
A Distributed Selectivity-driven Search Strategy for Semi-structured
Data over DHT-based Networks

Carmela Comito1 , Domenico Talia2 , Paolo Trunfio2

1ICAR-CNR, Rende (CS), Italy

2DIMES, University of Calabria, Rende (CS), Italy

{ccomito,talia,trunfio}@dimes.unical.it

Abstract

Distributed Hash Tables (DHTs) are widely used for indexing and locating many types of
resources, including semi-structured data modeled as XML documents. A common dis-
tributed strategy to process an XML query over a DHT consists in splitting it into a set
of simple path queries, and resolving each of them separately. The traffic generated by
this strategy grows with the number of paths in the query. To overcome this drawback,
an alternative strategy consists in resolving only the sub-query associated with the most
selective path, and then submitting the original query to the nodes in the result set. A first
goal of this paper is to provide an analytical and experimental study of the two strategies
to assess their relative merits in different scenarios. On the basis of this study, we introduce
an Adaptive Path Selection (APS) search technique that resolves an XML query in a dis-
tributed way by querying either the most selective path or the whole path set, based on the
selectivity of the paths in the query. The effective use of APS requires that the querying
nodes know in advance the selectivity of all the paths. Addressing this problem is another
goal of the paper, which is achieved through: i) The definition of a space-efficient data
structure, the Path Selectivity Table (PST), which given any path, returns an estimate of
its selectivity. ii) The definition of an efficient strategy that builds the PST in a distributed
way and propagates it to all nodes in the network with logarithmic performance bounds
and without redundant messages. Experimental results show that the PST accurately es-
timates the path selectivity values, and that the traffic generated by the APS algorithm
using PST-estimated selectivity values is comparable to that produced by APS assuming
to know the real path selectivity values.

Keywords: Distributed Hash Tables, Semi-structured Data, Path Selectivity, Adaptive
Path Selection.

1. Introduction

Distributed Hash Tables (DHTs) are decentralized systems providing scalable services
for indexing and locating data in large-scale networks. DHT-based systems like Chord [1],
Pastry [2], Tapestry [3], and Kademlia [4], assign to each node the responsibility for a specific
part of the data to be shared. In a network of n nodes, when a node wants to find a data
item identified by a given key, a DHT allows to locate the node responsible for that key in
O(log n) hops, using only O(log n) neighbors per node. Thanks to their inherent reliability

Preprint submitted to Journal of Parallel and Distributed Computing April 3, 2014

and autonomic properties, DHTs can be effectively used in dynamic peer-to-peer networks
with nodes continuously joining and leaving [1], as well as in static decentralized systems
composed by a large number of nodes permanently connected to a wide-area network [34].
In both cases, an important system goal is limiting the network traffic generated by the
distributed query processing. A key toward this goal is efficiently locating relevant data
sources, so as to submit the queries only to the nodes where those data sources are stored.

Leveraging a DHT, complex queries over a large collection of distributed data can be
processed with guarantee that all the relevant documents are located with logarithmic per-
formance bounds. In a DHT-based system, a query Q can be processed in two phases: i)
the DHT is looked up to identify all nodes that store data matching Q; ii) Q is submitted
to each node identified during the previous phase, to get all the data matching Q. In this
work we focus on the first phase of the query processing, with the goal of minimizing the
amount of traffic generated to identify the nodes that will be queried during the second
phase.

Even though DHTs can be used for indexing many types of data, in this paper we
concentrate on XML-based semi-structured data, as XML is widely used as a language for
information representation and exchange over the Internet. We assume that data sources are
distributed over a large number of nodes (i.e., tens to hundreds of thousands) permanently
connected to the network like, for instance, a world-wide network of Internet-enabled sensor
stations organized in a DHT. Another example is a large-scale DHT-based network of service
providers, where a large number of services, published by different providers in XML format,
need to be dynamically discovered and integrated into complex distributed applications.
Examples include e-commerce and e-science applications, where the single components are
available as services independently specified by their providers [40].

The indexing of an XML document D in a DHT can be done by associating a key to
each path p in D; then, the node responsible for the key associated with p keeps a pointer to
the nodes storing all documents containing p, including D. To search for XML documents
matching a complex tree pattern query formulated, for instance, as an XPath or XQuery
expression, a basic strategy consists in splitting the query into a number of sub-queries,
one for each path in the query. Each sub-query is resolved independently to find the set of
nodes that store documents matching the corresponding path. The result sets coming from
the different sub-queries are intersected at the querying node. Then all the nodes in the
intersection set are queried with the original query to obtain all the documents matching
that query.

The network traffic generated by the strategy above increases with the number of paths
in the query. This can lead to system inefficiency in case of complex queries composed of
several sub-queries, particularly in presence of many concurrent requests. To overcome this
drawback, an alternative strategy consists in resolving only the sub-query associated with
the most selective path, i.e., the path that matches the lowest number of nodes; then all
nodes in the result set can be queried with the original query to get the documents that
satisfy all the query constraints (including those associated with the other paths). The
selectivity of a path is defined as follows:

Definition 1. (Path Selectivity). The selectivity sp of a path p is given by the equation:

sp = np/n (1)

where np is the number of nodes that store at least one instance of path p, and n is the total
number of nodes in the DHT. By definition, 0 < sp ≤ 1.

2

The lower the selectivity value, the more selective the path; in other words, the lowest
selectivity value corresponds to the most selective path. For instance, in a network with
10,000 nodes, a path stored in 50 nodes has a selectivity of 50/10,000=0.005, while a path
stored in 5,000 nodes has a selectivity of 5,000/10,000=0.5. The former can be an example of
highly selective path (low selectivity value), the latter of lowly selective path (high selectivity
value).

A first goal of this paper is to provide an analytical and experimental study of the two
strategies to assess their relative merits in different scenarios. On the basis of this study, we
introduce an Adaptive Path Selection (APS) search technique that resolves an XML query
by querying either the most selective path or the whole path set, based on the selectivity
of the paths in the query. APS uses path selectivity values to calculate the traffic that
would be generated querying the most selective path and the whole path set, which allows
selecting the most efficient strategy to follow for a given query. Experimental results confirm
that APS saves a significant amount of traffic compared to the two strategies from which it
derives.

The effective use of APS requires that all nodes know in advance the selectivity of all the
paths. If path selectivity values are not known a priori, techniques for estimating the path
selectivity values can be used. We propose a compact data structure, called Path Selectivity
Table (PST), which groups paths with similar selectivity values into a fixed number of
buckets. Bloom Filters are used to represent the paths in each bucket so that, for a given
path, the bucket containing the selectivity of the path can be quickly located. Thus, given
any path, the PST returns an estimate of its selectivity.

Our solution differs from existing systems since it supports node-based selectivity esti-
mation, which allows every peer to estimate the total number of nodes that store sources
relevant to a query. This is a key advantage as it allows estimating in advance the network
traffic that will be generated by any query, as the traffic produced by distributed query
processing depends on the number of nodes with relevant sources. The node-based selec-
tivity estimation strategy enables another unique feature of our solution, which is adaptive
lookup. In fact, our APS search strategy allows peers to resolve a query by querying either
the most selective path or the whole path set. This permits to achieve good traffic perfor-
mance, while maintaining a basic indexing/search scheme that can be easily implemented
on top of any DHT. Another unique feature exhibited by our system is local selectivity
estimation. In fact, the PST allows every participant peer to estimate locally the selectivity
of a path, without querying the network for this purpose.

A preliminary version of this work, which focused on introducing the APS technique,
was presented in [30]. In the present version we make the following additional contributions:

1. A more formal definition of the APS algorithm and of the two basic strategies from
which it derives, together with their analytical and experimental evaluation.

2. The definition of a space-efficient data structure, the PST, for XML path selectivity
estimation in a distributed scenario.

3. The definition of a PST Construction and Propagation (PST CP) algorithm that
builds the PST in a distributed way and propagates it to all nodes in the network
with logarithmic performance bounds.

4. An experimental evaluation demonstrating the PST accuracy for path selectivity es-
timation, as well as the efficiency of the PST in supporting APS search in distributed
scenarios.

3

We point out that the APS technique could be exploited by non-holistic related ap-
proaches that similarly to us index XML data over a DHT using paths as indexing elements.
In fact, the APS elaborates on the two basic query resolution strategies to process XML
queries over a DHT, proposing an adaptive strategy that uses either the whole path set or
the most selective path. This way, related approaches could achieve better results in terms
of network traffic generated because depending on the specific scenario one strategy could
outperform the other one. Moreover, both holistic and non-holistic approaches could ex-
ploit our PST Construction and Propagation (PST CP) algorithm to construct a PST-like
data structure in a distributed way to propagate selectivity estimation all over the network.
This can be particularly relevant for centralized approaches that would be able this way to
implement a distributed strategy to process XML queries over a DHT.

The remainder of the paper is organized as follows. Section 2 discusses related work.
Section 3 presents the system model, including the data model and the way XML documents
are indexed. Section 4 describes and compares the two basic approaches exploited by the
APS search strategy to answer an XML query. Section 5 proposes the APS algorithm
and evaluates it in different scenarios. Section 6 presents the PST-based approach to path
selectivity estimation, including a detailed description of the PST CP algorithm. Section
7 evaluates the accuracy of PSTs for path selectivity estimation and their effectiveness in
supporting APS-based query processing. Finally, Section 8 concludes the paper.

