the set of hosts and resources available can change over the time: new resources
and services may be added, existing ones can be removed, basic properties of a resource or a service may also change.
The information system is an important pillar of a Grid framework since it provides information, about static and dynamic
Grid resources, which is critical to the operation of the Grid and the construction of applications. In particular, users turn
to the information system to discover suitable resources that are needed to design and execute a distributed application,
explore the properties of such resources and monitor their availability.
. All rights reserved.
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A key service in Grid information systems is the resource discovery service. The resource discovery problem can be defined
as follows: given a set of user/application requirements and constraints, a Grid discovery service must find the resources that
match those requirements and constraints. Grid users and applications need to get static and dynamic information about
hardware and software Grid resources. Static information includes CPU speed, operating system, device technology, available
compilers and libraries. Dynamic information includes node status such as current CPU load, available disk space, free mem-
ory, job queue length, network bandwidth and load, and other similar information. All that information is necessary to effi-
ciently configure and run applications on Grids.

In most Grid frameworks deployed so far, the information system is structured according to centralized or hierarchical
approaches, mostly because the client/server approach is still used today in the largest part of distributed systems and in
Web services frameworks. For example, the Globus Toolkit, the standard de facto Grid framework, in its largely diffused ver-
sion 2 adopted a strictly hierarchical architecture for its monitoring and discovery system (MDS) [1,2]. In MDS-2, a GRIS (Grid
Resource Information Service) gathers and publishes information about the resources offered by each Grid host, while a GIIS
(Grid Index Information Service) collects information from a set of GRIS belonging to the same Grid Organization. The hier-
archical architecture results from the possibility of having high order GIIS servers which can aggregate information pub-
lished by lower order GIIS servers.

The service-oriented approach of currently adopted Grid frameworks allows for adopting different paradigms for the con-
struction of an information system. The recently released Globus Toolkit 4 is based on the Web Service Resource Framework
(WSRF [3]), which fully exploits the Web services paradigm, thus facilitating the convergence of Grid and Web services
worlds. The central component in the GT4 information system [4] is the Index Service, which collects information about Grid
resources and makes this information available to users and clients. The Index Service retrieves information from multiple
data sources via standard WSRF subscription/notification interfaces. Furthermore, an Index Service can publish information
retrieved by other Index Services, giving the possibility to build the information system according to hierarchical, decentral-
ized or hybrid architectures, even though the hierarchical model is still the most frequently used [4,5].

Nowadays, the research and development community agrees that the adoption of the peer-to-peer (P2P) paradigm could
favor Grid scalability [6–9]. Indeed, a hierarchical information system can be viable within a single organization or in a small-
scale Grid, but it can become impractical in a large multi-institutional Grid for several reasons, among which:

– fault-tolerance is limited by the presence of a bottleneck at the tree root;
– a significant amount of memory space must be reserved in Index Services to maintain information about a large number

of resources, limiting the scalability of the Grid;
– Index Services belonging to different levels must carry very different computation and traffic loads, which leads to chal-

lenging problems concerning load imbalance;
– the hierarchical organization can hinder the autonomous administration of different organizations.

Fortunately, Grids and P2P systems share several features and can profitably be integrated, bringing benefits in both fields
and resulting in future convergence. The introduction of the Web services resource framework is particularly useful for this
convergence trend, since WSRF Grid Services can support P2P interactions between hosts belonging to different domains.
Accordingly, the Grid information system can be built according to a fully decentralized P2P model [10,11]. A discovery re-
quest, issued on a Grid host, travels the Grid by exploiting P2P interconnections among Grid hosts, through the invocation
of special-purpose Grid Services.

The decentralized approach can enhance scalability and fault-tolerance with respect to the hierarchical approach, but can
also induce a very large network traffic and may limit search effectiveness. Recently, the super-peer model has been proposed
[12,13] to achieve a balance between the inherent efficiency of centralized search, and the autonomy, load-balancing and
fault-tolerant features offered by distributed search. A super-peer node acts as a centralized resource for a number of regular
peers, while super-peers connect to each other to form a network that exploits the P2P mechanisms at a higher level. The
super-peer model is naturally appropriate for Grids, as a large-scale Grid can be viewed as a network interconnecting
small-scale, proprietary Grids, also referred to as Physical Organizations (POs). Within each PO, one or more nodes (those
that have the largest capabilities) act as super-peers, while the other nodes use super-peers to access the Grid and forward
discovery requests.

This paper discusses and evaluates three Grid resource discovery protocols that are adopted with the three different mod-
els discussed so far: hierarchical, decentralized P2P, and super-peer. The goal of such protocols is to let a user issue a query
for resources having given characteristics and discover a number of suitable resources matching the specified requirements.

Performance evaluation is carried out by means of an event-based simulation framework, which allows for the evaluation
of Grids having a large number of hosts. Performance results can be used to tune the parameters of each protocol, in order to
increase search efficiency. Furthermore, results allow to compare the different models and evaluate their pros and cons in
different Grid configurations. The outcome of this comparison is of value for Grid designers and administrators. Appropriate
design and deploy decisions may be made by taking into account the reported performance results, as well as a number of
further considerations such as administrative requirements.

The remainder of the paper is organized as follows. Section 2 discusses related work. Section 3 introduces the three infor-
mation system models and the corresponding resource discovery algorithms and protocols, and shows how such models can
be implemented in a service-oriented Grid framework. Section 4 reports the performance results obtained with the three



C. Mastroianni et al. / Parallel Computing 34 (2008) 593–611 595
resource discovery protocols. Section 5 compares such performance results and analyzes the impact of some important net-
work parameters, such as the time needed to process queries and the average size of Grid Organizations. Section 6 concludes
the paper.

