
A Cloud Framework for Parameter Sweeping Data Mining Applications

Fabrizio Marozzo

DEIS, University of Calabria

Rende (CS), Italy

Email: fmarozzo@deis.unical.it

Domenico Talia

ICAR-CNR

DEIS, University of Calabria

Rende (CS), Italy

Email: talia@deis.unical.it

Paolo Trunfio

DEIS, University of Calabria

Rende (CS), Italy

Email: trunfio@deis.unical.it

Abstract—Data mining techniques are used in many applica-
tion areas to extract useful knowledge from large datasets. Very
often, parameter sweeping is used in data mining applications
to explore the effects produced on the data analysis result
by different values of the algorithm parameters. Parameter
sweeping applications can be highly computing demanding,
since the number of single tasks to be executed increases with
the number of swept parameters and the range of their values.
Cloud technologies can be effectively exploited to provide
end-users with the computing and storage resources, and the
execution mechanisms needed to efficiently run this class of
applications. In this paper, we present a Data Mining Cloud App
framework that supports the execution of parameter sweeping
data mining applications on a Cloud. The framework has been
implemented using the Windows Azure platform, and evaluated
through a set of parameter sweeping clustering and classi-
fication applications. The experimental results demonstrate
the effectiveness of the proposed framework, as well as the
scalability that can be achieved through the parallel execution
of parameter sweeping applications on a pool of virtual servers.

Keywords-Data mining; Cloud computing; Parameter sweep-
ing

I. INTRODUCTION

The IT market has been moving from the demand and

supply of products to a service-oriented model in which all

resources - processors, memories, data and applications - are

provided as services to customers through Internet. Such

convergence between Internet technologies and services,

combined with the use of virtualization techniques, has

led to the development of Cloud computing. Thus, Cloud

computing can be defined as a high-performance distributed

computing paradigm in which all the resources, dynamically

scalable and often virtualized, are provided as a service

through Internet.

A key aspect of such paradigm is that end-users do not

need to have neither knowledge nor control over the infras-

tructure that supports their applications. In fact, Cloud in-

frastructures are based on large sets of computing resources,

located somewhere “in the Cloud,” which are assigned to

applications on-demand. Cloud resources are provided in

highly scalable way, i.e., they are allocated dynamically

to applications depending of the current level of requests.

Although similar in overall aims to a Grid system, Clouds

are different because hide the complexity of the underlying

infrastructure, providing services ready to use where end-

users pay only for the resources effectively used (pay-per-

use).

Cloud computing vendors classify their services into three

categories: Infrastructure as a Service (IaaS), also known

as Cloud infrastructure services, provides the computing re-

sources like CPUs, memory, and storage, for running virtual-

ized systems over the Cloud (e.g., Amazon EC2, RackSpace

Cloud); Platform as a Service (PaaS), also known as Cloud

platform services, in which Cloud providers offer platform

services such as databases, application servers, or environ-

ments for building, testing and running custom applications

(e.g., Google Apps Engine, Microsoft Azure, Force.com);

Software as a Service (SaaS), where each software or ap-

plication executed is provided through Internet to customers

as ready-to-use services (e.g., Google Calendar, Microsoft

Hotmail, Yahoo Maps).

We adopted the SaaS approach to design a Data Mining

Cloud App framework that supports the execution of data

mining applications on a Cloud. The framework supports

both single applications and parameter sweeping applica-

tions. In the first case, a single data mining task such as

classification, clustering, or association rules discovery is

performed on a given data source. In parameter sweeping

applications, a single dataset is analyzed in parallel using

multiple instances of the same data mining algorithm with

different parameters.

Often data analysis applications need to run a data min-

ing task several times by using different parameter values

before getting significant results. This is a time consuming

process that, if it is run sequentially, can require very

long execution times. For this reason, parameter sweeping

applications are widely used in data mining applications to

explore in parallel the effects of using different values of

algorithm parameters on the results of data analysis. Since

the number of tasks to be executed increases with the number

of swept parameters and the range of their values, parameter

sweeping applications require a large amount of computing

resources. To overcome this problem, the Data Mining Cloud

App exploits Cloud technologies to provide end-users the

computing resources and execution mechanisms needed to

efficiently run this class of applications.
The framework has been implemented using Windows

Azure1, a PaaS by Microsoft, and has been evaluated through

a set of parameter sweeping clustering and classification

applications executed on a Microsoft Cloud data center. The

experimental results presented in this paper demonstrate the

effectiveness of the Data Mining Cloud App framework,

as well as the scalability that can be achieved through the

parallel execution of parameter sweeping applications on a

pool of virtual servers.
The remainder of this paper is organized as follows.

