
M3AT: Monitoring Agents Assignment Model for
Data-Intensive Applications

Vladislav Kashansky∗†, Dragi Kimovski∗, Radu Prodan∗, Prateek Agrawal∗‡,
Fabrizio Marozzo§, Gabriel Iuhasz¶, Marek Justyna‖ and Javier Garcia-Blas∗∗

∗Institute of Information Technology, University of Klagenfurt, Austria
†School of Electrical Engineering and Computer Science, South Ural State University, Russia

‡ Lovely Professional University, India
§ DIMES Department, University of Calabria, Italy

¶ West University of Timisoara, Romania
‖ Poznan Supercomputing and Networking Center, Poland

∗∗ Department of Computer Science and Engineering, University Carlos III of Madrid, Spain

Abstract—Nowadays, massive amounts of data are acquired,
transferred, and analyzed nearly in real-time by utilizing a
large number of computing and storage elements interconnected
through high-speed communication networks. However, one issue
that still requires research effort is to enable efficient monitoring
of applications and infrastructures of such complex systems. In
this paper, we introduce an Integer Linear Programming (ILP)
model called M3AT for optimized assignment of monitoring
agents and aggregators on large-scale computing systems. We
identified a set of requirements from three representative data-
intensive applications and exploited them to define the model’s
input parameters. We evaluated the scalability of M3AT using
the Constraint Integer Programing (SCIP) solver with default
configuration based on synthetic data sets. Preliminary results
show that the model provides optimal assignments for sub-
systems composed of up to 200 monitoring agents with complex
I/O policies, while keeping the number of aggregators constant
and demonstrates variable sensitivity with respect to the scale of
monitoring data aggregators and limitation policies imposed.

Index Terms—Monitoring systems, high performance comput-
ing, aggregation, systems control, data-intensive systems, gener-
alized assignment problem, SCIP optimization suite.

I. INTRODUCTION

In the last years, the ability to produce and gather data
has exponentially increased. In the Internet of Things’ era,
huge amount of digital data is generated and collected from
various sources, such as sensors, cameras, mobile devices,
GPS devices, web applications and services [1], which must
be acquired, pre-processed and analyzed in real-time through a
large set of computing and storage nodes. Examples of systems
are social media platforms that analyse concurrently various
patterns and trends related to human behaviours, driver-less
vehicles that receive information from a very large number
of sensors and need to make immediate decisions, or medical
imaging applications that continuously analyse different types
of images to provide unique and complementary information
to the medical professionals.

Novel architectures, programming models and systems paired
with high performance computing (HPC) systems, such as
many-core and multi-core computers, clouds, and multi-clusters,

are commonly used by data analysts to tackle big data issues
and get valuable information and knowledge in a reasonable
time [2]. One of the main issues that still requires additional
research efforts is efficient monitoring of data intensive
applications and corresponding HPC infrastructures. The major
problem for deploying large-scale monitoring platform is
the measurement of performance metrics in the context of
computing infrastructures composed of million of nodes with
complex interconnects and multi-layered architectures. It stands
to the reason that it is impractical and many times impossible
to globally measure the performance metrics of large-scale
applications, while preserving, for example, I/O limitation
policies. Thus, it is critical to identify:

• The parameters to monitor and the granularity level (e.g
dynamic tracing, profiling, per-node aggregated statistics,
per cluster I/O heatmaps);

• The measurement interval and the communication patterns
in relation to these intervals;

• The aggregation and pre-processing of performance met-
rics at a monitor granularity for further analysis.

This paper focuses on answering the last two questions by
the introducing a mathematical model called M3AT for the
optimized assignment of monitoring agents and aggregators,
that reduces the transfer time of the raw monitoring data, while
meeting strict I/O limitations. We identified a set of require-
ments from three representative data intensive applications of
the ASPIDE project1 and exploited them to define the input
parameters of the model. The contributions of this paper are
the following:

1) a background review of the monitoring practices for the
converging HPC and Cloud computing systems;

2) a preliminary architecture of the large-scale monitoring
system, proposed in ASPIDE project;

3) an ILP approach for assigning monitoring agents based on
the Generalized Assignment Problem (GAP) formulation;

1https://www.aspide-project.eu/

In: The 28th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP 2020), Vasteras, 
Sweden, March 2020.



4) a practical approach for selecting monitoring aggregation
points using the SCIP optimization suite using several
variable complexity data sets and precision.

The remainder of the paper is structured as follows. Section II
discusses related work. Section III describes the use-case
applications, and the requirements of the proposed model
and the monitoring environment. Section VI-A describes the
proposed M3AT assignment model. Section VII presents an
experimental evaluation and Section VIII concludes the paper.