2. Related work

The work that first introduced the WPS and MSP approaches that we rely on is [36],
which proposes a Multi-Attribute Addressable Network (MAAN) that extends Chord to
support multi-attribute and range queries. MAAN addresses range queries by mapping
attribute values to Chord via uniform locality preserving hashing. It uses an iterative
(corresponding to our WSP search) or single attribute dominated query (corresponding
to our MSP search) routing algorithm to resolve multi-attribute queries. Apart than the
similarities on the rational of query resolution, our work is quite different from the one in
[36] as detailed in the following. A first difference is that the work in [36] is not tailored for
XML data as it is in our case, thus, it is based on a different indexing structure. Moreover,
we elaborate on the two query resolution strategies, proposing an adaptive one that uses
either the whole path set or the most selective path. This way we achieve better results in
terms of network traffic generated because depending on the specific scenario one strategy
could outperform the other one. Another main difference is on the selectivity concept as
we rely on a quite different selectivity definition. Furthermore, [36] does not focus on the
way how selectivity values are estimated and propagated all over the network. Differently,
an important contribution of our work is selectivity estimation, through the definition of
a space-efficient data structure, the Path Selectivity Table (PST), which given any path,
returns an estimate of its selectivity. Moreover, we also defined an efficient strategy that
builds the PST in a distributed way and propagates it to all nodes in the network with
logarithmic performance bounds and without redundant messages.

In the remainder of the section we review existing works related to the main topics
addressed in this paper: i) estimating XML path selectivity; ii) XML data indexing and
discovery using DHTs.

4

2.1. XML path selectivity estimation

Accurate estimation of XML path selectivity values represents a key issue to enable
efficient query processing. As mentioned before, knowing the selectivity of the paths allows
one to improve the execution of a multi-path XML query by querying directly the most
selective path. This topic has been extensively studied in centralized environments and
several approaches have been proposed.

One of the first works proposed in the field was presented in [14]. This work proposes two
techniques for estimating the selectivity of simple path expressions: path trees and Markov
tables. The path tree collapses the tree corresponding to the original XML document by
deleting or coalescing low-frequency nodes, whereas the Markov table stores the counts of
all frequently occurring paths of length less than a given threshold. The disadvantage of
both approaches is that large structures must be constructed before they are pruned, which
can be very space intensive.

A related system is XPathLearner [15], which includes a method for estimating selec-
tivity of the most commonly used types of path expressions based on a feedback analysis.
XPathLearner stores selectivity related statistics in a Markov table, which is space consum-
ing.

Polyzotis and Garofalakis proposed TreeSketch [20], an extension to XSketch [19], which
estimates the cardinality of XML twig queries by capturing the key structural information
(i.e., label path and branching) and using graph synopses. In case of complex datasets,
with the presence of recursions and a higher structural irregularity, the construction process
of TreeSketch can be computationally complex and time consuming [23]. An example of
complex XML dataset is TreeBank, which exhibits a complex structure and has a high degree
of recursions. TreeSketch, however, is orders of magnitude more accurate than XSketch in
estimating results cardinality and needs less time to construct.

Zhang et al. [26] proposed the Xseed synopsis to summarize the structural information
of XML data. The information is stored in two structures, a small kernel, which summarizes
basic structural information, and an hyperedge table (HET), which provides additional in-
formation about the tree structure. The HET enhances the accuracy of the synopsis and
makes it adaptive to different memory budgets. Xseed supports recursion by recording “re-
cursion levels” and “recursive path expression” in the synopses. Although the construction
of Xseed is reported to be generally faster than that of TreeSketch, it is still time-consuming
for complex datasets [23].

In [27], a synopsis based on a lossy compression of the XML document tree is proposed.
The synopsis can be computed in one pass from the document. This work has two main
advantages over existing approaches: i) the estimator returns a range within which the
actual selectivity is guaranteed to lie, with the size of this range implicitly providing a
confidence measure of the estimate, and ii) the synopsis can be incrementally updated to
reflect changes in the XML database.

In general, most of the techniques proposed in literature rely on some kind of structure
synopses, usually in the form of a compressed tree. The construction of such synopses is
usually slow and costly, especially for complex XML datasets. Besides, as their efficiency
strongly depends on the summarization of the structural relationships and simple statis-
tics such as node counts, child node counts, etc., due to the compression of information,
selectivity estimation heavily relies on the statistical assumptions of independence and uni-
formity. Consequently, they can suffer from poor accuracy when these assumptions are not

5

valid. Therefore, structure synopses could perform badly on complex XML datasets. Con-
sequently, one of the main drawbacks of most of the techniques proposed in the literature,
is that they fail in achieving both estimation accuracy and space efficiency.

The work in [31] successfully addresses both the issues by proposing a novel data struc-
ture, the Bloom Histogram (BH), which approximates XML paths frequency distribution
by sorting on the frequencies, and using Bloom Filters to record values within each bucket.
Compared to the other alternatives discussed above, which use data structures such as path
trees and Markov Tables, the use of a Bloom Filter to maintain approximate values of path
selectivity is of smaller size, and offers superior accuracy as the estimation error is small
and can be probabilistically bounded.

The most important difference between our approach and the related works described
above, is that our solution has been designed for distributed scenarios, while the others are
meant for local settings. Another major difference between our work and all the others (but
the one by Wang et al.[31]), is that we do not model the intricate structural relationships
of XML documents, since this is not required to efficiently identify the nodes storing all
documents containing the paths specified in a input query, which is the focus of our work.

Inspired by the BH data structure proposed in [31], we propose a Path Selectivity Table
(PST) data structure, which given any path, returns an estimate of its selectivity. Conse-
quently, we inherit all the advantages of the work in [31] in terms of small space occupancy
and accuracy, since the estimation error is small and can be tuned probabilistically. How-
ever, our work is substantially different as it deals with Internet-scale distributed XML
documents. To cope with the distributed scenario, the PST is based on a different selectiv-
ity definition as compared to that used in the BH. In particular, the selectivity of a path
in our system is calculated by counting the number of distinct nodes holding that path.
Additionally, our framework defines an algorithm to build the PST in a distributed way
and to efficiently propagate it to all nodes in the network.

2.2. DHT-based XML data indexing and discovery

Several systems for sharing and querying distributed collections of XML data using a
DHT as the core component have been proposed in literature. A survey presenting the state
of the art of P2P XML data management can be found in [9] and another one in [10]; the
latter is a more recent survey focusing on XML data indexing and retrieval in P2P systems.

Skobeltsyn et al. [6] proposed a DHT-based index for XPath queries. Paths are hashed
to obtain keys that are then stored in the P-Grid DHT [41]. The set of XML element tags
is used as the alphabet. Given an XML path p consisting of g element tags, g data items
are stored in the P-Grid network using the sub-paths (suffixes) in p as keys. The key of
each data item is generated using a prefix-preserving hash function.

Miliaraki et al. [12] proposed an approach for filtering distributed XML documents
using a non deterministic finite automata (NFA) which encodes a set of XPath queries on
top of a Chord DHT. The key aspect of such a work is a distributed implementation of
YFilter, a state-of-the-art automata-based XML filtering system on top of Chord. The
authors present and evaluate two methods for executing the NFA. In the iterative method
a publisher peer is responsible for managing the execution of the NFA while states are
retrieved from other network peers. The recursive method exploits the inherent parallelism
of an NFA and executes several active paths of the NFA in parallel.

In [8], Karanasos et al. proposed the ViP2P system, a P2P platform for sharing XML
data. While our work is mainly concerned with locating the peers storing information

6

relevant to a query, Karanasos et al. focus on query answering over a global XML database
distributed over a Pastry overlay. The database is maintained in the form of distributed
materialized XML views defined as XPath queries. The authors proposed three indexing
strategies: (i) Label indexing (LI) strategy, which indexes a view by each node label in it
(either element or attribute name, or word); (ii) Return label indexing (RLI), where a view
is indexed by the labels of all nodes which project some attributes; (iii) Leaf path indexing
(LPI) strategy, where a view is indexed by all the distinct root-to-leaf label paths in it.
Here, a path is just the sequence of labels encountered as one goes down from the root to
the node.

Abiteboul et al. [7] introduced the KadoP system that indexes XML data in the form
of postings, where each posting encodes information on an element or a keyword. KadoP
is built atop a Pastry DHT, in which a single node stores all the postings for a given term.
KadoP supports holistic processing of XPath queries: a tree pattern matching algorithm
is executed in order to compute the identifiers of the documents matching the input query
exploiting holistic twig join. Since the posting lists for very popular terms grow very large
limiting the system scalability, Bloom Filters are used for a compact representation of the
set of postings of a given term.

The system proposed by Galanis et al. [5] indexes XML paths in a Chord DHT based
on the parent-child relationships and using tag names as keys. A node responsible for
an XML tag stores and maintains a data summary (corresponding to structural ancestor
information) with all possible unique element paths leading to that tag. Thus, only one tag
of a query is used to locate the responsible node. All the key-summary pairs are stored in
the DHT, similarly to the way that keys and instances are organized into an inverted list.
For a given XPath query the element tag at its leaf position is used as a lookup key in the
DHT.

Garces-Erice et al. [11] proposed an approach that, for a given XML document, con-
structs an XPath expression that tests the presence of all the elements and values in that
document. This expression represents the most specific query for the document. Given
this expression, the system builds a hierarchy of indexes using a generic DHT containing
query-to-query mappings such that a user can look up more specific queries for a given
broader query, thereby refining her interests. Such an approach allows users to locate data
even using scarce information, although at the price of a higher lookup cost.

In the psiX system proposed by Rao and Moon [13] each XML document is mapped
into an algebraic signature that captures the structural summary of the document. An
XML query pattern is also mapped into a signature to locate relevant document signatures.
The signature scheme supports holistic processing of query patterns without breaking them
into several simple path queries and processing them individually. The participating nodes
in a Chord network collectively maintain a collection of distributed hierarchical indexes for
the document signatures.