Section II provides a short background on Windows Azure.

Section III describes architecture, execution mechanisms and

user interface of the Data Mining Cloud App framework.

Section IV presents a performance evaluation. Section V

discusses related work. Finally, Section VI concludes the

paper and outlines future work.

II. WINDOWS AZURE

Azure is an environment and a set of Cloud services

that can be used to develop Cloud-oriented applications,

or to enhance existing applications with Cloud-based ca-

pabilities. The platform provides on-demand compute and

storage resources exploiting the computational and storage

power of the Microsoft data centers. Azure is designed for

supporting high availability and dynamic scaling services

that match user needs with a pay-per-use pricing model.

The Azure platform can be used to perform the storage of

large datasets, execute large volumes of batch computations,

and develop SaaS applications targeted towards end-users.

Windows Azure includes three basic components/services:

• Compute is the computational environment to execute

Cloud applications. Each application is structured into

roles: Web role, for Web-based applications; Worker

role, for batch applications; VM role, for virtual-

machine images.

• Storage provides scalable storage to manage: binary

and text data (Blobs), non-relational tables (Tables),

queues for asynchronous communication between com-

ponents (Queues), and NTFS volume (Drives).

• Fabric controller whose aim is to build a network of

interconnected nodes from the physical machines of a

single data center. The Compute and Storage services

are built on top of this component.

The Windows Azure platform provides standard interfaces

that allow developers to interact with its services. Moreover,

developers can use IDEs like Microsoft Visual Studio and

Eclipse to easily design and publish Azure applications.

III. DATA MINING CLOUD APP

In this section we describe architecture, execution mech-

anisms and user interface of the Data Mining Cloud App

framework.

1http://www.microsoft.com/windowsazure

A. Architecture and Execution Mechanisms

Figure 1 shows the architecture of the Data Mining Cloud

App framework, as it is implemented on Windows Azure.

The framework includes the following components:

• A set of Blobs used to store data to be mined (input

datasets) and the results of data mining tasks (data

mining models).

• A Task queue that contains the data mining tasks to be

executed.

• A Task Status Table that keeps information about the

status of all tasks.

• A pool of k Workers, where k is the number of virtual

servers available2, which are in charge of executing the

data mining tasks submitted by users.

• A Website that allows users to submit, monitor the

execution, and access the results of the data mining

tasks (interface and usage of this component will be

described in Section III-B).

The first three components of the framework are imple-

mented by exploiting the Azure Storage services, while the

Azure Compute services are used to implement the Workers

and the Website. In particular, each Worker is a Worker

Role instance, while the Website is hosted on a Web Role

instance.

The following steps are performed to execute a data

mining application through the Data Mining Cloud App (see

Figure 1):

1) The user accesses the Website and submits his/her data

mining application, by specifying: location of the input

dataset, name of the data mining algorithm, and values

of its parameters.

2) The Website inserts a set of tasks into the Task Queue

on the basis of the data mining application submitted

by the user. If the user submitted a single data mining

application, one data mining task is inserted into

the Task Queue. If the user submitted a parameter

sweeping application, one task for each combination

of the input parameters values is created3.

3) Each idle Worker picks a task from the Task Queue,

and starts its execution on a virtual server.

4) Each Worker gets the input dataset from the location

specified by the user. To this end, a file transfer is

performed from the Blob where the dataset is located,

to the local storage of the virtual server the Worker is

running on.

5) After task completion, each Worker puts the result on

a Blob.

2We assume here that each virtual server is equipped with a single CPU
core; if there are m cores per virtual server, we can have up to m × k

Workers.
3In general, the number of tasks is given by

∏
n

i=1
vi, where n is the

number of input parameters and vi is the number of values assumed by the
i
th parameter

Browser

1

2

3

Compute

Windows Azure
Platform

Website

Web Role instance

Worker

Worker Role instances

Queues

Task Queue Task Queue

Tables

Task Status Table

5

6

Storage

4

Fabric

Blobs

Input
datasets

InputInData mining
models

Data m mining m

 Status Ta Statatutus tu

User

Figure 1. Architecture of the Data Mining Cloud App framework.