II. BACKGROUND AND RELATED WORK

This section reviews current approaches, tools and frame-
works for monitoring of large-scale parallel and distributed
systems for general purpose and data-intensive processing.

A. Data-intensive cloud application monitoring

A cross-layer monitoring scheme is crucial for big data plat-
forms on the large-scale cloud systems due to the distribution
of application components on multiple virtual machines across
cloud layers. Currently, most data intensive applications run
on Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS)
or Infrastructure-as a-Service (IaaS). The work in [3] analyses
the problem for public clouds and proposes an architecture for
a monitoring platform. In a IaaS deployment, one typically
monitors system metrics like CPU usage, together with its state,
memory, storage and network utilization. In contrast, PaaS and
SaaS-level metrics focus on more abstract or complex metrics
such as byte throughput, status of system services, uptime, and
availability. A good example is a Hadoop YARN deployment
that uses several monitoring metrics such as MapReduce
processing time, job turnaround, or shuffle operation.

Optimizing data-intensive applications requires a compre-
hensive overview of historical metrics, as parameter tuning
is difficult in the case of missing ones. For example, it is
difficult or impossible to tune an application that runs on a
big data platform by having access to system metrics only. In
case of job and reducer task scheduling [4], monitoring data is
crucial too. The authors in [5] described a dynamic architecture
for monitoring large-scale distributed systems that uses the
MonaLISA service to gather information for automatically
improving task scheduling. Another work in [6] presented a
distributed resource monitoring architecture to identify the
optimal set of machines to execute an application, and an
implementation of prediction methods to evaluate the overall
performance of a node. The authors in [7] proposed a method
for co-scheduling CPU and memory-intensive applications onto
the same node by using monitoring information to improve
the overall throughput and the energy efficiency. Lastly, [8]
describes a minimalist monitoring approach.

There are several monitoring solutions currently in use or
in development. For centralized monitoring, all resource states
and metrics are sent to a centralized monitoring server that
continuously pulls them from each monitored component. This
allows a more controlled management and data access, while
potentially sacrificing availability and elasticity by introducing a

single point of failure, and eliminating the possibility of horizon-
tal scaling. Decentralized architectures address most problems
related to scaling and elasticity of centralized architectures with
no single point of failure. The central authority is neutralized
in structured peer-to-peer (P2P) systems, thus eradicating the
central point of failure. Unstructured P2P network overlays
are distributed in nature where the search directory is not
centralized, while in hybrid P2P systems super-peers serve as
localized search hubs for small network portions [9].

B. Monitoring data-intensive HPC applications

Contemporary HPC systems offer extreme levels of the-
oretically estimated peak hardware performance2. However,
utilizing these systems in an efficient manner remains a major
challenge [10] in practice. Scientific software developers and
mathematicians usually have to invest huge efforts in finding
suitable mathematical models for their problem and efficient
implementations tuned for the target computing architectures.
Moreover, it is not enough to write correct and efficient code
for the target platform in a static manner, but is also important
to provide fine-grained monitoring and adapt the application,
while satisfying dynamic constraints. In a real computing
environment, much of the complexity of the application
I/O interfaces is hidden behind advanced abstraction layers
of programming frameworks and data management systems,
whose performance behavior is hard to predict, especially in a
shared data-intensive environment.

Over the last decades, alongside with the development of
new heterogeneous software-defined computing systems, a
large number of model-specific performance measurement and
analysis tools3 emerged [11], [12]. These tools comprise low-
level instrumentation, performance measurement and analysis
based on hardware counters, time measurements, call graphs,
operating systems tracing and sampling tools, and programming
model-specific performance tools covering, for instance, multi-
threaded, OpenMP, and MPI programs.

Finally, collecting detailed information to find performance
bottlenecks introduces I/O contention and collection overheads
[11]. Especially the transition [13] to pre-exascale systems with
a high degree of parallelism, in conjunction with the “sharp”
measure frames, leads to a significant escalation of this problem.
One tool for scalable HPC I/O characterization is Darshan [14],
designed to accurately capture important properties such as
I/O access patterns with minimum overhead.

The approach employed by the ASPIDE project is the Bull
Smart IO Instrumentation tool [15], composed of two parts:

a) I/O metrics gathering chain, consisting of:
• an iolib library intercepting I/O-related calls to the
glibc library and a job agent running on compute nodes;

• a set of gateway services, receiving and aggregating I/O
metrics from the compute nodes and storing them in a
distributed MongoDB database. A gateway can serve up
to 300 compute nodes;

2TOP500. https://www.top500.org/list/2018/11/
3VI-HPS. https://www.vi-hps.org/tools/tools.html



Figure 1: ASPIDE architecture design.