2. Related work

The resource discovery service is a key component of both Grid and P2P systems. In a Grid the discovery service is invoked
by users when they need to discover and use hardware or software resources matching given characteristics. It often occurs
that this service must to be invoked several times prior to or during the execution of a complex Grid application, because the
latter is generally composed of several sub-tasks that require different resources for their efficient execution.

In most of the Grid frameworks deployed so far, the information system is generally constructed according to centralized
or hierarchical approaches, as discussed in the Introduction. The Index Service, which is the central component in the infor-
mation system of the Globus Toolkit 4, can register to information published by other Index Services, offering the possibility
to build an overall information system according to a P2P or hybrid architecture. However, the hierarchical model is still the
most frequently used in currently deployed GT4 Grids [4,5], mostly because of the client/server approach used today in the
largest part of distributed systems and in Web services frameworks.

The hierarchical model can be efficient when it is necessary to compute aggregate values, that is, global information
including average load, amount of available memory, location and description of hotspots, and so on. Perhaps the best-
known example of this approach is Astrolabe [14]. In this system a hierarchical architecture is deployed, which reduces
the cost of finding the aggregates and enables the execution of complex database queries. On the other hand, maintenance
of the hierarchical topology introduces additional overhead, which can be significant if the environment is strongly dynamic.

In the general case, when the discovery service aims to provide specific information about single Grid resources, central-
ized and hierarchical approaches to Grid information systems do not guarantee scalability and fault-tolerance, in particular
as the Grid size increases and Grids become pervasive. Nowadays, the research and development community agrees that the
adoption of the P2P paradigm could favor Grid scalability [6–9]. A fully decentralized P2P architecture for resource discovery
in Grid environments is proposed in [10]. In this architecture every participant in a Grid Organization publishes information
about local resources. Users send their requests to some known (typically local) node, which responds with matching re-
source descriptions if it has them locally, and forwards the requests to neighbor nodes, and so on, until the TTL of the re-
quests expires. If a node has information matching a forwarded request, it sends the response directly to the node that
initiated the forwarding.

This approach is based on an unstructured P2P system, since resource descriptors are published by peers without a global
pattern or structure. Conversely, in structured P2P systems [15], resources are assigned to hosts with a well-specified strat-
egy, for example through a distributed hash table (DHT), by which the correct location of a resource on the network is ob-
tained as the result of a hash function. Gnutella and KaZaA are examples of unstructured P2P networks, while CAN [16],
Chord [17] and Pastry [18] are examples of structured P2P networks. The structured approach generally speeds up discovery
operations but also presents important drawbacks [19,15], such as: (i) limited fault-tolerance and scalability, since the dis-
connection of a peer requires an immediate reorganization of resources and of peer index tables; (ii) poor load balancing,
because peers that are assigned the descriptors of the most popular resources can be easily overloaded. Overall, structured
algorithms are usually efficient in file sharing P2P networks, but structure management can be cumbersome and poorly scal-
able in large and dynamic Grids, especially when the churn rate – the frequency of peer disconnections – is high. Moreover,
structured algorithms may hinder the discovery of resources when they are not specified with a name or a code (for example
the name of a file) but are defined with looser constraints, for example when the CPU speed of a computer or the response
time of a Web service are required to be within a given interval. The latter case is much more frequent in Grids than in file
sharing systems. Therefore, unstructured algorithms are valuable in Grids, which is the reason why they are considered in
this paper.

The super-peer model was proposed in [12] to achieve a balance between the inherent efficiency of centralized search,
and the autonomy, load-balancing and fault-tolerant features offered by distributed search. In [12] performance of super-
peer networks is evaluated, and rules of thumb are given for an efficient design of such networks: the objective is to enhance
the performance of search operations and at the same time to limit bandwidth and processing load. In [20] a general mech-
anism for the construction and the maintenance of a super-peer network is proposed and evaluated. In this work, a gossip
paradigm is used to exchange information among peers and dynamically decide how many and which peers can efficiently
act as super-peers. The super-peer protocol adopted by the KaZaA system http://www.kazaa.com designates the more avail-
able and powerful peers as supernodes. In KaZaA, when a new peer wants to join the network, it searches for the existing
supernodes, and establishes an overlay connection with the supernode that has the shortest RTT. In [21] a framework that
combines the structural DHT design with a multi-level architecture based on super-peers is proposed. Peers are organized in
disjoint groups, and lookup messages are first routed to the destination group, then to the destination peer using an intra-
group overlay. In [22] both resources and the content stored at peers are described by means of RDF metadata. Routing indi-
ces located at super-peers use such metadata to perform the routing of queries expressed through the RDF-QEL query lan-
guage. The super-peer based Grid Information Service proposed in [23] uses an Hop Counting Routing Index algorithm to
exchange queries among the super-peers and, in particular, to select the neighbor super-peers that offer the highest prob-
ability of success.

http://www.kazaa.com
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Strictly related to resource discovery is the resource matchmaking issue, which is a key feature in job submission systems,
such as Condor [24]. The Condor framework receives job requests from users and then finds suitable, available resources on
the network where these jobs can be executed. The scheduling task is performed by a Central Manager (CM). The CM collects
information about the state of resources and receives the users’ requests. The CM then matches the resource description and
usage policies, specified by the resource owners, with the jobs needs and decides where to schedule them. Both resource
and job descriptions are expressed using the ClassAd specification language. This language enables the specification of
job and resource attributes along with users and resource owner policies and preferences. Users often need to find several
resources belonging to a given class, so that they can subsequently select the best resource for their job. A resource class can
be seen as a set of resources satisfying a given set of constraints on the values of resource parameters, for example of ClassAd
properties. This paper assumes that a given classification of resources is available and known to the user. This assumption is
common in similar works. For example, in [25], performance of a discovery technique is evaluated by assuming that re-
sources have been previously classified in four disjoint classes. Classification can be done by characterizing the resources
on the basis of a set of parameters that can have discrete or continuous values. Classes can be determined with the use
of Hilbert curves that represent the different parameters on a single dimension [26]. Alternatively, an n-dimension distance
metric may be exploited [27] to determine the similarity among resources, and then assign similar resources to the same
class.