Finally, Slavov and Rao [16] proposed Xgossip, a gossip algorithm that given an XPath
query, estimates the number of XML documents containing a match for that query [16]. In
XGossip, a peer gossips the signature of an XML document, which is computed based on
the method proposed by Rao and Moon [13]. XGossip adopts the Push-Sum protocol [29]
and is composed of two main phases. In the initialization phase, each peer creates a list
of tuples using only local information, where each tuple includes the signature of an XML
document published by the peer. In the gossip phase, peers exchange their lists of tuples
using an epidemic approach, so that the document signatures tend to be distributed to all

7

peers as the number of gossip rounds increases.
Table 1 compares the proposed solution with the DHT-based XML data indexing and

discovery systems discussed above. The comparison takes into account the following fea-
tures:

• Main goal. XML query processing in a DHT can be seen as a two-step task: i)
Locating sources, where the DHT is looked up to identify all the sources relevant to
the query; ii) Query answering, where the query is processed against all the relevant
sources to get matching data. Therefore, we classify the systems based on the main
goal they address, either locating sources or query answering. As shown in the table,
some systems ([6], [12], [8] and [7]) focus on query answering, while others ([5], [11],
[13], [16] and the proposed system) focus on locating sources. It is worth noticing that
both approaches can be used to answer a query. In fact, with the second approach,
once sources have been located, it is possible to ask those sources to process the query
in order to get data matching it.

• Indexed elements. The systems can be also classified according to the elements used
to index XML data on the DHT. The analyzed systems follow different approaches:
i) indexing each label in the data (labels); ii) indexing each path or path query (paths
or path queries); iii) the index is represented by some kind of data summarization
(document summaries). Some of the systems ([6], [12], [8], [7], [11] and the proposed
system) index either labels, paths or path queries, while the others ([5], [13] and [16])
adopt complex summarization techniques to process the queries holistically.

• Supported queries. Another important feature for classification purpose is the type of
queries supported by the systems. Here we distinguish between linear queries, which
are supported by [6], [12], [5], [11] and the proposed system, and twig queries, which
are supported by [8], [7], [13] and [16].

• DHT overlay. The underlying distributed hash table used to implement the XML
indexing and discovery system. Most of the systems are based on Chord ([12], [5],
[13], [16] and the proposed system). Other systems use Pastry ([7] and [8]), P-Grid
([6]) or a generic DHT ([11]).

• Selectivity estimation. Whether a system supports or not selectivity estimation.
In case of systems that do support selectivity estimation, we distinguish between
document-based and node-based selectivity estimation. Given an XML query q, document-
based approaches estimate the total number of XML documents in the network that
contain a match for q, while node-based approaches estimate the total number of
nodes that store XML sources that contain a match for q. The only two systems that
support selectivity estimation are Xgossip [16] (document-based) and the proposed
system (node-based).

• Local selectivity estimation. A system supports local selectivity estimation if every
participant peer can estimate the selectivity of a path by consulting some data struc-
ture available locally, without querying the network for this purpose. The proposed
system is the only one supporting local selectivity estimation, because each node in
the DHT maintains locally a space-efficient data structure, the Path Selectivity Table
(PST), which given any path, returns an estimate of its selectivity.

8

Table 1: Comparison with related DHT-based systems.

System Main goal
Indexed
elements

Supported
queries

DHT
overlay

Selectivity
estimation

Local
selectivity
estimation

Adaptive
lookup

Skobeltsyn
et al. [6]

Query
answering

Paths
Linear
queries

P-Grid NO N.A. NO

Miliaraki
et al. [12]

Query
answering

Path
queries

Linear
queries

Chord NO N.A. NO

ViP2P [8]
Query
answering

Paths and
labels

Twig
queries

Pastry NO N.A. NO

KadoP [7]
Query
answering

Labels
Twig
queries

Pastry NO N.A. NO

Galanis
et al. [5]

Locating
sources

Document
summaries

Linear
queries

Chord NO N.A. NO

Garces-Erice
et al. [11]

Locating
sources

Paths
Linear
queries

Generic NO N.A. NO

PsiX [13]
Locating
sources

Document
summaries

Twig
queries

Chord NO N.A. NO

Xgossip [16]
Locating
sources

Document
summaries

Twig
queries

Chord
YES (document-
based)

NO NO

Proposed
system

Locating
sources

Paths
Linear
queries

Chord
YES (node-
based)

YES YES

• Adaptive lookup. The ability of dynamically choosing the lookup strategy taking into
account the selectivity of the query elements, i.e. based on the number of sources
that contain data relevant to the query. This feature is provided only by the proposed
system. In fact, our Adaptive Path Selection (APS) search technique resolves an XML
query in a distributed way by querying either the most selective path or the whole
path set, based on the selectivity of the paths in the query.

As shown in Table 1, Xgossip [16] and the proposed system are the only two solutions
supporting selectivity estimation for XML query processing over a DHT. As discussed ear-
lier, enabling the estimation of XML path selectivity values allows improving the execution
of multi-path XML queries. This is an important feature not only because it allows im-
proving query processing, but also because it enables the formulation of selectivity-specific
queries (i.e., estimating the total number of documents or nodes that store XML sources
that contain a match for a given query), which are not supported by the other systems. In
particular, our system differs from Xgossip because it supports node-based selectivity esti-
mation, which allows every peer to estimate the total number of nodes that store sources
relevant to a query. This is a key advantage because it allows estimating in advance the net-
work traffic that will be generated by any query, as the traffic produced by distributed query
processing depends on the number of nodes with relevant sources, according to Equation 2.

The node-based selectivity estimation strategy enables another unique feature of our
solution, which is adaptive lookup. In fact, our Adaptive Path Selection (APS) search
strategy allows peers to resolve a query by querying either the most selective path or the
whole path set, based on the selectivity of the paths in the query. As detailed in Section 5,
this permits to achieve good performance in terms of network traffic, while maintaining a
basic indexing/search scheme that can be easily implemented on top of any DHT.

Finally, another unique feature exhibited by our system is local selectivity estimation.

9

This allows every participant peer to estimate locally the selectivity of a path, without
querying the network for this purpose. In order to achieve so, each peer in the DHT
maintains locally a space-efficient data structure, the Path Selectivity Table (PST), which
given any path, returns an estimate of its selectivity. To this end, we build and propagate
the PST using an efficient broadcast algorithm that, after a fixed number of steps, and
without redundant messages, ensures that all peers share the same PST generated at a
given time.

3. System model

We assume a system composed of a set N of autonomous nodes, organized in a DHT-
based structured P2P network like Chord [1], and a set D of XML documents distributed
over those nodes and indexed using the DHT to support their efficient identification and
retrieval.

Example 1. Consider the case of a world-wide network of Internet-enabled weather sensor
stations, organized in a DHT-based Chord overlay. Each sensor station locally stores, in
XML format, a sensor station descriptor (SSD) and a set of sensor readings (SRs). The
SSD provides relevant information such as geographical location, available sensors, and
the features of each sensor (e.g., instrument, type, precision). SRs are XML fragments
containing data sensed over the time by the station’s sensors. The DHT is used to index the
SSDs to support the identification of sensor stations that meet the desired constraints (e.g.,
the presence of a given sensor type). The relevant SRs of the sensor stations so identified
can be subsequently retrieved for application purposes.

In the rest of the section we first describe the XML data model and the queries supported
by the system, and then the strategy adopted to index the XML documents.

3.1. Data model and supported queries

XML documents are represented as ordered labeled trees, according to the DOM stan-
dard1. Each node in the tree corresponds to an element, or an attribute, or text data; edges
between nodes represent element/subelement or element/attribute relationships. More pre-
cisely, leaf nodes correspond to data values and internal nodes define the document structure.
According to this model, an XML path can be defined as follows.

Definition 2. (Path). Let D be an XML document and T the associated tree, each branch
in T identifies a path p from the root of T to a leaf node, where intermediate nodes are
element labels, and edges are parent/child and/or ancestor/descendant relationships.

The system supports path-based XML query languages such as XPath and XQuery.
Such languages treat an XML document as a tree and offer an expressive way to specify
and select parts of an XML document by navigating its tree structure. Thus, XML queries
naturally impose a structural pattern on XML data and the queries are accordingly referred
to as tree-pattern queries. This kind of queries are usually expressed by means of XPath

1http://www.w3.org/DOM

10

expressions, which define a way of navigating an XML tree and return the set of tree nodes
which are reachable from one or more starting nodes through the paths specified by the
expressions.

An XPath expression contains one or more location steps, separated by slashes (“/”). In
its more basic form, a location step designates an element name; a more complex location
step specifies an element name followed by zero or more predicates specified between brack-
ets. Predicates are generally specified as constraints on the presence of structural elements,
or on the values of tagged data using basic comparison operators. An XPath expression
composed only by simple location steps identifies a unique path in the tree associated with
an XML document. Conversely, an XPath expression containing also predicates identifies
more than one path. Queries with predicates are also referred to as branching queries: each
element involved in the predicate identifies a unique path in the XML tree.

We support a subset of the XPath query language denoted as {., /, []}. The expressions
of such a subset of XPath are given by the following grammar:

Q → l | . | Q / Q | Q [Q]

where Q is a generic query, l is any label (node test), “.” denotes the current node, “/”
indicates the child axis, and “[]” indicates a predicate.

3.2. Indexing strategy

The goal of the indexing strategy is to provide an efficient means to find the set of nodes
that store the path(s) matching a query expression. Since each path is a textual string, it
can be transformed into a numeric key through hashing. Accordingly, we define a path key
as follows.