• a master service, in charge of storing job description data
such as job identifier and start time.
b) Graphical User Interface: and API, composed of a

Web server and an application accessing the MongoDB database
and creating comprehensive views. The I/O instrumentation
does not require application modification and relies on inter-
cepting I/O function calls at the glibc dynamic library level
through a LD_PRELOAD mechanism.

III. ASPIDE PROJECT

This section covers the requirements for the monitoring
model and environment from the project’s perspective.

A. Project architecture and goals

The project aims to provide programming models to assist
developers in building data-intensive applications for large-
scale systems, while ensuring compliance with requested data
management and performance. More concretely, it targets
support for large-scale data processing through HPC, starting
with the vision of changing the current programming paradigms
in a data-driven style, improving the data access mechanisms,
and developing novel methods for heterogeneous data analytics.

The project vision shown in Figure 1 establishes three re-
search directions. First, it focuses on the design of fundamental
models and paradigms for large-scale parallel programming in
heterogeneous systems with runtime support for data-driven
malleable computation. Second, it emphasizes the programming
of extreme data analytics applications and the development
of data-centric tools by exploiting sate-of-the-art monitoring,
debugging and data analysis techniques. Third, it relies on
big data applications to identify barriers in the management
of existing HPC systems, and removes them with automated
data-layout strategies and cross-layer data management at both
client and server sides.

IV. MONITORING SYSTEM REQUIREMENTS

We analyzed the project use-case applications to steer the
monitoring model development and identified a set of critical
requirements, summarized in Table I. Furthermore, we also
introduced a monitoring data representation format compliant
with the M3AT monitoring model. All applications require

detailed hardware and software monitoring parameters to be
correctly and efficiently executed, grouped into three categories:
• Application-related parameters and metadata contain

information on the application execution, such as start and
end time, dynamic traces, memory utilization, eventual
migrations, and intercepted exceptions;

• I/O-related parameters contain information on the I/O op-
eration during application execution, including read/write
bytes, read/write operations and I/O exceptions;

• Node and operating system-related parameters contain
aggregated information on physical and virtual execution
nodes, such as resource utilization and node identification.

Table I shows that system metrics such as CPU, RAM and
I/O with per-node granularity are important for the both HPC
and big data systems. At the same time, there are several
underlying layers [16] of metrics to consider for application
execution. Combining them with power measurement data
and environmental parameters such as temperature introduces
additional complexity for system control software. Thus, it
is important to provide an approach that allows aggregation
and pre-processing of coarse-grained data subject to the
required application scale. We therefore propose the concept
of software-defined monitoring agents and aggregators that
form an intermediate pre-processing system and introduce a
chain of new research and engineering questions in order to
make it feasible in real world. In this context, one of the most
important questions is assigning these agents while keeping
the imposed limitations and providing required performance.

V. ASPIDE MONITORING SYSTEM

The monitoring and analytics system enables a distributed
data-centric monitoring and analysis, exposing and associating
the collected metrics with the potential application bottlenecks.
The key insight behind such an approach is that the source of a
bottleneck in a data-intensive applications is often takes place
not where it is detected (i.e. where the data is processed with
a high communication or thrashing overhead). The conceptual
monitoring system depicted on Figure 2 consists of four
components:

1) M3AT for monitoring agents and aggregators assignment;
2) Aggregation and event detection component (AEDC)

provides monitoring data aggregation from the agents and
detects possible events. This component is decentralized
and runs an instance on every aggregation node;

3) Main analysis component (AC) is centralized and provides
a set of analytic tools, including smart monitoring of
application performance and bottlenecks detection;

4) Application Programming Interface (API), which enables
access to the services provided by the monitoring platform.

VI. M3AT ARCHITECTURE DESIGN

M3AT, depicted on Figure 3, performs time-optimal as-
signment of monitoring agents and aggregation points. It
targets efficient low latency monitoring to assist the main
analysis component (AC) in timely identification of the inter-
relationships between monitored applications, crucial for the



Table I: Software and monitoring requirements in the ASPIDE project.