3. Models for the Grid information system: hierarchical, decentralized and super-peer

This section introduces the three different models of Grid information systems which are examined and discussed in this
paper. For each of these, the envisaged architecture is discussed and the related resource discovery algorithm is described.

3.1. Hierarchical information system

The hierarchical model is the most frequently adopted in Grid frameworks. For example, the information system of GT4,
today the most used Grid middleware, exploits the functionalities of Index Services. An Index Service is a special-purpose
Grid Service that aggregates and indexes metadata related to the resources provided by the Grid hosts of a Grid Organization.
In a large organization, as well as in a Grid that spans different organizations, several Index Services can be configured and
organized in a hierarchy. Fig. 1 shows a hierarchical information system having a tree height equal to H. Regular Grid hosts
belong to level 0, while each level 1 Index Service aggregates and publishes information about all or some of the resources
provided by a group of regular Grid nodes. An Index Service can subscribe to metadata information related to Grid resources
by means of proper software mechanisms such as information providers and aggregators. In general, an Index Service belong-
ing to level n aggregates information retrieved from a group of level n � 1 Index Services, up to the root Index Service, located
at level H � 1, which aggregates metadata about the resources of the entire organization. In most cases, an Index Service can-
not maintain metadata information related to all the resources of descendant Index Services, at least for the following
reasons:

(1) Since most resources are owned by external organizations, administrative and security reasons may require authori-
zation procedures;

(2) It is not convenient to publish dynamic information which would not be reliable and up-to-date if retrieved by Index
Services instead of Grid nodes directly;

(3) Limits in the memory space and access times.

Therefore, it can be assumed that each Index Service publishes information only about a portion of the Grid resources
which are provided by lower level Index Services and simple Grid nodes.
Fig. 1. Architecture of a hierarchical information system based on Index Services.
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A query can be issued by a regular Grid node to search for resources belonging to a particular class of resources. The query
is first delivered to the local Index Service, which can subsequently propagate it towards higher level Index Services, up to
the root Index Service, in order to find more results. A resource discovery algorithm that exploits the features of the GT4
hierarchical information system is reported in Fig. 2. The pseudo-code shown in this figure is executed by a generic Index
Service when it receives a query from a regular node or from a child Index Service. As soon as the query message is received,
it is forwarded to the parent Index Service. Then, a local search is performed to find useful resources in the local sub-tree of
the information system. Finally, a queryHit including information about the discovered resources is sent to the node from
which the query has been received.

3.2. P2P decentralized information system

As discussed in previous sections, an information system based on the P2P paradigm can be more effective and fault-tol-
erant than a centralized or hierarchical one. In order to maximize the benefits related to the adoption of the P2P approach in
a Grid information system, it is useful to compare the characteristics of Grids and commonly used (e.g. file sharing) P2P net-
works. In particular, two main differences emerge:

(1) Grids are less dynamic than P2P networks, since Grid nodes and resources often belong to large enterprizes or public
institutions and security reasons generally require mutual authentication of Grid nodes before accessing external
resources.

(2) Whereas in a P2P network tailored to file sharing applications users usually search for well defined resources (e.g. MP3
or MPEG files), in Grid systems they often need to discover software or hardware resources that belong to a particular
resource class, where a resource class is defined as the set of resources that satisfy a number of given constraints on
resource properties.

In a decentralized P2P system hosts are arranged in a P2P overlay network. Adjacent peers, i.e. peers that can directly
communicate through an overlay P2P connection, can belong to the same Grid organization or to different organizations.
To model the network topology and approximate the behavior of a real Grid as much as possible, the well known power-
law algorithm defined by Barabási and Albert [28] is adopted in this study. This model incorporates the characteristic of pref-
erential attachment that was proved to exist widely in real networks. Specifically, the network is constructed starting from a
few disconnected nodes, then one node is added at each step, and this node is connected, through P2P links, to a number of
existing nodes. These nodes are chosen according to the ‘‘rich get richer” paradigm: the more connected a node is, the more
likely it is to receive new links from new nodes. A very useful feature of this model is that it is scale-free, since the probability
distribution of the number of ingoing and out-going links (the in-degree and out-degree of a node) does not depend on the
size of the network.

The discovery service is based on the exchange of query and queryHit messages among hosts. Whenever a user initiates a
search procedure, the client process of the corresponding peer sends a query message to a selected number of neighbors,
which subsequently forward it to their own neighbors. As a node receives a query message, it checks whether it possesses
one or more resources belonging to the requested class; if so, it sends a queryHit message that will follow the same path back
to the node that issued the query.

To limit the traffic load, a query is only forwarded to a maximum number of neighbors. If the out-degree of a node is high-
er that this number, the neighbors are chosen through a statistical approach: a node forwards a query to the neighbor nodes
from which the largest numbers of queryHits were received in the past [23]. A number of further techniques are adopted to
reduce the network load. (i) The number of hops is limited by a time-to-live (TTL) parameter. (ii) Each query message con-
tains a field used to annotate the nodes that the query traverses along its path. A peer does not forward a query to a neighbor
peer that has already received it. (iii) Each peer maintains a cache memory where it annotates the IDs of the last received
Fig. 2. The resource discovery algorithm executed by an Index Service in the hierarchical model.
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query messages. A peer discards the queries that it has already received. Techniques (ii) and (iii) are used to avoid the for-
mation of cycles in the query path, and are complementary, since technique (ii) can prevent cycles in particular cases (i.e.
when a query, forwarded by a peer, is subsequently delivered to the same peer), whereas technique (iii) can remove cycles
in other cases (e.g. when two copies of a query, sent by a peer A to two distinct neighbor peers B and C, are both subsequently
delivered to the remote peer D).