Definition 3. (Path Key). Let D be an XML document and p a path ∈ D, a key kp for p
is defined as kp = ht(p), where ht is a hash function that consistently maps a textual string
to a large set of numeric keys.

To keep association between path keys and nodes we assume the use of a Chord DHT,
though any other similar DHT-based system could be used with minimal variations. In
Chord, each node maintains a Finger Table (FT) and a Key Table (KT). The FT points to
nodes at exponentially increasing distance, and allows to locate the node responsible for a
given key in O(log n) hops, where n is the number of nodes in the network. The KT keeps
association between each key the node is responsible for, and all the nodes that contain
documents matching that key. Details about the Chord protocol are given in [1].

Fig. 1 provides a small-scale example showing how XML documents are indexed in our
model using a Chord DHT. In this example, a 4-bit identifier space is used, thus both node
identifiers and path keys are assigned a value in the range [0, 15]. There are only five active
nodes in the network, N0, N3, N6, N10, and N13. Each node locally stores a set of XML
documents. For example, N6 stores, among the others, two documents D1 and D2, while
one of the documents stored by N13 is D3. Each distinct path in D1, D2, D3 is assigned
a unique key. As shown in the figure, documents D2 and D3 contain the same paths, p1,
p3 and p9, so they are identified by the same path keys (kp1 , kp3 and kp9). Moreover, p1
is present in all three documents. According to the Chord protocol, each key is assigned
to the first active node whose identifier equals or follows the key value. Therefore, kp1 and
kp3 are stored into the KT of N3, kp9 is put into the KT of N10, and so on. A KT stores,

11

N6

p1

p12

p15

p1 p3

p9

N6+1 N10

N6+2 N10

N6+4 N10

N6+8 N0

FT

xml

docs

KT

N13

p1 p3

p9

N13+1 N0

N13+2 N0

N13+4 N3

N13+8 N6

FT

xml

docs

KT

p12 kp12
N6

… … …

xml

docs

N10+1 N13

N10+2 N13

N10+4 N0

N10+8 N3

FT

KT

N10

xml

docs

N3+1 N6

N3+2 N6

N3+4 N10

N3+8 N13

FT

KT

N3

xml

docs

N0+1 N3

N0+2 N3

N0+4 N6

N0+8 N10

FT

KT

N0

D1

D2

D3

p9 kp9
N6, N13

… … …

p15 kp15
N6

… … …

p1 kp1
N6, N13

p3 kp3
N6, N13

… … …

… … …

Figure 1: Indexing XML documents over a Chord DHT.

for each key kp, the set of nodes that possess at least one document containing path p.
For example, in the KT of node N10, kp9 points to nodes N6 and N13, since both of them
contain at least one document (D2 and D3, respectively) associated with kp9 . Even though
- for the sake of clarity - KT entries in Fig. 1 contain only node identifiers, actually each
entry contains also all the information (often referred to as “connection string”, see next
section) required to access the XML collection where the document is stored.

4. Query processing

In a DHT-based system, the query processing can be divided into two phases:

1. the DHT is looked up to identify all nodes that store XML documents matching a
query Q;

2. Q is sent to the nodes identified in the previous phase, which will execute Q locally.

As stated earlier, we focus on the first phase of the query processing, with the goal of
minimizing the amount of traffic generated to identify the nodes that will be queried during
the second phase.

To search for XML documents indexed in a DHT matching a multi-path query, a
commonly-used strategy consists in splitting the query into a number of sub-queries, one
for each path. Each sub-query is resolved independently to find the set of nodes that store
documents matching the corresponding path. The result sets coming from the different
sub-queries are intersected at the querying node; then all the nodes in the intersection set
are queried with the original query to obtain all the documents matching that query. The
network traffic generated by this strategy increases with the number of paths in the query.
To overcome this issue, an alternative strategy consists in resolving only the sub-query as-
sociated with the most selective path; then all nodes in the result set are queried with the
original query. In the following we refer to those two strategies as Whole Path Set (WPS)
and Most Selective Path (MSP) search, respectively. The idea behind MSP is that, having
information about the selectivity of the various paths in the query, it can be more conve-

12

nient in terms of traffic generated to query the most selective path rather than the whole
path set, as done by the WPS strategy.

Path selectivity is defined according to Eq. 1. To the purpose of the query processing
techniques discussed in this section, we assume that the querying nodes know in advance
the selectivity of all the paths in the query to be processed. We will discuss in Section 6
the solution employed in our framework to estimate path selectivity values when they are
not known a priori.

<SensorStn id="Melbourne01">

 <Location>

 <Country>Australia</Country>

 <State>Victoria</State>

 <City>Melbourne</City>

 ...

 </Location>

 <Sensors>

 <Sensor id="Melbourne01_Thermometer01">

 <Instrument>Thermometer</Instrument>

 <Type>Infrared</Type>

 <Precision>0.01</Precision>

 </Sensor>

 <Sensor id="Melbourne01_Thermometer02">

 <Instrument>Thermometer</Instrument>

 <Type>Mercury</Type>

 <Precision>0.02</Precision>

 </Sensor>

 ...

 </Sensors>

</SensorStn>

Figure 2: Example of sensor station descriptor.

Example 2. Referring to the scenario outlined in Example 1, assume that sensor station
descriptors (SSDs) are structured like the one shown in Fig. 2. Suppose that a user issues
the following XPath query to find the cities in Australia where there is a sensor station with
a thermometer, infrared type, having precision equal to 0.01:

/SensorStn[Sensors[Sensor[Instrument="Thermometer" and

Precision="0.01" and Type="Infrared"]]]

[Location[Country="Australia"]]/Location/City

The query consists of the following paths:

/SensorStn/Sensors/Sensor/Instrument="Thermometer"

/SensorStn/Sensors/Sensor/Precision="0.01"

/SensorStn/Sensors/Sensor/Type="Infrared"

/SensorStn/Location/Country="Australia"

/SensorStn/Location/City

In case of WPS search, five lookups (i.e., one for each path) must be performed on the DHT.
Conversely, in case of MSP search, only the most selective path (e.g., the one that refers to
the country) will be looked up on the DHT.

The remainder of this section describes the WPS and MSP search techniques and ana-
lyzes them in terms of the network traffic they produce to process a query. Since the traffic

13

generated depends both on the number and the size of messages, the following parame-
ters will be used to calculate the size of the different messages exchanged during the query
processing:

• SH: the size of a message header, i.e., the fixed amount of traffic each message generates
independently from the specific payload;

• SS: the size of a sub-query, i.e., the average size of a path expression extracted from
the original query;

• SQ: the size of the original query expression;

• SC: the average size of the “connection string” required to access an XML collection; it
includes information about the database implementation, the location of the database
server, the name of the collection, and credential information.

• SA: the size of the answer set A, which is composed of all the XML fragments that
match the query criteria.

4.1. WPS search

Chord offers efficient and scalable single-key or single-path lookup service for decentral-
ized resources. However, it cannot support multi-path based lookup. The WPS approach
addresses this problem by extending Chord with an iterative multi-path query resolution
mechanism. Specifically, given a multi-path query, the WPS strategy consists in splitting
the query into a number of sub-queries, one for each path. Each sub-query is resolved inde-
pendently to find the set of nodes that store documents matching the corresponding path.
The result sets coming from the different sub-queries are intersected at the querying node;
then all the nodes in the intersection set are queried with the original query to obtain all
the documents matching that query.

The WPS search algorithm is described in Fig. 3. The input of the algorithm are: the
original query Q and the set of paths P extracted from Q. The output is the answer set
A, i.e. the set of all the XML fragments that match Q. The algorithm defines a set NP
to contain the identifiers of all the nodes with documents that match all the paths in P.
NP is initialized to N , the set of all nodes in the network. For each path pi the following
operations are performed:

1. the key kpi corresponding to pi is computed through hashing;

2. the node responsible for pi, N
r
pi
, is identified through a lookup operation performed

over the DHT;

3. Nr
pi

returns the set of nodes, N pi , which store at least one document matching pi;

4. NP is intersected with N pi .

Once the final set NP is obtained, each node in NP is asked to process the original query Q
producing a partial answer, i.e. the set of XML fragments stored on that node that match
Q. The final answer set A is obtained as the union of all the partial answers.

Although the WPS search algorithm is simple, the traffic generated by this technique
increases proportionally with the number of paths in the query, as shown in the following.

14

Algorithm WPS Search
Input: query Q, set of paths P
Output: answer set A

begin
A ← Ø;
NP ← N ;
foreach path pi ∈ P do

kpi ← ht(pi);
Nr

pi
← lookup(kpi);

Npi ← Nr
pi
.returnNodes(kpi);

NP ← NP ∩Npi ;
end
foreach node Ni ∈ NP do
ANi

← Ni.answerQuery(Q);
A ← A∪ANi

;
end
return A;

end

Figure 3: Whole Path Set search.

Theorem 1. (WPS traffic). Let TWPS be the average network traffic generated by the WPS
search algorithm to process a query Q composed by a set of paths P = (p1, ..., pm) submitted
by a node NQ in a Chord network with n nodes. Then, TWPS is given by the following
equation:

TWPS = SA +m · SH + 1
2 · (SH + SS) ·m · log2 n+

+
m∑
i=1

(SC · n · spi) + (2 · SH + SQ) · n ·
m∏
i=1

spi
(2)

Proof . We distinguish four steps in the WPS search, and use notation TWPSi to indicate
the traffic generated during the i-th step:

• Step 1: NQ performs m lookups to identify the m nodes, Nr
p1 , ...,N

r
pm , which are

responsible for the different paths in P.