Use case Software Monitoring

Urban computing DMCF, Hadoop Spark CPU cores, RAM and disk, Apache Ambari
[1min], I/O latency heatmap

Magnetic resonance image processing FreeSurfer and ANTS. FSL, MRtrix3, ANTS, SMT,
Bash/Nipype pipelines

CPU/RAM use, Nipype [1 s], I/O latency
heatmaps

Object detection and computational fluid
dynamics

SLURM, Lustre, Python, Scikit learn, TensorFlow
with cuDNN, Horovod

CPU, GPU, memory, power, temperatures;
BEMOS, Nagios, dynamic profiling [10 s]

Figure 2: Conceptual monitoring system architecture.

online scheduling and auto-tuning. M3AT revolves around
an optimization and assignment module, which applies a
discrete optimization formalism (described in Section VI-A) to
optimally assign monitoring agents and data aggregation points.
Through an external API, M3AT receives from the runtime and
I/O management systems information about the application
spawn map and monitored metrics, including data volume,
bandwidth requirements, and system topology. Thereafter, the
ILP module searches for an assignment of monitoring agents
and aggregators that meets the strict I/O requirements. Lastly,
the monitoring system receives the assignment solution for
further configuration of the agents.

Figure 3: M3AT architecture design.

A. Monitoring agent assignment

The M3AT model aims to identify an optimal assignment
[17] of monitoring agents (see Figure 4) and aggregation
points, where the monitoring data needs to be pre-processed
for further analysis. Initially, the monitoring agents are selected
from the partitions, subject to a given application. Thereafter,
we assign to the monitoring agents a subset of the required
aggregators guaranteeing a low response time and a fixed
amount of monitoring traffic within the given upper limits.

The assignment algorithms can vary in complexity, but the
problem is generally proven to be NP-complete [18], [19],
especially if we directly consider traffic limitations in the
model and non-symmetrical matching on the bipartite graph.
Thus, the problem needs to be decomposed on the architectural
level in independent hierarchical pieces in a divide-and-conquer
fashion. The reason for this architectural pattern is the nature of
large-scale optimization problems, known to be very resource-
demanding in both cases of pure or mixed ILP [20].

Figure 4: Graph model of data flows in the monitoring system.

Currently, the M3AT model covers an optimal one-stage
assignment approach guaranteed to yield nearly-optimal solu-
tions to the static model under a set of limiting assumptions.
The algorithm captures communication costs of the agents as
the edge weights in an assignment graph. A weighted sum of
minimum response times in this graph then yields the optimal
assignment. More precisely, we defined an objective function
to minimize the time to perform the I/O operations and find an
efficient monitoring agents and aggregators assignment for the
monitoring system. The applicability of our model is limited
by the following assumptions:



Table II: Mathematical model parameters and their description.

Symbol Description
AG Set of monitoring data aggregators
MA Set of monitoring agents
D̃ Delay matrix for each channel (i, j)

DLij Static delay over the channel (i, j)
a Number of monitoring agents
m Number of aggregators

nhij Number of Hops over the channel (i, j)
V Dj Data volume to transmit for the given MAj

SRj Sampling rate of MAj

Tj Measurement interval of MAj

wij Bandwidth of the channel (i, j)
xij Binary variable, indicates that MAj is assigned to AGi

Ci Bandwidth usage limiting factor for the given MAi

• The a-priori information about the running application is
already present, and delivered by the runtime system;

• The number and location of monitoring and aggregating
agents is provided by runtime and data management
systems;

• The relevant application performance metrics have already
been selected and considered as the data volume, accu-
mulated within the given push interval;

• The optimal control criteria (objective function) with the
set of constraints is not changing during the solving
procedure of the optimization problem.

B. Formal assignment model

Considering these requirements, we present a formal model
and a set of essential definitions, summarized in Table II.
The problem inspected in this model comprises a set of the
monitoring agents MA and aggregators AG:

MA = {MAj | 1 ≤ j ≤ a} (1)
AG = {AGi | 1 ≤ i ≤ m} (2)

where a and m are the model limitations for the both classes of
agents to be executed on the underlying partitions. The product
of these two sets forms subset of communication channels used
by the monitoring system to transfer the sampled data.

Every monitored application comprises a number of such
channels that allow communication between each MAj and
AGi with the delay properties, described by the matrix:

D̃ =


MA1 ··· MAj

AG1 c1,1 · · · c1,j
...

...
. . .