Fig. 3 depicts how the decentralized P2P model can be implemented in the GT4 framework. Each peer contains a GT4 In-
dex Service, which aggregates metadata information (Resource Properties) related to a number of Grid resources (in GT4 re-
ferred to as WS-Resources), and a Peer Service. A Peer Service is a static Grid Service that processes query messages coming
from remote peers; when receiving a query, it asks the local Index Service to find resources matching the query constraints. A
Peer Service forwards query and queryHit messages through the Network Module.

3.3. Super-peer information system

As discussed in Section 1, the super-peer model can be advantageously exploited in Grid systems for the deployment of
information and discovery services. In each Grid Organization (or PO, Physical Organization), a subset of powerful nodes hav-
ing high availability properties can be chosen and elected as super-peers. Resource discovery efficiency is enhanced if com-
pared with the decentralized P2P approach because a larger number of resources can be inspected in the same amount of
time.

For the sake of simplicity, it is assumed that only one super-peer is selected in each organization, even if it can change
with time. A super-peer accomplishes two main tasks: it is responsible for the communications with the other POs, and it
maintains metadata about all the nodes of the local PO. The set of nodes belonging to a PO (i.e. the super-peer and the regular
nodes) is also referred to as a cluster in the following.

As is the decentralized model described in Section 3.2, the super-peer topology is constructed according to the Albert–
Barabási power-law algorithm [28]. The algorithm first selects a small number of disconnected POs, then and at each step
it connects a new PO to a number of others that are already connected, by linking the respective super-peers.

The choice of constructing clusters on the basis of the existing Grid Organizations is a peculiar feature of the super-
peer model described in this paper. This is not the norm for super-peer networks, in which the selection of super-peers
and the assignment of simple nodes to them is generally done randomly or according to a different strategy. For example,
in some systems nodes are assigned to super-peers so as to gather nodes of similar characteristics [22] in the same clus-
ter. In other systems, selection and assignment are made to achieve some predetermined objective, for example a target
topology that is composed by the minimum set of super-peers whose total capacity is sufficient to cover all other nodes
as clients [20].

In a Grid, however, a super-peer topology that relies on previously formed organizations has at least the following
advantages:

� Security and authorization tasks are facilitated, since intra-cluster communications are always within the same organiza-
tion. For example, each super-peer maintains information only about local nodes;

� It is possible to exploit the presence of heterogeneous information systems that can be available in different Grid Orga-
nizations, as shown in Fig. 4: in this example, the MDS-2 service of GT2, the Index Service of GT4, and the Unicore infor-
mation service. Indeed it is not necessary that the same Grid middleware is used in all the organizations: it is only
required that super-peers are able to communicate with each other using a standard protocol and that each super-peer
knows how to interact with the information service of the local organization;
Fig. 3. Implementation of the decentralized P2P model using the GT4 framework.
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Fig. 5. The resource discovery algorithm executed by the Super-peer Service.
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� The administrators of each Grid Organization can choose the nodes that can play the role of super-peer, according to
locally specified criteria.

The resource discovery protocol, exploited by the discovery service, is defined as follows. Query messages generated by a
Grid node are forwarded to the local super-peer. The super-peer examines the local information service to verify if one or
more useful resources are present in some of the nodes belonging to the local PO. Furthermore, as in the decentralized mod-
el, the super-peer forwards a copy of the query to a number of neighbor super-peers, which in turn contact the respective
information systems and so on. Whenever a resource, matching the criteria specified in the query, is found in a PO, a que-
ryHit is generated and is forwarded along the same path back to the requesting node. To decrease the network load, the
super-peer protocol exploits the same techniques (i.e. selection of neighbors, TTL and caching) that were discussed in Section
3.2 for the decentralized model.

The super-peer model is integrated with the information service of the WSRF-based GT4 framework, in a fashion similar
to that shown for the fully decentralized model (Fig. 3). The GT4 Index Service subscribes to the Resource Properties of Grid
Services hosted by the nodes of the local PO. The Super-peer Service processes requests coming from remote POs, queries the
local Index Service to find resources matching the query constraints, and forwards query and queryHit messages through the
Network Module. A sketch of the resource discovery algorithm, executed by a Super-peer Service when receiving a query
from an external PO, is reported in Fig. 5.
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4. Performance evaluation of the resource discovery protocols

This section reports and discusses the performance results obtained by using the three resource discovery models and
protocols introduced in Section 3. For each of the three models, network and protocol parameters were set to values that
are coherent with Grid frameworks currently deployed and with performance studies available in literature [29]. Moreover,
parameter settings are consistent for the three models, so they allow for a fair comparison of the discovery protocols. Section
4.1 describes the simulation environment and introduces general assumptions that are valid for all the three protocols. The
performance indices are also defined in this section. Afterwards, protocols are separately evaluated in Sections 4.2–4.4. Com-
parative analysis is given in Section 5.

4.1. Simulation settings and performance indices

The simulation framework includes two components: a network generator and a discrete-event continuous-time simu-
lator. The network generator used for the decentralized and the super-peer model follows the Albert–Barabási model, as dis-
cussed in Sections 3.2 and 3.3. On the other hand, the topology used for the hierarchical model is constructed as described
later in Section 4.2.

The discrete-event simulator, written in C++, is fully object-oriented. The different objects simulate the behavior of Grid/
P2P components and are able to exchange messages. Every time an object receives a message/event, it performs a related
procedure, according to its finite state automaton, and possibly sends new messages to other objects.

As mentioned in Section 2, in Grid systems users often need to discover resources that belong to a class of resources,
rather than a specific single resource. Resource categorization is an efficient method to restrict the search space and improve
the efficiency of resource discovery services. For example, in building a distributed data mining application [30], a user may
need to find a software tool that performs a clustering task on a given type of source data. In this case, a query containing the
appropriate constraints is generated to find such resources on the Grid; afterwards, one of the discovered resources will be
chosen by the user (or by an automatic Grid scheduler) for execution. This is a common problem in Grids where resources
and/or services must be used in complex applications.