Traffic: On average, each lookup requires 1
2 · log2 n routing hops [1]. Thus 1

2 ·m · log2 n
messages are generated. The size of each message is given by SH + SS. Therefore,
TWPS1 = 1

2 · (SH + SS) ·m · log2 n.

• Step 2: NQ receives m responses, one from each of nodes Nr
p1 , ...,N

r
pm .

Traffic: Each response is delivered directly to NQ, so m messages are generated.
Response N pi sent by a node Nr

pi
contains the identifiers of all nodes that store doc-

uments with path pi. Thus, the size of message N pi is given by SH, plus a term
SC · n · spi that is proportional to the number of node identifiers in N pi . Therefore,
TWPS2 =

∑m
i=1(SH + SC · n · spi).

• Step 3: NQ sends Q to all nodes that are in the intersection set, NP , of all the m
responses received on the previous step.

Traffic: Assuming that the selectivity values sp1 , ..., spm are independent of each other,
on average the size of NP , and so the number of messages, is given by n ·

∏m
i=1 spi ,

which is proportional to the product of all the selectivity values. The size of each
message is SH + SQ. Therefore, TWPS3 = (SH + SQ) · n ·

∏m
i=1 spi .

15

• Step 4: NQ receives a response from each node queried on the previous step.

Traffic: The number of response messages received is given by n ·
∏m

i=1 spi , which is
equal to the number of query messages sent on the previous step. The traffic is given
by SH for each message received, plus the size of the total answer set SA, which is
is the union of all the partial answer sets received by the different nodes queried.
Therefore, TWPS4 = SH · n ·

∏m
i=1 spi + SA.

By summing the traffic generated at the different steps, we finally obtain Eq. 2.

Definition 4. (WPS overhead traffic). We define the WPS overhead traffic, TWPS, as
TWPS minus the size of the answer set SA:

TWPS = TWPS − SA (3)

4.2. MSP Search

While WPS is a balanced search strategy where all the paths in the query have the same
weight, MSP gives more relevance to the most selective path. In fact, according to the WPS
strategy, the search result of a multi-path query is an iterative process where the result set
must satisfy all the sub-queries on each path and it is the intersection set of all resources
that satisfies each individual sub-query.

The idea behind MSP is that, having information about the selectivity of the various
paths in the query, it can be more convenient in terms of traffic generated to query the most
selective path rather than the whole path set. In this case it is only necessary to compute
a set of candidate resources that satisfies the sub-query on the most selective path. Then,
all nodes in the result set can be queried with the original query to get the documents that
satisfy all the query constraints (including those associated with the other paths).

The MSP search algorithm is shown in Fig. 4. The input parameters are: the original
query Q and the most selective path pmin in P. The output is the answer set A. First,
the key kpmin associated with the most selective path pmin is determined through hashing,
and the node responsible for pmin, N

r
pmin

, is identified through the lookup of kpmin . Nr
pmin

returns the set N pmin of nodes storing documents with path pmin. Then, each node in Nr
pmin

is queried with Q producing a partial answer. The union of all the answers produces the
final answer set A.

Algorithm MSP Search
Input: query Q, most selective path pmin

Output: set of answers A

begin
kpmin ← ht(pmin);
Nr

pmin
← lookup(kpmin);

Npmin ← Nr
pmin

.returnNodes(kpmin);
foreach node Ni ∈ Npmin do
ANi

← Ni.answerQuery(Q);
A ← A∪ANi

;
end
return A;

end

Figure 4: Most Selective Path search.

16

Theorem 2. (MSP traffic). Let TMSP be the average network traffic generated by the MSP
search algorithm to process a query Q composed by a set of paths P = (p1, ..., pm) submitted
by a node NQ in a Chord network with n nodes. Then, TMSP is given by the following
equation:

TMSP = SA + SH + 1
2 · (SH + SS) · log2 n+

+(SC + 2 · SH + SQ) · n · spmin

(4)

Proof . We proceed as in Theorem 1 by distinguishing four steps in the MSP search,
and using notation TMSPi to indicate the traffic generated during the i-th step:

• Step 1: NQ performs one lookup to identify the node, Nr
pmin

, which is responsible for
the most selective path, pmin.

Traffic: The lookup requires 1
2 · log2 n messages, on average. The size of each message

is given by SH + SS. Therefore, TMSP1 = 1
2 · (SH + SS) · log2 n.

• Step 2: NQ receives one response from Nr
pmin

.

Traffic: The response is delivered directly to NQ, so just one message is generated.
This response message, N pmin , contains the identifiers of all nodes that store docu-
ments with pmin. Therefore, its size is given by SH, plus a term SC · n · spmin that is pro-
portional to the number of node identifiers inN pmin . Thus, TMSP2 = SH + SC · n · spmin .

• Step 3: NQ sends Q to all nodes in N pmin .

Traffic: The number of nodes in N pmin is proportional to pmin . Thus, the number
of messages is n · spmin . The size of each message is given by SH + SQ. Therefore,
TMSP3 = (SH + SQ) · n · spmin .

• Step 4: NQ receives a response from each node queried on the previous step.

Traffic: The number of messages received is given by n · spmin , which is equal to
the number of messages sent on the previous step. The traffic generated is given
by SH for each message received, plus the size of the total answer set SA. Thus,
TMSP4 = SH · n · spmin + SA.

Eq. 4 is finally obtained by summing the traffic generated at the different steps.

Definition 5. (MSP overhead traffic). We define the MSP overhead traffic, TMSP, as
TMSP minus the size of the answer set SA:

TMSP = TMSP − SA (5)

4.3. Comparison between WPS and MSP

We evaluated the amount of overhead traffic generated by the WPS and MSP search
techniques over a Chord DHT in different scenarios. To this end, we implemented a simula-
tor that evaluates the amount of traffic generated by the two techniques to resolve a query,
given the total number n of nodes in the network, the number m of paths composing the
query, and the range (0, u] of selectivity the paths belong to.

For each combination of the input parameters (n, m, and u), the simulator generates
q = 104 different m-tuples, which correspond to q different queries. The values in each
tuple (a1, a2, ..., am) are real numbers uniformly distributed over the interval (0, u], where

17

0 < u ≤ 1. The i-th value of a tuple, ai, represents the selectivity of the i-th path of the
corresponding query, i.e., ai = spi . For each of the q different tuples, the values of TWPS

and TMSP are calculated. Finally, the mean values of TWPS and TMSP are obtained as an
average over the q results.

The following values have been used for the parameters introduced earlier: SH = 260
Bytes; SS = 60 Bytes; SQ = SS ·m; SC = 75 Bytes. SH has been determined by measuring
the average traffic generated to transfer an empty message between two hosts using TCP.
SS is the average length of the path expressions observed in two well-known reference XML
databases, namely Protein Sequence Database (PSD) and DBLP2. SC has been chosen by
observing the typical length of the connection string required to access an XML collection3.

Fig. 5 shows the average values of TWPS and TMSP with an increasing number of paths
(m = 2 to 12) in three scenarios: a) n = 100, 000 and u = 0.5; b) n = 200, 000 and u = 0.5;
c) n = 200, 000 and u = 0.1. In all three cases, there is a value of m under which the average
value of TWPS is lower than the average value of TMSP. In particular, MSP is better than
WPS when m > 4 for all three cases. As the value of m increases, the advantage of MSP
over WPS becomes higher. We can observe that this result is independent from both the
size of the network (case a vs. case b) and the range of selectivity the paths belong to (case
b vs. case c), except for a scale factor.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 2 4 6 8 10 12

O
ve

rh
ea

d
tr

af
fic

 (
kB

yt
es

)

m

n = 100000; 0 < spi
 <= 0.5

 WPS
 MSP

 0

 10000

 20000

 30000

 40000

 50000

 60000

 2 4 6 8 10 12

O
ve

rh
ea

d
tr

af
fic

 (
kB

yt
es

)

m

n = 200000; 0 < spi
 <= 0.5

 WPS
 MSP

 0

 2000

 4000

 6000

 8000

 10000

 12000

 2 4 6 8 10 12

O
ve

rh
ea

d
tr

af
fic

 (
kB

yt
es

)

m

n = 200000; 0 < spi
 <= 0.1

 WPS
 MSP

(a) (b) (c)

Figure 5: Average values of TWPS and TMSP in three scenarios: a) n = 100, 000 and u = 0.5; b) n = 200, 000
and u = 0.5; c) n = 200, 000 and u = 0.1. Error bars represent the standard deviations from the average.

It is interesting to observe that the standard deviation (represented as error bars in
Figs. 5a-c) of TMSP is rather high. This means that in many cases the value of TMSP can be
significantly lower than the average value. To better highlight this aspect, Fig. 6 shows the
percentage of cases in which TMSP is lower than TWPS in the same scenarios a-c introduced
earlier. We can see that, even for low values of m, there is a percentage of cases in which
MSP generates less traffic than WPS. For example, when m = 2 the percentage of cases in
which MSP is better than WPS ranges from about 1% (for case c) to 13% (for case b). This
percentage rapidly increases, reaching more than 90% when m = 8 in all scenarios.

2These databases are available from: http://www.cs.washington.edu/research/xmldatasets/www/

repository.html
3Example of connection string, not including credentials: xmldb:exist://gridlab1.dimes.unical.it:

8080/exist/xmlrpc/db/collname

18

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12

%
 o

f c
as

es
 in

 w
hi

ch
 T

M
S

P
 <

 T
W

P
S

m

n = 100000; 0 < spi
 <= 0.5

|

|

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12

%
 o

f c
as

es
 in

 w
hi

ch
 T

M
S

P
 <

 T
W

P
S

m

n = 200000; 0 < spi
 <= 0.5

|

|

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12

%
 o

f c
as

es
 in

 w
hi

ch
 T

M
S

P
 <

 T
W

P
S

m

n = 200000; 0 < spi
 <= 0.1

|

|

(a) (b) (c)

Figure 6: Percentages of cases in which TMSP < TWPS in three scenarios: a) n = 100, 000 and u = 0.5; b)
n = 200, 000 and u = 0.5; c) n = 200, 000 and u = 0.1.