...
AGi ci,1 · · · ci,j

 (3)

cij =

static delay︷ ︸︸ ︷
DLij +

data-dependent delay︷ ︸︸ ︷
V Dj(SRj , Tj)

wij
(4)

The term DLij is the static connection-estimation delay,
modelled as a function of number of hops nhij for pure
networking delays, or as a function-based on delay distribution
of the given I/O management system for the complex multi-
layered architectures. The optimal completion time of the

monitoring data transfer can then be formulated as the GAP
[17] by introducing per-aggregator capacities:

a∑
j=1

wi,j · xij ≤ Ci ∀i ∈ AG. (5)

The objective is to minimize the sum of all possible completion
times of data transfers for every MAj to AGi:

minimize
xij

m∑
i=1

a∑
j=1

cij · xij ,

subject to:
a∑

j=1

wi,j · xij ≤ Ci ∀i ∈ AG

m∑
i=1

xij = 1 ∀j ∈MA

xij ∈ {0, 1} ⊂ Z
wij ∈ (0, 1] ⊂ Q
cij ∈ Q,

(6)

where xij ∈ 0, 1 indicates the assignment of MAj to AGi.
The first constraint is defined for every AGi and represents
a knapsack-type bandwidth limitation wi,j defined for each
possible assignment xij . Practically speaking, it models the
situation when the several monitoring agents are capable to
transmit the data at the given rates, but the aggregator MAj can
only support the total inflow not exceeding the given policy-
based limit Ci. The second constraint indicates that every
monitoring agent MAj must be assigned to any aggregation
point and it impossible to have the unassigned MAj within the
given problem. The problem with this formulation is NP-hard
[21], due to posing strict policy-based allocation limits.

C. Generalized Assignment Problem (GAP)

We observe that the problem can be reduced to the GAP,
which has a huge importance in the operational research
sciences. Practically, it has many real-life use-case scenarios
[22] due to discrete nature of the decision in many controlled
processes. Exact algorithms for GAP prove to be efficient
only for problems [23] of a few hundred variables [21],
[24]. The survey [25], for example contains the review of
classic approaches to solve this problem, including method of
Lagrangean relaxations. Most of the contemporary techniques
follow the solution workflow diagram depicted on the Figure
5. Where, at first, the presolving stage occurs to reduce the
possible search space, then Branch-and-Cut [26] procedure
with several so-called primal heuristics are applied to move
in the solution tree of the search space towards the optimum.
For the large-scale optimization problems Danzig-Wolfe and
Benders’ [20], [26] decomposition methods with meta-heuristic
strategies received a great degree of applicability [17], including
simulated annealing and tabu search [23], variable depth search,
ant colony and evolutionary algorithms.



D. Discussion on the possible simplification

The most satisfying simplification of this problem is formu-
lating it as a linear assignment problem [17]:

minimize
xij

n∑
i=1

n∑
j=1

cij · xij ,

subject to:
n∑

j=1

xij = 1 ∀i ∈ AG

n∑
i=1

xij = 1 ∀j ∈MA

xij ∈ {0, 1} ⊂ Z
cij ∈ Q.

(7)

This approach is known to have P-complexity [17] and can
be solved by the Hunagrian algorithm [27], however it does
not explicitly include traffic limitations expressed by Eq. 5.
Moreover, it requires the number of monitoring agents a be
equal to aggregation points m, which might not be feasible in
practice, especially with a direct formulation of the problem.
However, it is still applicable in opportunistic fashion by
introducing, for example, monitoring agents clustering with
subsequent cluster to aggregation point assignment. There are
currently several approaches to solve this problem presented
in [17], [27], [28]. For the current study, we have decided
to proceed with formulation of the problem given by Eq. 6,
by keeping the complexity, but compensate it by applying
state-of-the-art techniques in the field of discrete optimization.

VII. EXPERIMENTAL EVALUATION

In this section, we evaluate the M3AT monitoring assignment
model based on a synthetic benchmark data set.

A. Experimental setup

We implemented the model in C/C++ by using the SCIP
Optimization Suite [29] with SCIP 6.0.2 with default4 con-
figuration and SoPlex 4.0.2 LP solver. We implemented the
assignment model as a stand-alone service with a command-line
interface that enables straightforward use of its functionalities
(see Figure 3). We compiled the source files for the model and
SCIP using gcc version 4.8.5 20150623 (Red Hat 4.8.5-36)
and handled the experimental data using the BASH 4.2.46(2)-
release and MariaDB 5.5.64. We performed the experiments
on a dedicated dual-socket node Intel Xeon CPU E5620 at
2.4GHz with 16GB of memory, running CentOS 7 (3.10.0-
957.27.2.el7.x86˙64).