To fairly compare the three models discussed in this paper, the same distribution of resources is assumed, in Grids
having from 10 to 10,000 nodes. In particular, it is assumed, as in [10], that the average number of elementary resources
offered by a single Grid host remains constant as the Grid size increases. This average value is set to 5, and a gamma
stochastic function is used to determine the number of resources owned by each node. As the Grid size increases, it be-
comes increasingly unlikely that a new node connecting to the Grid provides resources belonging to a new resource class
[10]. Therefore, the overall number of distinct resource classes offered by the Grid does not increase linearly with the
Grid size. A logarithmic distribution is adopted: the number of resource classes offered by a Grid network with N nodes
(where N is comprised between 10 and 10,000) is set to 5 � (log2 N)2. As an example, a Grid having 1024 nodes provides
5120 resources belonging to 500 different classes. The logarithmic distribution of resources was motivated and analyzed
with more details in [11], where comparison is given with other kinds of resource distribution patterns.

Other parameters of the simulation scenario are appropriately set to achieve a fair comparison of the three models. Both
in the decentralized and the super-peer, the average degree of nodes is set to 4 that is also the maximum number of neigh-
bors to which a query can be forwarded by a peer or a super-peer. Communication and processing delays are also set to con-
sistent values. The processing time, needed to check a resource against a query, is set to 0.2 ms for all the three models (this
value was estimated in [29] and is in accordance with our experiments on Grids). The average link delay is set to 10 ms for
connections which can be assumed to be local in most cases (link between a regular node and its parent Index Service in the
hierarchical model, link between a peer and the local super-peer in the super-peer model), and to 50 ms for the other types of
connections (link between two peers in the decentralized model or between two super-peers in the super-peer model, link
between two Index Services in the hierarchical model).

During a simulation run, each Grid host generates a set of queries. The mean interarrival time between two successive
query requests issued by the same node is modeled as a stochastic variable having a gamma probability distribution func-
tion, with a shape parameter equal to 2 and an average value equal to 300 s. For each generated query, the simulator ran-
domly selects the class of the resources that the user needs to discover. The set of performance indices is shown in Table 1.
The index Nres is computed as the average number of discovered resources. This index is particularly important, since it is
Table 1
Performance indices and their definition

Performance index Definition

Mean number of results Nres Mean number of resources discovered by a query
Message load L Frequency of messages received by a node (messages/s)
queryHits/messages ratio R Number of queryHits divided by the overall number of messages received by a node
Response time Tr, Tr(K), Tr(L) Mean time interval (s) between the generation of a query and the reception of a generic result

(mean response time), of the kth result, of the last result
Memory space Sm Amount of memory necessary to maintain information about published resources
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often argued that the satisfaction of the query depends on the number of results (i.e. the number of discovered resources)
returned to the user that issued the query. For example, in [31] a resource discovery operation is considered satisfactory only
if the number of results exceeds a given threshold. The message load L, defined as the frequency of messages received by a
single Grid node, should obviously be kept as low as possible. This performance index often counterbalances the number of
results, in the sense that high success probabilities are achievable at the cost of having a high elaboration load. The ratio R is
an index of efficiency: if an increase of R is achieved, a higher relative fraction of queryHit messages, containing useful re-
sults, is generated or forwarded with respect to the overall number of messages.

Response times are used to estimate the time to satisfaction experienced by a user, and are obtained as the sum of two
contributions: the communication delays between nodes and the processing time needed to compare a query with the
resources stored at each node. In general, the second component is negligible when the nodes store a small number of
resources (in the decentralized model), but it becomes significant when the number of stored resources is large (in the
super-peer model and to a larger extent in the high layers of the hierarchical model). Accordingly, different settings of
the average processing time or the communication delays affect the response times, perceived in the three models, in dif-
ferent ways. This issue will be discussed in Section 5. We measured different response times, that is, the average response
time Tr, the response time of the last result received for a query Tr(L), and the response time of the kth result Tr(K), to account
for the case in which a query needs to find at least k results. Specifically, we measured the response times of the first and the
10th results, Tr(1) and Tr(10).

Finally, the memory space Sm is the amount of memory used by a node to store information about the published Grid
resources; the assumption here is that, for each resource, the related metadata document requires 10 KB of data on average.

4.2. Performance of the hierarchical model

This section evaluates the performance of the hierarchical model based on GT4 Index Services, described in Section 3.1,
and specifically of the resource discovery algorithm reported in Fig. 2. Table 2 summarizes the simulation scenario for this
model.

Pres is defined as the percentage of Grid resources that an Index Services collects from the descendant hosts and Index
Services and publishes, and it is set to 25%, 50% and 100% in different simulation runs.

The value of the tree height H (see Fig. 1) was set to 3 and 4 in two different simulation sets. This choice comes from the
observation that a value of H equal to 2 would correspond to a Grid having only one Index Service and a number of regular
Grid hosts (level 0), thus reducing the Grid to a simple organization. Conversely, values of H larger than 4 would mean the
presence of more than 3 hierarchical layers of Index Services, which is very unlikely in Grids. The tree order K is chosen as
follows: once the Grid size N and the tree height H are given, K is set to the minimum value that satisfies Eq. (1), in which the
first member calculates the overall number of nodes in a complete tree with height H and order K:
Table 2
Simulat

Parame

Percent
Tree he
Tree or
Time-to
KH � 1
K � 1

> N: ð1Þ
Furthermore, it is assumed that the load imbalance among the Index Services belonging to the same level is limited. This
assumption was made to evaluate the performance of an Index Service with a strong statistical accuracy. However, process-
ing and traffic loads carried by Index Services belonging to different levels can differ. In particular, it is assumed that Index
Services have K children, except for level 1 Index Services that have as many children as are necessary to let the number of
nodes reach the value N. For example, in a Grid with 2000 nodes and three levels of Index Services (i.e. with H = 4), the value
of K is set to 13 since, with this value, the first member of Eq. (1) is equal to 2380. The upper three levels contain 183 Index
Services; to have exactly 2000 nodes, level 0 must contain 1817 Grid hosts. Therefore, the 169 level 1 Index Services are con-
nected to 10.75 hosts on average. Finally, the time-to-live TTL of query messages is set to H � 1, thus allowing queries to
explore the entire hierarchy.