5. Adaptive Path Selection search

The results presented in the previous section highlight that, for any value of m, there
are cases in which WPS generates less traffic than MSP, and viceversa. In particular, it can
be shown that:

Theorem 3. The traffic generated by MSP is lower than the traffic generated by WPS when
spmin < Th, where:

Th = ((m− 1) · (SH + 1
2 · (SH + SS) · log2 n)+

+SC · n ·
m∑
i=1

spi + (2 · SH + SQ) · n ·
m∏
i=1

spi)÷

÷((SC + 2 · SH + SQ) · n)

(6)

Proof . The theorem can be easily proven by solving the inequality TMSP < TWPS or,
equivalently, TMSP < TWPS.

We exploit this result by defining an Adaptive Path Selection (APS) search strategy
that resolves a multi-path XML query by choosing, time by time, either the WPS or MSP
strategy based on which one minimizes the amount of traffic generated. The path selection
is referred to as “adaptive” because it is done on the basis of the characteristics of the
query to be resolved. Hence, given a multi-path query, the APS search strategy performs
an MSP search if the selectivity of the most selective path is lower than Th. Otherwise,
APS performs a WPS search.

Example 3. Consider a query Q composed by four paths p1, p2, p3 and p4, submitted in a
network with n = 100, 000 nodes, where the values of parameters SH, SS, SQ and SC are as
introduced in Section 4.3.
Case 1) Assume that the four paths have the following selectivity values: sp1 = 0.001,
sp2 = 0.010, sp3 = 0.012 and sp4 = 0.020. According to Eq. 6, Th = 0.00397. Since
spmin = sp1 < Th, APS will perform an MSP search to resolve Q.
Case 2) Assume the same selectivity values as above, except for the first path whose value has
changed to sp1 = 0.008. According to Eq. 6, Th = 0.00460. In this case, since spmin > Th,
APS will perform a WPS search instead.

19

Case 3) Assume the selectivity of the first path has changed to sp1 = 0.010, and that of
the fourth path has changed to sp4 = 0.080. According to Eq. 6, Th = 0.0102. This is a
borderline case, since the lowest selectivity value is very close to the threshold. However, as
spmin < Th, an MSP search will be performed by APS to resolve Q.

Fig. 7 describes the algorithm performed to process a query Q using the APS search
technique, according to the strategy illustrated above.

Algorithm APS Search
Input: query Q
Output: set of answers A

begin
A ← Ø;
P ← identifyPaths(Q);
smin ← −1;
pmin ← ⊢;
foreach path pi ∈ P do

if spi < smin then
smin ← spi ;
pmin ← pi;

end
end
if 0 ≤ smin < Th then
A ← MSP Search(Q,pmin);

else
A ← WPS Search(Q,P);

end
return A;

end

Figure 7: Adaptive Path Selection search.

The query processing starts by identifying all the paths in Q. Then, the path with the
lowest selectivity value (i.e., the most selective path) is identified and, if such value is under
a threshold Th, calculated using Eq. 6, an MSP search is performed. Otherwise, a WPS
search is executed. According to Theorem 3 and to the APS algorithm shown in Fig. 7, we
can introduce the following:

Definition 6. (APS overhead traffic). The overhead traffic generated by the APS search
technique, TAPS, is given by:

TAPS = min(TWPS,TMSP) (7)

5.1. Comparison with WPS and MSP

We evaluated the overhead traffic generated by the APS search compared with WPS
and MSP. The evaluation has been performed using the same simulator and methodology
described in Section 4.3.

Fig. 8 shows the average amount of traffic generated by the three search techniques
for a fixed number of nodes (n = 100, 000) in three scenarios: a) u = 0.1; b) u = 0.5; c)
u = 1.0. As expected, APS always generates less traffic than WPS and MSP. For example,

20

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 2 4 6 8 10 12

O
ve

rh
ea

d
tr

af
fic

 (
kB

yt
es

)

m

n = 100000; 0 < spi
 <= 0.1

 WPS
 MSP
 APS

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 2 4 6 8 10 12

O
ve

rh
ea

d
tr

af
fic

 (
kB

yt
es

)

m

n = 100000; 0 < spi
 <= 0.5

 WPS
 MSP
 APS

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 2 4 6 8 10 12

O
ve

rh
ea

d
tr

af
fic

 (
kB

yt
es

)

m

n = 100000; 0 < spi
 <= 1

 WPS
 MSP
 APS

(a) (b) (c)

Figure 8: Average values of TAPS, TWPS and TMSP for a fixed number of nodes (n = 100, 000) in three
scenarios: a) u = 0.1; b) u = 0.5; c) u = 1.0.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20 40 60 80 100 120 140 160 180 200

O
ve

rh
ea

d
tr

af
fic

 (
kB

yt
es

)

n (thousands nodes)

m = 4; 0 < spi
 <= 0.5

 WPS
 MSP
 APS

 0

 5000

 10000

 15000

 20000

 25000

 20 40 60 80 100 120 140 160 180 200

O
ve

rh
ea

d
tr

af
fic

 (
kB

yt
es

)

n (thousands nodes)

m = 6; 0 < spi
 <= 0.5

 WPS
 MSP
 APS

 0

 5000

 10000

 15000

 20000

 25000

 30000

 20 40 60 80 100 120 140 160 180 200

O
ve

rh
ea

d
tr

af
fic

 (
kB

yt
es

)

n (thousands nodes)

m = 8; 0 < spi
 <= 0.5

 WPS
 MSP
 APS

(a) (b) (c)

Figure 9: Average values of TAPS, TWPS and TMSP with n ranging from 20, 000 to 200, 000 nodes for some
selected values of m: a) m = 4; b) m = 6; c) m = 8

in case b, APS allowed to save: 72.7 % traffic compared to WPS when m = 12; 41.1 %
traffic compared to MSP when m = 2; 18.7 % traffic compared to the best between WPS
and MSP when m = 5. Similar trends are obtained for cases a and c.

After having evaluated the traffic generated for a fixed number of nodes, we compared
the traffic generated by APS, WPS and MSP for some selected values of m with n ranging
from 20,000 to 200,000 nodes. In particular, Fig. 9 shows the result of this evaluation
in three scenarios: a) m = 4; b) m = 6; c) m = 8. The graphs show that the number of
messages increases linearly with the number of nodes, with all three search algorithms.
However, the slope coefficient of the APS curve is lower than those of the WPS and MSP
curves, hence proving a better scalability of APS when the size of the network increases.
The advantage of APS over MSP is higher for low values of m while it is marginal for higher
values. Conversely, the advantage of APS over WPS is limited for low values of m, but it
becomes significant when m increases.

In summary, the results presented above demonstrate that the APS search technique
allows to reduce the amount of network traffic generated in all scenarios, by adaptively
choosing the best technique to use on the basis of the selectivity of the paths in the query
to be processed.

21

6. Path Selectivity Estimation

Like the MSP search technique, APS needs to know the selectivity of the paths in the
query. This requires two issues to be addressed: i) defining a space-efficient data structure
to store the selectivity of each path in the network; ii) devising an effective solution to build
and propagate such data structure across the network. We address the first issue by defining
a Path Selectivity Table (PST) for XML path selectivity estimation in a distributed scenario,
and the second one by defining a PST Construction and Propagation (PST CP) algorithm
that builds the PST in a distributed way and propagates it to all nodes in the network with
logarithmic performance bounds. The PST enables local selectivity estimation, i.e., every
participant peer can use it to locally estimate the selectivity of a path without querying the
network for this purpose.

The remainder of this section is structured as follows. Section 6.1 describes the PST
data structure. Section 6.2 describes the PST CP algorithm for PST construction and
propagation and discusses its complexity. Section 6.3 outlines how the PST could be used
in holistic approaches.

6.1. Path Selectivity Table

Each node, besides the data structures required by the DHT protocol (i.e., a FT and a
KT as shown in Fig. 1), uses a Path Selectivity Table (PST) to obtain an estimate of the
selectivity of all the paths that form the queries to be processed.

We remind that the selectivity sp of a path p, as defined by Eq. 1, is a real number
in the range (0, 1]. Given all the paths indexed in the system, we assume that the path
selectivity range [min,max], is divided into v intervals, I1...Iv, where min (resp. max) is the
minimum (resp. maximum) among all the path selectivity values, and 0 < min ≤ max ≤ 1.
Each selectivity interval, Ii, is characterized by three parameters: the lower bound Ii.l, the
upper bound Ii.u, and the average value Ii.avg. The set of all the selectivity intervals is
denoted as I.

Given a set of XML documents D, distributed across the network, a PST for D is a table
with v rows, one for each selectivity interval. The i-th row of the PST, denoted as PSTi, is
a pair ⟨avg,BF⟩, where avg = Ii.avg and BF is a w-bit Bloom Filter (BF). PSTi.BF is used
to represent all the paths in D whose selectivity belongs to interval Ii, while PSTi.avg is a
representative selectivity value for all such paths.