B. Data Generation Policy

We tested the model on a set of assignments problems,
sampled with a uniform distribution5 using variable random
seeds ranging form 100 to 150, generated by the MT19937
generator [30] of the GNU Scientific Library 2.0.1 [31], [32].
We identified the constants for the uniform distribution based on

4https://scip.zib.de/doc-6.0.2/html/PARAMETERS.php
5Sample size of 50 for each complexity class A†, B†, C†, m and a

Figure 5: SCIP 6.0.2 internal diagram of solution-workflow
process.

the use-case ecosystem requirements. In particular, Equations
8 and 9 model the situation with relatively low connection
estimation latency (static delays) and high variation in the
data-dependent transmission latency:

wij = U(0.01, 1); (8)

cij =

static delay︷ ︸︸ ︷
U(0.01, 5)+

data-dependent delay︷ ︸︸ ︷
U(0.10, 1)

wij
. (9)

We therefore created three complexity classes of the limitation
policies A†, B†, C† in relation to the works in [21], [33], [34]:

Class A† : Ci =


0.6 · n

m + 0.4·
· max
∀i∈AG

∑a
j=1 wi,j , U(0.00, 1) ≥ 0.5;

Eq. 11, otherwise;
(10)

Class B† : Ci = m−1 ·
a∑

j=1

wij ; (11)

Class C† : Ci = 0.8 ·m−1 ·
a∑

j=1

wij . (12)

Each class provides possible I/O limitation scenarios imposed
to the given aggregators set. The equations 10 – 12 model
the real situations that occur in the practice. For example,
complexity classes B† and C† model an environment with
bandwidth saturation within a given HPC cluster partition
by setting limitation policies inversely proportional to the
current number of aggregators and possible amount of traffic



in circulation. The complexity class A† is also derived from
the application use-cases and allows probabilistic variability in
the bandwidth saturation for a given aggregator.

C. Experimental results

We first evaluate the behaviour of M3AT for different A†, B†

and C† data classes and present the results in Table III. We use
the default SCIP configuration with 10% relative gap. For this
scenario, we fix the number of aggregators to m = 20 based
on the requirements identified in the use-cases ecosystems
analysis. We gradually increase the number of agents in the
range of a ∈ [20, 200] by varying the asymmetry factor ρ = a

m ,
scaled to the order of 10. The reason for this experimental
direction is that data aggregation systems typically demonstrate
high asymmetry [35] in relation to the number of monitoring
agents per aggregator, and is a matter of practical interest to
reveal the behaviour of the model in this case.

For A†-class problems, SCIP demonstrates a very fast
convergence rate, requiring 100ms on average for several
hundreds of LP iterations and a negligibly small number of
cuts. The memory consumption is around 6MB on average.
At maximum it takes 224ms for m = 20 and a = 200 with
very close 0% exit relative GAP (RGAP), a solver-specific
parameter that restricts the optimality degree of the obtained
solutions6. The B†- and C†-class problems exhibit different
behaviour, since they introduce constraint generation based
fully on the number of aggregators. For example, it could
take more than 100 s for m = 20 and a = 180 to reach the
optimum with 0% RGAP, while requiring several thousand LP
iterations and cuts. Generally within the 10% RGAP limit, the
execution time of the solver does not require more than 10 s
for B†- and C†-class problems of 200× 20 monitoring agents
and aggregators, by consuming 20−50MB of the RAM.

Figure 6: Execution time of SCIP solver with default config-
uration and 10% relative gap for different combinations of
monitoring agents and aggregators.

6https://scip.zib.de/doc-6.0.2/html/PARAMETERS.php

Table III: Experimental results for A†, B† and C† classes
for m = 20 aggregators with default SCIP configuration and
10% relative gap. Average SCIP runtime in seconds (ART),
average SoPlex LP iterations (ALI) and average SCIP cuts
(ACU) computed for a sample size of 50.

Class A† Class B† Class C†

a ART ALI ACU ART ALI ACU ART ALI ACU

40 0.056 65 2 1.537 2,364 152 1.332 2,265 138
60 0.077 101 4 1.449 4,846 250 1.747 5,758 274
80 0.090 112 2 2.524 7,166 343 2.766 7,818 361

100 0.137 163 9 3.495 8,294 389 3.690 9,076 399
120 0.146 184 5 4.250 9,076 410 4.491 10,480 425
140 0.145 194 1 4.967 10,172 421 5.100 10,996 429
160 0.170 220 2 5.412 10,258 435 5.771 11,530 431
180 0.190 239 1 5.804 10,552 424 6.556 11,969 438
200 0.224 286 3 6.402 10,868 420 6.962 12,432 419

It is worth mentioning that the C†-class problems demon-
strate large initial RGAP of approximately 365% and leap-
convergence dynamics in the 2−3 s range to approximately
2%. The best strategy for handling these policies is relaxing
the RGAP limit to 10− 25% to keep the computation within
reasonable limits by sacrificing the optimality. Although this
precision is not required by this problem, the primary objective
was to provide a nearly optimal solutions, while satisfying the
required time limits. The execution time includes all phases
except LP preparation phase, as it does not dominate over
the SCIP execution time on the smaller scales, staying around
15−20ms for the entire data range.