Since every query can reach the root Index Service, the Nres index can be obtained with the formula (2) reported below, in
which Ntot is the overall number of resources published on the Grid:
Nres ¼
Ntot � Pres

Ncl
: ð2Þ
Note that Nres increases with the Grid size, since Ntot is a linear function of N (see Section 4.1), and therefore increases more
rapidly than the number of resource classes, which is a logarithmic function of N, as discussed in Section 4.1.
ion scenario for the hierarchical model

ter Value

age of resources published by Index Services, Pres 25%, 50% and 100%
ight (number of levels), H 3, 4
der (maximum number of children of an Index Service), K 2–100
-live, TTL H � 1
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Fig. 6. Hierarchical model: message load vs. the Grid size, in a Grid with tree height H = 3, at hosts belonging to different levels.
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Figs. 6 and 7 report the message load experienced by hosts belonging to the different levels of the Grid hierarchy. Figures
are related, respectively, to Grids having 3 and 4 levels. While the message load experienced by regular hosts is relatively low
and approaches a saturation level as the Grid size increases, the message load at Index Services increases about linearly with
the Grid size, so confirming the poor scalability properties of the hierarchical architecture. It is also interesting to notice that
the root node receives the largest number of messages per second for small- and medium-sized Grids but, in very large Grids,
the load experienced by the Index Services located immediately below the root node (i.e. belonging to level H � 2) ap-
proaches or even exceeds (with H = 4) the load of the root node. The reason is that the H � 2 level Index Services receive
query messages from an increasing number of descendant nodes, and queryHit messages from the root Index Service,
whereas the root node receives only query messages. In conclusion, intermediate Index Services undergo a very heavy load
that can be even worse than that of the root node, which is an interesting outcome of the simulation analysis.

Fig. 8 reports the average response time for hierarchical Grids having a tree height equal to 4. Comparison is made among
the performances obtained with different values of Pres, the percentage of resources published by Index Services. As the Grid
size increases, the average response time becomes longer, up to almost 20 s for a Grid with 10,000 nodes. The value of Pres

has a strong impact on the response time: in fact, owing to the large number of resources maintained in the Index Services,
the processing time is the major component of the response time, whereas communication delays, particularly in large Grids,
are relatively small, being in the order of milliseconds. Response time measured with Grids having H equal to 3 is similar and
is not reported.

Analogous trends were observed for the response times of the 10th and the last result, Tr(10) and Tr(L). Conversely,
the trend of the response time of the first result Tr(1), depicted in Fig. 9, is different and is worth being analyzed. This
trend is similar to the others only for small Grids; in fact, when the overall number of resources is small, the first result
is frequently found in the root Index Service. However, in large Grids, a query issued by a regular host has more chances
to find useful results in the local Index Service, which makes the response time of the first result decrease to much
smaller values.

A final consideration concerns the memory space. The major load is obviously carried by the root Index Service, which
must store, in its main memory, information about resources belonging to the entire Grid. With the discussed assumptions
(mean size of a metadata document equal to 1 KB and mean number of resources published by each peer equal to 5), Sm is
equal to 5 � N � Pres � 10 KB for the root Index Service. For example, with N = 10,000 and Pres = 0.50, Sm is equal to 250 Mbytes.
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4.3. Performance of the decentralized P2P model

This section evaluates the performance of the P2P decentralized model discussed in Section 3.2. Different values of TTL
(the maximum number of hops that a query message can perform) are tested, in order to evaluate how this parameter
can be tuned to improve performance for a given Grid size.

The mean number of results is reported in Fig. 10. For small networks, this number is low because the Grid is not able to
offer a significant number of resources for all the different resource classes. An increase in the TTL value results in a corre-
sponding increase in the mean number of results that is negligible for small networks, but becomes significant for larger
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networks. It is also noticed that, with a fixed value of TTL, the number of results decreases when the network size exceeds a
threshold value. Indeed, beyond this threshold, the TTL value limits the chances to discover the required resources, because
they are more and more dispersed over the network.

In Fig. 11, it is observed that a high message load is a toll to pay if a large number of results is desired. Indeed, curves of
message load show a trend comparable to the number of results. A trade-off should be reached between maximizing the
number of results and minimizing the processing load; to this aim, the efficiency index R was evaluated. Fig. 12 allows to
identify the TTL value that maximizes the efficiency of the network for a given value of the Grid size. For Grids having less
than 400 nodes, the highest values of R are obtained with a TTL value equal to 3, but for larger networks the optimum TTL
value gradually increases. For example, a TTL equal to 4 is preferable for Grid sizes ranging from about 400 nodes to about
2000 nodes. With 10,000 nodes, a TTL equal to 6 outperforms other TTL values, and curve trends seem to suggest that, for
even larger networks, a TTL equal to 7 is the best choice.

Fig. 13 shows that the average response time increases with the TTL and with the Grid size because a larger fraction of
queryHit messages come from more distant peers. However, it is also noticed that the response time gets to a saturation level
in very large Grids because the tested TTL values allow to explore a limited region of the Grid. Fig. 14 compares the different
response times measured with a TTL value of 4. The response times of the first, the average and the last result have similar
trends and comparable values for both very small and very large Grids. The reason is that in small Grids results can only be
discovered in neighbor peers, while in large Grids a high fraction of results are discovered in peers located on the boundary of
the Grid region covered by the given TTL. Conversely, a higher variability of response times is experienced in medium-scale
Grids, i.e. having a number of nodes comprised between 50 and 2000: in such Grids, results are discovered in nodes that are
more fairly partitioned between close and remote ones.