We recall that a BF is a space-efficient data structure used to test whether an element
is a member of a set [37]. An empty BF is an array of w bits, all set to 0. Associated with
the BF are z independent hash functions hf1 ...hfz , each one able to hash a data item d into
a random number uniformly distributed over the range [1,w]. To insert an item d into the
BF, all z hash functions are applied to the value of d, and every bit at position hfi(d) is set
to 1, for each 1 ≤ i ≤ z. To test whether an item d is in the set represented by the BF, the
same z hash functions are applied to d. The response is positive only if every bit at position
hfi(d) is set to 1. An important property of a BF is that false negatives are not possible,
while false positives are possible with probability

P ≈ (1− e−zx/w)z (8)

where x is the number of elements inserted into the BF [39].

22

For a given w and x, the number of hash functions zopt that minimizes the false positive
probability expressed by Eq. 8, is:

zopt =
w

x
· ln 2 (9)

Given x and a desired false positive probability P, and using the optimal number of hash
functions zopt, the required number of bits wopt, can be computed by substituting zopt in
Eq. 8, which results in:

wopt = −x · ln P
ln2 2

(10)

Given a path p ∈ D and a PST for D, we obtain an estimate of sp as follows. First,
we find a tuple PSTi such that p ∈ PSTi.BF, and then we use PSTi.avg as an estimate of
sp. We remind that a path p belongs to a BF if all the bits at position hi(p) are set to 1,
with 1 ≤ i ≤ z. Since BFs are subject to false positives, it may happen that p belongs to
multiple BFs of the PST. Since in this scenario we cannot know which is the correct BF
to take, we minimize the error following the approach in [31] by taking, as an estimate of
sp, the mean of the average values of all the selectivity intervals associated with the BFs to
which p belongs to. As the selectivity estimate may be inaccurate in the presence of false
positives, we want to design the PST so as to ensure a given false positive rate.

We define false positive rate fr for a PST, the probability that a path p belongs to more
than one BFs of the PST. Assuming that a path p is contained in one of the v BFs of the
PST, the probability fr that at least one of the other v − 1 BFs contains p because of a false
positive, is given by:

fr = 1− (1− P)(v−1) (11)

where P is the probability of false positives of each BF, assuming that P is the same for all
the BFs.

If we want to obtain a specific value of fr for the PST, we must ensure that each BF of
the PST will be designed to achieve a false positive rate P given by:

P = 1− (1− fr)1/(v−1) (12)

where Eq. 12 is obtained by inverting Eq. 11.
Given P and the average number x of paths that will be inserted in each BF, we can

finally calculate w through Eq. 10, and z through Eq. 9.
Other than establishing the appropriate values for w and z, it is necessary to determine

the optimal boundaries for the selectivity intervals. To this end, we proceed following the
approach adopted by [31]: first, we collect statistics about the number of paths in the system
and their occurrences; then, starting from these statistics, we use a V-Optimal histogram
construction algorithm to find the optimal intervals boundaries.

The statistics about paths and their occurrences are gathered in the form of a Path
Count List (PCL). A PCL is a list of pairs ⟨#paths,#nodes⟩. A pair ⟨x, y⟩ indicates that
there are x different paths present in y nodes. To get significant statistics, we select a
sample set of nodes, and each of them builds its own PCL based on local information.
Then, the PCLs are merged into a single PCL, which provides an estimate of the overall
path distribution. Afterwards, we construct a V-Optimal histogram to represent in compact
form the PCL data.

V-Optimal histograms are designed to minimize the weighted variance of the source
values, i.e., the quantity

∑β
i=1 xiVi where xi is the number of items in the i-th bucket and

23

Vi is the variance of the source values in the i-th bucket [35]. To efficiently build a V-
Optimal histogram for the PCL, we use the algorithm proposed by Jagadish et al. [38],
which is based on dynamic programming. This algorithm finds an optimal solution that is
time quadratic in the number of paths and linear in the number of buckets.

Once a v-bucket V-Optimal histogram for the PCL has been built using the Jagadish’s
algorithm, we use the lower bound, average value, and upper bound, of the i-th histogram
bucket as Ii.l, Ii.avg, and Ii.u respectively, where Ii is the i-th selectivity interval of the PST.

6.2. PST construction and propagation

The PST Construction and Propagation (PST CP) process is composed of four phases:

1. Path density estimation. The goal of this phase is estimating the path density, i.e.,
the ratio between the number of paths and the number of nodes in the network.

2. Path distribution estimation. The goal of this phase is estimating the path distribu-
tion, i.e., how many paths belong to the different selectivity intervals.

3. PST creation. The goal of this phase is to create the PST starting from the KTs of
all the nodes in the network.

4. PST propagation. The goal of this phase is to propagate the final PST to all the nodes
in the network.

These phases exploit aModified Broadcast With Feedback (MBWF) algorithm introduced
in Section 6.2.1. Details about the PST CP algorithm are provided in Section 6.2.2.

6.2.1. MBWF algorithm

The network structure of a DHT-based system can be exploited to efficiently distribute
any kind of information across the overlay that is formed by the interconnection of peer
nodes. This principle has been exploited by El-Ansary et al. [32] to design an efficient
broadcast algorithm for Chord overlays.

The broadcast algorithm works as follows. The broadcasting node, Nj divides the iden-
tifier space of the Chord ring into f parts, where f is the number of unique fingers in its
FT, and delegates to each finger the responsibility to cover all nodes associated with its
part. In particular, the last unique finger, Ff , is delegated to cover all nodes in the interval
(Ff ,Nj); Ff−1 is delegated to cover (Ff−1,Ff), and so on down to the first finger, F1, which
is delegated to cover (F1,F2). Each delegatee divides the part it is responsible for into parts
that it in turn delegates to other nodes, recursively. In a network of n nodes, a broadcast
message originating at an arbitrary node reaches all other nodes in O(log2 n) hops with
n− 1 messages.

In [33], Ghodsi proposed an extension of the broadcast algorithm, referred to as Broad-
cast With Feedback (BWF), to address the case of a broadcasting node that wishes to receive
a response from the nodes it is broadcasting to. In our framework we define a slightly mod-
ified version of BWF algorithm, called Modified Broadcast With Feedback (MBWF) which,
differently from BWF, permits to limit the broadcast to a subset of nodes and to choose
whether the feedback is needed or not. To this purpose, beyond the message to be broadcast,
msg, MBWF allows the broadcasting node, Nj, to specify two additional parameters:

• a boolean fdbck, indicating whether the feedback is required or not.

• an integer last ∈ [1, f], whose value represents the index of the last unique finger to be
contacted from those in Nj’s FT.

24

The value of last permits to limit the broadcast to a subset of nodes. If last = f, the
message will be broadcast to all nodes, like in the original BWF algorithm. If last < f,
the message will be broadcast (or, more properly, multicast) only to those nodes whose
identifier lie in the range [F1,Flast].

Fig. 10 shows the pseudo-code of the MBWF algorithm. Broadcast is a local procedure
invoked by a node Nj to start the broadcasting process. The procedure receives the three in-
put parameters introduced above (msg, fdbck, last) and, if the feedback is required, returns
a single cumulative feedback response (resp) from the nodes that received msg. Broad-
castForward and BroadcastReply are remotely invokable procedures that must be present on
every node, including the broadcast initiator.

According to [34], given the structural properties of the spanning tree associated with
the broadcast process, the number of nodes nx reached through the first x fingers of the
broadcast initiator can be estimated as:

nx = k · 2x (13)

where k is a constant valid for every 1 ≤ x ≤ f.
Moreover, the number of hops (i.e., broadcast forwarding operations) to reach the far-

thest node among those covered by the first x fingers can be estimated as:

dx = log2 nx (14)

6.2.2. PST CP algorithm

The PST CP algorithm, shown in Fig. 11, is executed periodically by one node in the
system, for example the one having the smallest identifier4, referred to as Nstart.

The algorithm receives the following input parameters (Section 7 will discuss which
values can be in practice used for these parameters):

• nf. This parameter is used during the path density estimation phase. Such estimation
is performed by Nstart by querying all nodes that can be reached by executing a
broadcast limited to its first nf fingers. Therefore, the value of nf determines the
number of nodes that are involved in the path density estimation phase.

• mp. This parameter specifies the minimum number of paths needed to estimate
the path selectivity distribution. Given the number of paths counted during the path
density estimation phase, Nstart determines the broadcast configuration to be executed
during the path distribution estimation phase to reach a number of nodes cumulatively
indexing at least mp paths.

• fr and v. The former represents the desired false positive rate of the PST; the latter
represents the number of rows of the PST. Given fr and v, and the statistics gathered
during the path distribution estimation phase, Nstart can determine the parameters
I, w, and z of the PST to be constructed, as detailed below.

The algorithm is based on the exchange of messages listed in Table 2.

4In Chord, a node can know whether it is the node with the smallest id, by looking if its predecessor has
a greater id.

25

Algorithm Modified Broadcast With Feedback (MBWF)
Input: Message to be broadcast: msg

Feedback required: fdbck
Last finger to be contacted: last ∈ [1, f]

Output: Feedback response: resp

procedure Broadcast(msg, fdbck, last)
resp← ⊢;
finish← false;
Nj.BroadcastForward(msg, Nj, fdbck, last);
if fdbck = true then

wait until finish = true;
return resp;

end if
end procedure

procedure BroadcastForward(msg, limit, fdbck, last) invoked by Nk

resp ← Process(msg);
par ← Nk;
Ack ← Ø;
for i ← f downto 1 do

if Fi ∈ (Nj,limit) then
if i ≤ last then

Fi.BroadcastForward(msg, limit, fdbck, f);
Ack ← Ack ∪ Fi;

end if
limit ← Fi;

end if
end for
if Ack = Ø and fdbck = true then

par.BroadcastReply(resp);
end if

end procedure

procedure BroadcastReply(r) invoked by Nk

if Nk = Nj then
finish← true;

else
Ack ← Ack−Nk;
resp ← Merge(resp, r);
if Ack = Ø then

par.BroadcastReply(resp);
end if

end if
end procedure

Figure 10: Modified Broadcast With Feedback algorithm.