6) The Website notifies the user as soon as his/her task(s)

have completed, and allows him/her to visualize the

results.

Note that the Task Status Table is dynamically updated

whenever the status of a task changes. The Website periodi-

cally reads and presents the content of the Task Status Table,

thus allowing users to monitor the status of their tasks.
More in detail, the actions performed by each Worker

(steps 3 to 5) are described in Algorithm 1. As shown by

the algorithm, input data are temporarily staged on a server

for local processing. To reduce the impact of data transfer

on the overall execution time, it is important that input data

are physically close to the virtual servers where the workers

run on. In our framework, this is achieved by exploiting the

Azure’s Affinity Group feature, which allows storage and

servers to be located near to each other in the same data

center for optimal performance.
Currently, the Data Mining Cloud App includes a wide

range of data mining algorithms from Weka [1], and supports

the arff format for the input datasets. Since the Weka

algorithms are written in Java, each Worker includes a Java

Virtual Machine to run the corresponding data mining tasks.

B. User Interface

As mentioned earlier, the Website allows a user to submit,

monitor the execution, and access the results of the data

mining tasks. The Website includes three main sections: i)
Task Submission that allows users to submit data mining

tasks; ii) Task Status that is used to monitor the status of

while true do
if TaskQueue.isNotEmpty() then

task ← TaskQueue.getTask();
TaskStatusTable.update(task, ‘running’);
localInput = <local input location>;
localOutput = <local output location>;
transfer(task.inputBlobURI, localInput);
taskStatus ← execute(task.algorithm, task.paramaters,
localInput, localOutput);
if taskStatus = ‘done’ then

transfer(localOutput, task.outputBlobURI);
TaskStatusTable.update(task, ‘done’);

end
else

TaskStatusTable.update(task, ‘failed’);
end
TaskQueue.remove(task);
delete(localInput);
delete(localOutput);

end
end

Algorithm 1: Cyclic operations performed by each Worker.

submitted tasks and to access results; iii) Data Management

that allows users to manage input data and results.

In the following, we focus on task submission and man-

agement, by describing how the Data Mining Cloud App

Website is used to submit a parameter sweeping data mining

application. Figure 2 shows some screenshots of the Website

taken during the execution of such application.

(a) (b)

(c) (d)

Figure 2. Four screenshots of the Data Mining Cloud App in action: (a) selection of the data mining algorithm; (b) choice of the algorithm parameters;
(c) task status monitoring; (d) visualization of a task result.

After logging into the Website, a user goes the Task

Submission section to select the algorithm to be used (see

Figure 2(a)). A list of the available algorithms is shown to

the user, who selects the one of interest. In the example, the

K-Means clustering algorithm [2] from the Weka library is

selected.

As soon as the algorithm has been selected, the Website

shows to the user a form with the relevant parameters that

he/she can specify for the algorithm (see Figure 2(b)). For

K-Means, besides the input dataset, the relevant parameters

are the number of clusters and the seed. The user can choose

whether to sweep or not a certain parameter. In the example,

the user chose to sweep both the number of clusters and the

seed. For the former, a range of values is specified, while

for the latter, a list of values is provided.

After submission, the system generates a number of inde-

pendent tasks that are executed on the Cloud as discussed

earlier. The user can monitor the status of each single task

through the Task Status section of the Website (see Figure

2(c)). For each task, the current status (submitted, running,

done or failed) and status update time are shown. Moreover,

for each task that has completed its execution, the system

enables two links: the first one (Stat) gives access to a file

containing some statistics about the amount of resources

consumed by the task; the second one (Result) visualizes

the task result.

Results visualization for the first completed task is shown

in Figure 2(d). The output is presented as it is generated by

the K-Means data mining algorithm.

IV. PERFORMANCE EVALUATION

We evaluated the performance of the Data Mining Cloud

App through the execution of a set of parameter sweeping

data mining applications on a pool of virtual servers hosted

by a Microsoft Cloud data center. We present, in particular,

performance results obtained by executing clustering and

classification parameter sweeping data mining applications

on a set of publicly available datasets.

Table I
TURNAROUND TIMES AND COSTS FOR THE PARAMETER SWEEPING CLUSTERING APPLICATION.