The trend of the 10th response is peculiar with respect to the other ones. First, it can be noticed that such a curve has not
been evaluated for Grids having less than 200 nodes, since it is very rare to discover at least 10 useful results in those Grids.
For larger Grids, it is observed that Tr(10) is higher with respect to the other indices, included the response time of the last
result. The reason is that only a fraction of the queries are followed by at least 10 results, since the average number of results
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Fig. 11. Decentralized P2P model: message load vs. the Grid size, for different values of TTL.
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is lower than 10 (as appears in Fig. 10). Hence Tr(10), which is evaluated and averaged only for such queries, is found to be
higher than the response time of the last result averaged on all the queries.

4.4. Performance of the super-peer model

This section evaluates the performance of the super-peer model and the resource discovery algorithm shown in Fig. 5. The
mean cluster size is set to 10: this assumption, as well as the impact of the cluster size on results, are discussed in Section 5.

It appears from Fig. 15 that an increase in the TTL value allows for discovering a notably larger number of resources only
with networks having more than 1000 nodes. A similar effect is observed on the message load of super-peers (not shown): it
increases with the TTL and the Grid size. As in the fully decentralized network, a trade-off may be obtained by analyzing the
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Fig. 15. Super-peer model: mean number of results vs. the Grid size, for different values of TTL.
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efficiency index R. Fig. 16 shows that the optimum TTL value, i.e. the value that maximizes R, increases with the Grid size. For
example, in a Grid with 1000 nodes the maximum value of R is obtained with a TTL equal to 3, whereas, in a Grid with 10,000
nodes, R is maximized with a TTL equal to 5. As a consequence, TTL should be set to a value equal or greater than 5 only if the
number of nodes exceeds 5000; for smaller networks, tuning decisions should take into account that a high value of TTL can
severely decrease the overall efficiency.

The trend of the average response time is observed in Fig. 17. It can be noticed that increasing the TTL value permits to
explore a wider region of the Grid, causing a corresponding increase in the average response time. This effect is limited in
small Grids, but it is increasingly more evident as the Grid size increases. Finally, Fig. 18 compares the values of different
response times with a TTL fixed to 4.
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5. Comparison and discussion of results

This section discusses and compares the results obtained with the three discussed models. The TTL value is used as a var-
iable parameter for the decentralized and the super-peer model, whereas it is set to 3 for the hierarchical model, thus allow-
ing queries to reach the root Index Service. For the super-peer model, it is assumed that each super-peer serves, on average, 9
regular nodes (thus forming clusters of 10 nodes on average). Resource distribution, topology, communication delays and
processing times are set so as to permit a fair comparison among the models, as discussed in Section 4.1. Comparison is first
made between the two peer-to-peer models. Since results suggest that the super-peer model is more scalable and efficient
than the decentralized model, performance comparison is then made between the super-peer and the hierarchical model.

Figs. 19–21 compare, respectively, the average number of results, the average load and the average response time
achieved with the decentralized model (denoted as D) and with the super-peer model (labelled as SP), in Grids having dif-
ferent sizes, and for different values of the TTL parameter. Since a super-peer manages metadata related to the resources
maintained by all the peers of the local cluster, the average number of results per query is remarkably larger than that ob-
tained with the decentralized model. Actually this improvement is obtained at the cost of having a higher load and a longer
average response time with respect to the corresponding values measured with the fully decentralized model.

Overall, the super-peer model, especially for large-scale Grids, proves to be more efficient than the decentralized model, if
it is considered that:

(1) The super-peer message load shown in Fig. 20 is the load carried by super-peers, not by simple hosts. This load (at
most 25 messages per second with TTL = 5) can be considered acceptable, since a super-peer is usually chosen among
the hosts of a Grid Organization specifically because it offers higher performance capabilities.

(2) The average response time experienced with the super-peer model is anyhow appropriate, being always lower than 1
second and, if compared to the decentralized model, the increase in response time is much lower than the correspond-
ing increase in the number of results.

Figs. 22–24 compare the super-peer model with the today largely used hierarchical model (labelled as HR), in which the
tree height H is set to 4. Fig. 22 shows the number of results obtained with the two models. With the hierarchical model, the
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number of results depends on the Grid size and the value of Pres, the percentage of resources published by an Index Service.
The number of results obtained with Pres = 100% can be considered as an upper bound, because in this case all the resources
belonging to the class of interest can be found in the root Index Service. However, a Pres equal to 100% is not frequent in real
Grids, while values of 50% or 25% are more realistic. One of the reasons is that Index Services located at different hierarchy
layers may belong to different administrative domains, and an Index Service does not always have the possibility or the
authorization to publish all the information maintained by another Index Service. Conversely, this is not an issue in
super-peer networks, because each super-peer only publishes data related to the resources of the local Grid Organization.

With the super-peer model, the number of results can be improved by increasing the TTL value, thus permitting to ex-
plore a larger region of the network. If a proper value of the TTL parameter (i.e. 5) is set, the average number of results
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exceeds that obtained with the hierarchical model in which Pres = 25%, for all the considered values of the Grid size. Of course,
if Pres is even lower than 25%, the use of the super-peer model becomes even more effective.

In Fig. 23, the load of a generic super-peer is compared with the load experienced by the Index Services located at the two
highest layers of the hierarchy, with Pres = 50%. This figure shows that the super-peer load is generally higher than the load at
the root Index Service, for small- and medium-sized Grids. The reason is that the root Index Service receives only query mes-
sages, while a super-peer receives also queryHit messages from the neighbor super-peers. However, as the Grid size in-
creases, the super-peer load reaches a saturation level whereas the root Index Service load increases with a notably slope
and exceeds the super-peer load in Grids having 10,000 nodes or more. Fig. 23 also shows the very high load that is carried
– in large Grids – by the Index Services located just below the root node of the hierarchy (at level 2), which confirms the
better scalability features of the super-peer model.