During the first phase of the experiment, we identified
specific solution dynamics for the complexity class B†, which
can lead to scalability issues. We decided to explore the runtime
complexity for searching the entire space of m and a for the
class B† to better explore the limited scalability of the solver.
Figure 6 presents the initial results as the correlation between
the runtime of the solver and the variation of the monitoring
agents a ∈ [20, 200] and the aggregators m ∈ [20, 200], with
a relative gap of 10%. In general, the model scales well with
the execution time when the number of monitoring agents and
aggregators are within the domain not containing high peaks.
Practically, in case of I/O limitation policies similar to the class
B† and an asymmetry factor ρ = a

m within the high peaks
area (see Figure 6), one needs to relax either the limitation
policies or the precision of the assignments.

VIII. CONCLUSION

In this paper, we described a preliminary monitoring ar-
chitecture of the pilot ASPIDE project and a mathematical
model called M3AT for the optimal assignment of monitoring
agents and aggregators intended for large-scale computing
systems. We identified set of requirements for the given model,
including optimization problem and its solving approaches
based on the several data-intensive applications, corresponding
ecosystems, and current state-of-the-art discrete optimization
techniques. We initially evaluated the scalability of our model
based on varying-complexity data sets in relation to the



specific SCIP precision configuration. The approach scales well
when the number of agents varies within the corresponding
boundaries, demonstrating high sensitivity to the problem scale,
asymmetry factor and the imposed I/O limitation policy. To
further improve the scalability and performance of the model,
we will work on defining tightly-connected decomposition
techniques, heuristics, architectural practices and fine-grained
adaptive tuning strategies, suitable for large-scale optimization
problems.

ACKNOWLEDGMENT

This work has been supported by the ASPIDE Project
funded by the European Union’s Horizon 2020 Research and
Innovation Programme under grant agreement No 801091.

REFERENCES

[1] Loris Belcastro, Fabrizio Marozzo, and Domenico Talia. Programming
models and systems for big data analysis. International Journal of
Parallel, Emergent and Distributed Systems, 34:632–652, 2019.

[2] Domenico Talia, Paolo Trunfio, and Fabrizio Marozzo. Data Analysis in
the Cloud. Elsevier, October 2015. ISBN 978-0-12-802881-0.

[3] Juan Gutierrez-Aguado, Jose M. Alcaraz Calero, and Wladimiro Diaz Vil-
lanueva. Iaasmon: Monitoring architecture for public cloud computing
data centers. Journal of Grid Computing, 14(2):283–297, Jun 2016.

[4] Vaggelis Antypas, Nikos Zacheilas, and Vana Kalogeraki. Dynamic
reduce task adjustment for hadoop workloads. In Proceedings of the
19th Panhellenic Conference on Informatics, PCI ’15, pages 203–208,
New York, NY, USA, 2015. ACM.

[5] Florin Pop, Ciprian Dobre, Corina Stratan, Alexandru Costan, and
Valentin Cristea. Dynamic Meta-Scheduling Architecture Based on
Monitoring in Distributed Systems. In 2009 International Conference
on Complex, Intelligent and Software Intensive Systems. IEEE, 2009.

[6] S. Rajkumar, N. Rajkumar, and V. G. Suresh. Hybrid approach
for monitoring and scheduling the job in heterogeneous system. In
International Conference on Information Communication and Embedded
Systems (ICICES2014). IEEE, 2014.

[7] J. Breitbart, J. Weidendorfer, and C. Trinitis. Case study on co-scheduling
for hpc applications. In 2015 44th ICPP Conference Workshops, pages
277–285, Sep. 2015.

[8] A. Kertesz, G. Kecskemeti, M. Oriol, P. Kotcauer, S. Acs, M. Rodrı́guez,
O. Mercè, A. Cs. Marosi, J. Marco, and X. Franch. Enhancing federated
cloud management with an integrated service monitoring approach.
Journal of Grid Computing, 11(4):699–720, Dec 2013.

[9] Khalid Alhamazani and et al. An overview of the commercial cloud
monitoring tools: Research dimensions, design issues, and state-of-the-art.
Computing, 97(4):357–377, April 2015.

[10] Erika Abraham, Costas Bekas, and et al. Preparing hpc applications
for exascale: Challenges and recommendations. In Network-Based
Information Systems (NBiS), 2015 18th International Conference on,
pages 401–406. IEEE, 2015.