N. of

servers

20MB dataset 40MB dataset 80MB dataset

Turnaround

time
Cost

Turnaround

time
Cost

Turnaround

time
Cost

1 0:51:37 $0.04 2:10:37 $0.11 13:43:45 $0.69

2 0:27:25 $0.04 1:07:23 $0.11 7:49:33 $0.72

4 0:14:22 $0.04 0:40:02 $0.11 4:14:39 $0.65

8 0:08:55 $0.04 0:23:11 $0.11 2:28:14 $0.65

16 0:05:43 $0.04 0:17:07 $0.11 2:09:32 $0.69

 0

 10000

 20000

 30000

 40000

 50000

1 2 4 8 16

T
u
ra

ro
u
n
d
 t
im

e
 (

s
e
c
.)

Number of servers

20MB
40MB
80MB

 0

 2

 4

 6

 8

 10

1 2 4 8 16

S
p
e
e
d
u
p

Number of servers

20MB
40MB
80MB

(a) (b)

Figure 3. Turnaround times and speedup values for the parameter sweeping clustering application by varying number of virtual servers and dataset size.

The experiments have been performed using 1 virtual

server for the Web role instance (which hosts the Website),

and up to 16 virtual servers for the Worker Role instances.

Each virtual server was equipped with a single-core 1 GHz

CPU, 0.75 GB of memory, and 20 GB of disk space, with

a cost of $0.05 per hour. Each test has been executed

by varying both the size of the input dataset and the

number of virtual servers used to run the application. As

performance indicators, we used the turnaround time, the

achieved speedup, and the total cost paid.

A. Clustering Application

The clustering application discussed here is the same

introduced in Section III-B to describe the user interface

of the system.

As input data source we used the US Census 1990’s

dataset4 from the UCI KDD archive [3], which contains part

of US 1990’s census information. Each tuple in the dataset

contains information about a US citizen, consisting of 68

categorical attributes (e.g., sex, age). The original dataset is

composed of about 2,458,000 instances, stored in a file of

345 MB. In order to evaluate the system with increasing

workloads, we extracted three datasets with size of 20 MB,

40 MB and 80 MB, with 143,000, 286,000 and 572,000

tuples, respectively.

4http://kdd.ics.uci.edu/databases/census1990/USCensus1990.html

For each of the three datasets, we submitted the execution

of the K-Means clustering algorithm with the following

swept parameters: number of clusters (N) from 2 to 9; seed

(S) equal to 1211 or 1311. We have 8 different values for

N , which combined with the 2 values of S generate 16

configurations. Therefore, for each dataset size, the Data

Mining Cloud App executed 16 independent tasks.

Table I presents the turnaround times and costs of the

clustering application when 1, 2, 4, 8 and 16 virtual servers

are used. The turnaround time includes the file transfer

overhead (copying the input dataset from a Blob to the local

storage of a virtual server). In our experiments this overhead

was very low (only a few seconds) even with the largest

of the three datasets, due to the use of the Affinity Group

feature provided by Azure, as already discussed in Section

III-A.

For the smallest dataset (20 MB), the turnaround time

decreases from about 52 minutes obtained with a single

server, to about 6 minutes using 16 servers. For the medium-

size dataset (40 MB), the turnaround time passes from 2.2

hours to 17 minutes, while for the largest dataset (80 MB),

the turnaround time ranges from 13.7 hours to 2.2 hours. As

shown in the table, for a given dataset size, the total cost

paid does not change with the number of virtual servers used,

because the total execution time does not vary significantly

by changing configuration.

Table II
TURNAROUND TIMES AND COSTS FOR THE PARAMETER SWEEPING CLASSIFICATION APPLICATION.

N. of

servers

9MB dataset 18MB dataset 36MB dataset

Turnaround

time
Cost

Turnaround

time
Cost

Turnaround

time
Cost

1 3:53:15 $0.19 11:46:14 $0.59 41:07:17 $2.06

2 2:11:05 $0.19 5:53:56 $0.59 23:04:56 $2.06

4 1:00:05 $0.19 2:59:16 $0.59 10:18:40 $1.99

8 0:30:34 $0.19 1:30:01 $0.58 5:25:04 $2.03

16 0:16:12 $0.20 0:48:30 $0.60 2:52:44 $2.10

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

1 2 4 8 16

T
u
ra

ro
u
n
d
 t
im

e
 (

s
e
c
.)

Number of servers

 9MB
18MB
36MB

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 4 8 16

S
p
e
e
d
u
p

Number of servers

 9MB
18MB
36MB

(a) (b)

Figure 4. Turnaround times and speedup values for the parameter sweeping classification application by varying number of virtual servers and dataset
size.