Another interesting consideration concerns the memory space. In the super-peer model, the amount of memory that must
be reserved on a super-peer to maintain information about Grid resources does not depend on the Grid size but exclusively
on the number of hosts of the local cluster. With the discussed assumptions (cluster size equal to 10, mean size of a metadata
document equal to 10 KB, and mean number of resources published by each host equal to 5), Sm is equal to about 500 Kbytes
at a super-peer, while it is equal to Sm = 5 � N � Pres � 10 KB at the root Index Service of the hierarchical architecture. For
example, with N = 10,000 and Pres = 0.5, Sm is equal to 250 Mbytes. Therefore, the hierarchical model requires a much larger
amount of main memory. Even if such a memory can be available in the server machine that runs the Index Service, the anal-
ysis of metadata information may require a large amount of time. In fact, for every Index Service entry, the resource char-
acteristics must be compared with the constraints specified in the query. In particular, resource matchmaking can be quite
cumbersome when it is based on the evaluation of multiple parameters that have discrete or continuous values, as is the case
for example of the Condor matchmaking [24]. With the assumption that the time to process a single resource is 0.2 ms,
Fig. 24 reports the average response time experienced with the two models, with Pres = 50% in the hierarchical model. As
the Grid size increases, it is clear that the Index Services of the hierarchical framework spend a lot of time in processing a
large number of resources, leading to average response times which are much longer that those experienced in the
super-peer model, in Grids with more than 1000 hosts.

As mentioned in Section 4.1, the response time of queries has two main components: the processing time of resources and
the communication delays. A modification in the average processing time can obviously alter the weight of these two
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components. To analyze this issue, further simulations were run, for the three models with different values of the average
processing time. The impact of this variation increases with the average number of resources stored at each node. Therefore,
it has no perceivable effect on the decentralized model (because the processing time is negligible with respect to the com-
munication delays), but it has a moderate effect on the super-peer model and a much more evident impact on the hierar-
chical model.

Fig. 25 compares the response time obtained in the hierarchical and super-peer models, with the average processing time
set to 0.3 ms instead of 0.2 ms. Note that the qualitative trend of figures is not altered. However, the response time in the
hierarchical model increases more rapidly with the Grid size, and it exceeds that of the super-peer model for lower values
of the Grid size.

In conclusion, the hierarchical model can be deemed suitable only for small- and medium-sized Grids. Conversely, in a
large Grid, the advantage related to the larger number of results that can be obtained with the hierarchical model is often
surmounted by its larger costs in terms of processing load and response time with respect to the super-peer model. As an
example, let us consider a 10,000-nodes Grid and compare the performance results obtained with the hierarchical model
with Pres = 50%, and with the super-peer model with TTL = 5. It can be observed that the ratio between the corresponding
numbers of results is about 1.25, in favor of the hierarchical model (Fig. 22), but the Index Services located at level 2 must
undergo a load which is more than twice the load sustained by a generic super-peer (Fig. 23), while the average response
time (Fig. 24) is even 10 times longer than the response time experienced in the super-peer model (about 8 s against
0.7 s), assuming an average processing time of 0.2 ms per resource.

Another interesting issue is worth being analyzed, because it is related to current and future trends of Grid systems: the
effect of the average size of clusters on the performance of the super-peer model. In fact, in file sharing super-peer networks,
clusters are usual large, with as many as 100 nodes per cluster. On the other hand, in today Grids this value is unusual. Most
organizations possess only a few nodes (even if often they are multi-processor nodes), so an average cluster size of 10 is
much more common. However, the cluster size in Grids will probably increase in the future: to anticipate this trend, simu-
lation experiments with larger clusters were performed, and results were again compared with those of the hierarchical
model, in which the height is equal to 4.

As clusters become larger, the following considerations can be made:

� The super-peer model is able to retrieve more results, as expected. With an average cluster size equal to 100, and TTL lar-
ger than 3, the number of results approaches that obtained with the hierarchical model;

� However, the load at super-peers significantly increases and, with a TTL larger than 3, it exceeds that of Index Services.
This happens because every query makes a larger number of hops than in the hierarchical model (in which it is equal
to 3) and, for each further hop, the number of messages is multiplied by a factor that can be as high as 4, which is the
maximum number of neighbors to which a query can be forwarded;

� The response time slightly increases in the super-peer model, but in the hierarchical model it is still much longer, because
the root Index Service has to process a much larger number of resources than super-peers. In fact, in the hierarchical
model all the resources, or a percentage Pres of them, are replicated and published by the root Index Service, whereas
in the super-peer model the resources are distributed on the different super-peers.

6. Conclusions

Three models for building a Grid information system, namely the hierarchical model, the decentralized P2P model and the
super-peer model, have been analyzed by means of a simulation framework. The three models have also been compared in
order to determine which one is the most effective in different Grid configurations and sizes. In particular, performance com-
parison showed that the super-peer model is generally more convenient then the decentralized model because the higher
load that must be carried by super-peers is repaid by a notable improvement in terms of response time and expected number
of results. Moreover, comparison between the hierarchical and the super-peer model showed that the hierarchical model is
valuable for small and medium-sized Grids, but the super-peer model is more effective in very large Grids and therefore is
more scalable. In addition to the results reported in this paper, a number of further considerations (concerning fault-toler-
ance, load balancing, administrative features, etc.), generally favor the use of the super-peer paradigm, especially for very
large multi-institutional Grids. The reported analysis can be profitably used by designers and developers of Grid information
systems also because it gives hints about appropriate strategies tailored to the tuning of protocols in different network
configurations.
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