[11] Michael Lysaght, Bjorn Lindi, Vit Vondrak, John Donners, and Marc
Tajchman. A report on the survey of hpc tools and techniques - d7.2.1.
http://www.prace-ri.eu/IMG/pdf/d7.2.1.pdf, 2013. [Online; accessed 25-
Feb-2019].

[12] Allen D. Malony and Felix G. Wolf. Performance refactoring of
instrumentation, measurement, and analysis technologies for petascale
computing. the prima project. 1 2014.

[13] Jack Dongarra, Pete Beckman, Terry Moore, Patrick Aerts, Giovanni
Aloisio, Jean-Claude Andre, David Barkai, Jean-Yves Berthou, Taisuke
Boku, Bertrand Braunschweig, et al. The international exascale software
project roadmap. International Journal of High Performance Computing
Applications, 25(1):3–60, 2011.

[14] Philip Carns, Kevin Harms, William Allcock, Charles Bacon, Samuel
Lang, Robert Latham, and Robert Ross. Understanding and improving
computational science storage access through continuous characterization.
ACM Transactions on Storage (TOS), 7(3):8, 2011.

[15] Lionel Vincent, Mamady Nabe, and Gaël Goret. Self-optimization strategy
for io accelerator parameterization. In International Conference on High
Performance Computing, pages 157–170. Springer, 2018.

[16] Daniel A Reed and Jack Dongarra. Exascale computing and big data.
Communications of the ACM, 58(7):56–68, 2015.

[17] Rainer E Burkard, Mauro Dell’Amico, and Silvano Martello. Assignment
problems. Springer, 2009.

[18] Richard M Karp. Reducibility among combinatorial problems. In
Complexity of computer computations, pages 85–103. Springer, 1972.

[19] Jeffrey D. Ullman. Np-complete scheduling problems. Journal of
Computer and System sciences, 10(3):384–393, 1975.

[20] Michel Minoux. Mathematical programming: theory and algorithms.
John Wiley & Sons, 1986.

[21] Silvano Martello. Knapsack problems: algorithms and computer
implementations. Wiley-Interscience series in discrete mathematics and
optimiza tion, 1990.

[22] Temel Öncan. A survey of the generalized assignment problem and its
applications. INFOR: Information Systems and Operational Research,
45(3):123–141, 2007.

[23] Ibrahim H Osman. Heuristics for the generalised assignment problem:
simulated annealing and tabu search approaches. Operations-Research-
Spektrum, 17(4):211–225, 1995.

[24] Mutsunori Yagiura, Toshihide Ibaraki, and Fred Glover. An ejection
chain approach for the generalized assignment problem. INFORMS
Journal on Computing, 16(2):133–151, 2004.

[25] Dirk G Cattrysse and Luk N Van Wassenhove. A survey of algorithms
for the generalized assignment problem. European journal of operational
research, 60(3):260–272, 1992.

[26] Ambros Gleixner et al. The SCIP Optimization Suite 6.0. ZIB-Report
18-26, Zuse Institute Berlin, July 2018.

[27] Harold W Kuhn. The hungarian method for the assignment problem.
Naval research logistics quarterly, 2(1-2):83–97, 1955.

[28] Dimitri P Bertsekas. The auction algorithm: A distributed relaxation
method for the assignment problem. Annals of operations research,
14(1):105–123, 1988.

[29] Ambros Gleixner et al. The scip optimization suite 6.0. Technical Report
18-26, ZIB, Takustr. 7, 14195 Berlin, 2018.

[30] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number generator.
ACM Transactions on Modeling and Computer Simulation (TOMACS),
8(1):3–30, 1998.

[31] Mark Galassi, Jim Davies, James Theiler, Brian Gough, Gerard Jungman,
Patrick Alken, Michael Booth, Fabrice Rossi, and R Ulerich. GNU
scientific library. Network Theory Limited, 2002.

[32] Brian Gough. GNU scientific library reference manual. Network Theory
Ltd., 2009.

[33] Silvano Martello and Paolo Toth. A bound and bound algorithm for
the zero-one multiple knapsack problem. Discrete Applied Mathematics,
3(4):275–288, 1981.

[34] Marshall L Fisher, Ramchandran Jaikumar, and Luk N Van Wassenhove.
A multiplier adjustment method for the generalized assignment problem.
Management science, 32(9):1095–1103, 1986.

[35] Jack Dongarra and Alexey L Lastovetsky. High performance heteroge-
neous computing, volume 78. John Wiley & Sons, 2009.