Fig. 3 shows turnaround times and speedup values ob-

tained by varying number of virtual servers and dataset size.

For the 20 MB dataset, the speedup passes from 1.9 using

2 servers to 9.0 using 16 servers. For the 40 MB dataset,

the speedup ranges from 1.9 to 7.6. Finally, with the 80 MB

dataset, we obtained a speedup ranging from 1.8 to 6.4.

The speedup achieved does not increase linearly with the

number of servers used since the 16 clustering tasks are

very heterogeneous in terms of execution times. In fact, the

turnaround time is bound to the execution time of the slowest

task instances. In our case, the slowest task instances are

those in charge of grouping data into a larger number of

clusters (e.g., N = 9), which are much slower (up to six

times) than those with small values of N .

B. Classification Application

In this second set of experiments, we use the Data Mining

Cloud App to run a parameter sweeping classification.

The dataset covertype5, has been used as data source.

This dataset contains information about forest cover type for

a large number of sites in the United States. Each dataset

instance, corresponding to a site observation, is described by

54 attributes that give information about the main features of

a site (e.g., elevation, aspect, slope, etc.). The 55th attribute

5http://kdd.ics.uci.edu/databases/covertype/covertype.html

contains the cover type, represented as an integer in the range

1 to 7. The original dataset is made of 581,012 instances

and is stored in a file having a size of 72MB. From this

dataset we extracted three datasets with 72500, 145000 and

290000 instances and a file size of 9 MB, 18 MB and 36 MB

respectively. As the classification algorithm we used J48, the

Weka implementation of the C4.5 algorithm [4].

For each dataset size, we submitted to the Data Mining

Cloud App the execution of the J48 algorithm, by sweeping

its confidence value parameter from 0.05 to 0.50 with a step

of 0.03, which produces 16 different tasks. Table II shows

the turnaround times of the clustering application when 1,

2, 4, 8 and 16 virtual servers are used.

For the 9 MB dataset the turnaround time decreases from

3.9 hours obtained with a single server, to about 16 minutes

using 16 servers. For the 18 MB dataset the turnaround time

passes from 11.8 hours to 49 minutes. With the 36 MB

dataset, the turnaround time ranges from about 41 hours to

2.9 hours. As already noted for the clustering application,

also in this case the total cost paid does not significantly

vary with the number of virtual servers used.

Fig. 4 shows turnaround times and speedup values by

varying number of virtual servers and dataset size. For the 9

MB dataset, the speedup passes from 1.8 using 2 servers to

14.4 using 16 servers. For the 18 MB dataset, the speedup

ranges from 2.0 to 14.6. Finally, with the 36 MB dataset,

the speedup ranged from 1.8 to 14.3.

Note that, differently from the clustering experiments

discussed earlier, in this case the speedup does increase

linearly with the number of servers used, since the 16

classification tasks are homogeneous in terms of execution

times.

C. Remarks

The experimental results presented above demonstrate the

effectiveness of the Data Mining Cloud App in supporting

parameter sweeping data mining applications on a Cloud

system. For the clustering experiments, we obtained a fairly

good speedup (up to 9.0 using 16 virtual servers), which

however did not increase linearly due to the heterogeneity

of tasks. On the other hand, when the parameter sweeping

application generates homogeneous tasks, as in the classifi-

cation experiments, we achieved almost a linear speedup (up

to 14.6 using 16 virtual servers). This resulted in reducing

the execution time of the mining application that analyzed

36 MB of data from 41 hours (about 2 days) to less than 3

hours with evident benefits for the user.

Besides performance considerations, we point out that

the main goal of the Data Mining Cloud App is providing

an easy-to-use SaaS interface to reliable data mining algo-

rithms, thus enabling end-users to focus on their data mining

applications without worrying about low level computing

and storage details, since they are transparently managed by

the underlying Cloud infrastructure.

V. RELATED WORK

Significant research efforts have been invested in leverag-

ing distributed computing infrastructures to implement high-

performance data mining systems. Most of such systems

exploit Grid middleware to provide high-level data mining

services that combine hardware and software resources from

many dispersed sites [5]. Some popular Grid-based data

mining systems are DataMiningGrid [6], Discovery Net [7],

GridMiner [8], Knowledge Grid [9], and Weka4WS [10].

More recently, some Cloud-based systems for data mining

and scientific data analysis have been proposed, including

Sector/Sphere [11], All-Pairs [12], and Dryad [13].

Sector/Sphere [11] is a framework designed to run data

analysis applications on large distributed datasets. It consists

of two complementary components: a storage component

(Sector) and a compute component (Sphere). Sector provides

a long term archival storage to access and index large

distributed datasets. It is designed to support different types

of network protocols, and to safely archive data through

replication mechanisms. Sphere enables the parallel execu-

tion of user-defined functions on data stored in Sector. It

splits the input files into data segments that are processed

in parallel by servers called Sphere processing elements.

A data segment can be a single entry record, a collection

of data records or a file. An evaluation of Sector/Sphere

for executing data analysis applications on a wide area is

reported in [14].

All-Pairs [12] is a programming model and a framework

to implement data intensive scientific applications on a clus-

ter or a Cloud. The framework can be used for applications

that have to compare the elements of two datasets on the

basis of a user-defined comparison function. The user defines

the problem to be solved through a specification, called

abstraction; the framework includes an engine that chooses

how to implement the specification using the available

resources. The engine partitions and transfer data to a set

of disks in the cluster, and then dispatches batch jobs to

execute locally on each data split.

Dryad [13] is a Microsoft framework to run data-parallel

applications on a cluster or a data center. A Dryad applica-

tion combines computational vertices with communication

channels to form a dataflow graph. The application runs by

executing the vertices of the graph on a set of available

computers and communicating as appropriate through files,

TCP pipes, and shared-memory. The users define sequential

programs for each vertex, and the framework schedules

and executes them in parallel on multiple CPU cores or

computers. Dryad has been used in combination with LINQ

(a language for adding data querying capabilities to .NET

languages) to implement a set of data analysis applications,

including a data clustering application based on the K-Means

algorithm [15].

Besides the systems discussed above, some other data

intensive applications have been implemented in Cloud envi-

ronments using the MapReduce programmining model [16].

MapReduce is inspired by the map and reduce primitives

present in Lisp and other functional languages. A user

defines a MapReduce application in terms of a map function

that processes a (key, value) pair to generate a list of

intermediate (key, value) pairs, and a reduce function that

merges all intermediate values associated with the same

intermediate key. Most MapReduce implementations, like

Hadoop6, are based on a master-slave architecture. A job

is submitted by a user node to a master node that selects

idle workers and assigns a map or reduce task to each

one. When all the tasks have been completed, the master

node returns the result to the user node. The MapReduce

paradigm is appropriate to implement data mining tasks in

parallel. An example is Disco [17], a framework built on top

of Hadoop for data pre-processing and co-clustering. Other

relevant examples are the use of MapReduce for K-Means

clustering [18], and to run a semi-supervised classification

on large scale graphs [19].

Differently from most of the frameworks described above,

our system has been designed to provide a high-level SaaS

interface to support data mining application execution on

6http://hadoop.apache.org

a Cloud infrastructure. Even if the Data Mining Cloud

App currently supports simple and parameter-sweeping data

mining applications, it can be extended to support also

workflow-based data mining applications. We are currently

working toward this goal.

VI. CONCLUSIONS

Cloud computing infrastructures can be effectively used

to run data intensive applications. To help users in this task,

simple but high-level environments must be provided. This

paper presented the Data Mining Cloud App framework

that has been designed to support the efficient execution of

parameter sweeping data mining applications in a Cloud.

The framework has been implemented using the Windows

Azure platform and evaluated through a set of parameter

sweeping clustering and classification applications.

The user interface is very simple and hides the complexity

of the Cloud infrastructure used to run applications. The

experimental results discussed in the paper demonstrates

the effectiveness of the proposed framework, as well as

the scalability that can be achieved through the parallel

execution of parameter sweeping applications on a pool of

virtual servers.

Other than supporting users in designing and running

parameter sweeping data mining applications we intend

to exploit Cloud computing platforms for running service-

oriented knowledge discovery processes designed as a com-

bination of several data analysis steps to be run in par-

allel on Cloud computing elements. To achieve this goal,

we are currently extending the framework for supporting

also workflow-based KDD applications, in which complex

data analysis applications are specified as graphs that link

together data sources, data mining algorithms, and visual-

ization tools.

REFERENCES

[1] H. Witten, E. Frank. Data Mining: Practical machine learning
tools with Java implementations. Morgan Kaufmann Publish-
ers, 2000.

[2] J. B. MacQueen. “Some Methods for classification and Anal-
ysis of Multivariate Observations”. 5th Berkeley Symposium
on Mathematical Statistics and Probability, Berkeley, UK,
1967.

[3] S. Hettich, S. D. Bay. The UCI KDD Archive
[http://kdd.ics.uci.edu]. Irvine, CA: University of California,
Department of Information and Computer Science, 1999.

[4] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan
Kaufmann Publishers, 1993.

[5] D. Talia, P. Trunfio. How Distributed Data Mining Tasks can
Thrive as Knowledge Services. Communications of the ACM,
53(7), 132-137, 2010.

[6] V. Stankovski, M. T. Swain, V. Kravtsov, T. Niessen, D.
Wegener, J. Kindermann, W. Dubitzky. Grid-enabling data
mining applications with DataMiningGrid: An architectural
perspective. Future Generation Computer Systems, 24(4),
259-279, 2008.

[7] S. AlSairafi, F. S. Emmanouil, M. Ghanem, N. Giannadakis,
Y. Guo, D. Kalaitzopoulos, M. Osmond, A. Rowe, J. Syed,
P. Wendel. The Design of Discovery Net: Towards Open
Grid Services for Knowledge Discovery. Int. Journal of High
Performance Computing Applications, 17(3), 297-315, 2003.

[8] P. Brezany, J. Hofer, A. M. Tjoa, A. Woehrer. “GridMiner:
An Infrastructure for Data Mining on Computational Grids”.
Proc. APAC Conference and Exhibition on Advanced Com-
puting, Grid Applications and eResearch (APAC’03), Gold
Coast, Australia, 2003.

[9] A. Congiusta, D. Talia, P. Trunfio. Distributed data mining
services leveraging WSRF. Future Generation Computer Sys-
tems, 23(1), 34-41, 2007.

[10] D. Talia, P. Trunfio, O. Verta. The Weka4WS framework
for distributed data mining in service-oriented Grids. Con-
currency and Computation: Practice and Experience, 20(16),
1933-1951, 2008.

[11] Y. Gu, R. Grossman. Sector and Sphere: The Design and
Implementation of a High Performance Data Cloud. Philo-
sophical Transactions, Series A: Mathematical, physical, and
engineering sciences, 367(1897), 2429-2445, 2009.

[12] C. Moretti , J. Bulosan , D. Thain , P. J. Flynn. “All-
Pairs: An Abstraction for Data-Intensive Cloud Computing”.
IEEE Int. Symposium on Parallel and Distributed Processing
(IPDPS’08), Miami, USA, 2008.

[13] M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly. “Dryad:
distributed data-parallel programs from sequential building
blocks”. 2nd ACM SIGOPS/EuroSys European Conference
on Computer Systems (EuroSys’07), Lisbon, Portugal, 2007.

[14] R. Grossman, Y. Gu. “Sector and Sphere: Data mining using
high performance data clouds: experimental studies using
sector and sphere”. 14th ACM SIGKDD Int. Conference on
Knowledge discovery and data mining (KDD’08), New York,
USA, 2008.

[15] J. Ekanayake, T. Gunarathne, G. Fox, A. S. Balkir, C.
Poulain, N. Araujo, R. Barga. “DryadLINQ for Scientific
Analyses”. 5th IEEE International Conference on e-Science
(e-Science’09), Oxford, UK, 2009.

[16] J. Dean, S. Ghemawat. MapReduce: Simplified Data Process-
ing on Large Clusters. Communications of the ACM, 51(1),
107-113, 2008.

[17] S. Papadimitriou, J. Sun. “DisCo: Distributed Co-clustering
with Map-Reduce: A Case Study towards Petabyte-Scale End-
to-End Mining”. 8th IEEE International Conference on Data
Mining (ICDM’08), Pisa, Italy, 2008.

[18] J. Ekanayake, S. Pallickara, G. Fox. “Mapreduce for data in-
tensive scientic analyses”. 4th IEEE International Conference
on e-Science (e-Science’08), Indianapolis, USA, 2008.

[19] D. Rao, D. Yarowsky. “Ranking and semi-supervised classi-
fication on large scale graphs using map-reduce”. Workshop
on Graph-based Methods for Natural Language Processing
(TextGraphs’09), Stroudsburg, USA, 2009.