26

Algorithm PST Construction and Propagation (PST CP)
Input: Number of fingers contacted on first phase: nf ≤ f

Min. number of paths for selectivity estimation: mp > 0
Desired false positive rate: fr ∈ (0, 1)
Number of selectivity intervals: v > 0

Output: Updated PST on every node

begin
// Path density estimation:
last← nf;
msg1← PC Request[];
resp1← Broadcast(msg1, true, last);
msg2← ComputeSampleSize(resp1);
// Path distribution estimation:
resp2← Broadcast(msg2, true, last);
msg3← ComputePSTParameters(resp2);
// PST creation:
resp3← Broadcast(msg3, true, f);
msg4← UpdateLocalPST(resp3);
// PST propagation:
Broadcast(msg4, false, f);

end

Figure 11: PST Construction and Propagation algorithm.

Table 2: Messages exchanged in the PST CP algorithm.

Message Fields Field Description

PC Request (none)

PC Response pc Path counter
PCL Request (none)

PCL Response

PCL Path Count List
pc Path counter
nc Node counter

PST Request

I Set of selectivity intervals
w No. of bits of each BF
z No. of hash functions of the BFs
n̂ Estimated number of nodes

PST Response PST Path Selectivity Table

PST Broadcast PST Path Selectivity Table

To activate the path density estimation phase, Nstart performs a broadcast-with-feedback
to a subset S1 of the nodes in the network (those reachable through [F1, Fnf], i.e., with
last = nf), asking them to reply with the number of paths indexed in their KTs. The
broadcast request is represented by a PC Request message (msg1), while the response is
represented by a PC Response message. The cumulative feedback response resp1 received
by Nstart contains the total number pc of paths in the key tables of S1, which provides
an estimate of the path density in the whole network. Response resp1 is processed by a
ComputeSampleSize procedure that, given pc and the input parameter mp, calculates the
new last value and returns a PCL Request message that will be used in the next phase.

The path distribution estimation phase performs a broadcast-with-feedback to all nodes
S2 reachable through [F1, Flast] (with last as resulting from the previous phase). In response
to the broadcast request, represented by the PCL Request message (msg2), those nodes
reply with the distribution of paths in their KTs, in the form of a PCL Response message.
Therefore, Nstart will receive, as a feedback, a cumulative resp2 containing a PCL together

27

with two values, pc and nc, representing the total number of paths indexed in the KTs of
nodes in S2, and the total number of such nodes, respectively. Response resp2 is processed
by a ComputePSTParameters procedure that, given the cumulative PCL, nc and pc, and
the input parameters fr and v, determines the PST parameters (I, w, and z) and returns a
PST Request message that will be used in the next phase.

The goal of the PST creation phase is to create the PST starting from the KTs of all
nodes in the network. To this end, Nstart performs a broadcast-with-feedback to all nodes
in the network (i.e., last = f) of the PST Request message (msg3). Each node will reply
with a PST Response message, containing the PST calculated locally on the basis of the
parameters I, w, and z included in msg3. As a result of the recursive merging procedure
of the broadcast-with-feedback, the PST received by Nstart will contain path selectivity
information of all the paths in the network. A UpdateLocalPST procedure is then invoked
by Nstart to locally store the final PST, and to generate a PST Broadcast.

The PST propagation phase performs a broadcast-without-feedback of the final PST to
all nodes in the network (i.e., last = f) of the PST Broadcast message (msg4) generated
during the previous phase.

Procedures ComputeSampleSize, ComputePSTParameters and UpdateLocalPST

The ComputeSampleSize procedure, shown in Fig. 12, receives a PC Response message
and returns a PCL Request message. As a side effect, it also modifies the value of the
last variable. The goal is calculating a new value of last such that the broadcast that will
be performed during the path distribution estimation phase will reach a number of nodes
cumulatively indexing at least mp paths.

procedure ComputeSampleSize(msg)
old last← last;
last←Min(⌈log2(mp · 2old last/msg.pc)⌉, f);
msg← PCL Request[];
return msg;

end procedure

Figure 12: ComputeSampleSize procedure.

Accordingly to Eq. 13, the size of set S1, which includes all nodes reached by Nstart

through [F1, Fold last] during the path density estimation phase, can be calculated as follows:

|S1| = k · 2old last (15)

Therefore, the path density can be estimated as:

ρ = msg.pc/|S1| (16)

where msg.pc is the total number of paths indexed by the nodes in S1.
To find mp paths, we need to contact a set of nodes S2 such that |S2|= mp/ρ. As

|S2|= k · 2last, the value of last to reach |S2| nodes is given by:

last = ⌈log2(mp · 2old last/msg.pc)⌉ (17)

Since the value of last resulting from Eq. 17 may be greater than the number of fingers, f,
the actual value of last will be the minimum between the one calculated by Eq. 17 and f,
as shown in Fig. 12.

28

The ComputePSTParameters procedure, shown in Fig. 13, receives a PCL Response
message msg and returns a PST Request. msg contains the PCL, pc and nc resulting
from the path distribution estimation phase.

procedure ComputePSTParameters(msg)
n̂← msg.nc · 2f−last;
I← VOPTHistIntervals(msg.PCL, n̂, v);
p̂← msg.pc · 2f−last;
x← p̂/v;

P← 1− (1− fr)1/(v−1);
w← ⌈−x · ln P/ ln2 2⌉;
z← ⌈w/x · ln 2⌉;
msg← PST Request[I, w, z, n̂];
return msg;

end procedure

Figure 13: ComputePSTParameters procedure.

The procedure begins by estimating the total number of nodes in the network n̂. From
Eq. 13, n̂ can be estimated as msg.nc · 2f−last, where f is the total number of fingers, and last
is the number of fingers that have been contacted during the path distribution estimation
phase.

The VOPTHistIntervals procedure receives the PCL, n̂ and v, and returns a set I of
v selectivity intervals. Then, the total number of paths in the network p̂ is estimated as
msg.pc · 2f−last, similarly to n̂, and the average number x of paths that will be inserted in
each BF is calculated as p̂/v.

In order to determine the PST parameters that ensure the desired false positive rate fr
for the PST, the algorithm calculates P using Eq. 12, w through Eq. 10, and z through Eq.
9. Note that, since the values returned by the last two equations are in the real domain, we
approximate w and z to the next higher integer.

Finally, the UpdateLocalPST procedure, shown in Fig. 14, receives a PST Response
message containing the cumulative PST generated by all nodes in the network, locally
stores a copy of such PST, and returns a PST Broadcast that will be used during the
PST propagation phase to distribute the cumulative PST to all the nodes in the network.

procedure UpdateLocalPST(msg)
PST← msg.PST;
msg← PST Broadcast[PST];
return msg;

end procedure

Figure 14: UpdateLocalPST procedure.

Procedures Process and Merge

The Process procedure, invoked by BroadcastForward, specifies the actions performed by
each node on reception of a message (see Fig. 15). In response to a PC Request, the pro-
cedure returns a PC Response specifying the number of paths, pn, which are present in the
local KT. When a PCL Request is received, a local PCL is created by invoking the Build-
LocalPCL procedure, described later; then, the procedure returns a PCL Response, con-
taining the localPCL, the path counter pc (initially set to pn), and the number of contacted

29

nodes nc (initially set to 1 to count the current node). The reception of a PST Request
triggers the creation of a local PST by invoking the BuildLocalPST procedure, described
later, starting from the parameters included in the request; then, the procedure returns
a PST Response containing the localPST. Finally, in the case a PST Broadcast is
received, the node just updates its local PST to the value of the PST parameter received
with the message.

procedure Process(msg)
if msg instanceof PC Request then

resp← PC Response[pn];
return resp;

else if msg instanceof PCL Request then
localPCL← BuildLocalPCL();
resp← PCL Response[localPCL, c, 1];
return resp;

else if msg instanceof PST Request then
localPST← BuildLocalPST(msg.I, msg.w, msg.z, msg.n̂);
resp← PST Response[localPST];
return resp

else if msg instanceof PST Broadcast then
PST← msg.PST;

end
end procedure

Figure 15: Process procedure.

The Merge procedure, invoked by BroadcastReply, specifies how the local response of
a node (generated by Process) is merged with the response received by another node (see
Fig. 16). Two PC Response messages, msg1 and msg2, produce a new PC Response
whose pc counter is the sum of msg1.pc and msg12.pc. In the case of two PCL Response
messages, the procedure returns a new PCL Response containing PCL, pc and nc fields
obtained by merging the corresponding fields carried by msg1 and msg2; note that the
two PCLs are merged by invoking the MergePCLs procedure, described later. Finally, two
PST Response messages are merged into a new PST Response message whose PST field
is obtained by merging msg1.PST and msg2.PST, by invoking the MergePSTs procedure,
described later.

Procedures BuildLocalPCL and MergePCLs

The BuildLocalPCL procedure is invoked by Process to construct a PCL from the local KT.
We remind that the PCL associated with a KT is a list of pairs of the form ⟨#paths,#nodes⟩.
Each pair ⟨x, y⟩ indicates that the KT contains x different paths owned by y nodes.

Fig. 17 shows an example of PCL construction starting from a local KT. The PCL in
the example contains three entries:

• ⟨1, 1⟩, since the KT contains 1 path (p11) owned by 1 node;

• ⟨2, 2⟩, as the KT contains 2 paths (p3 and p17) owned by 2 nodes;

• ⟨2, 3⟩, since the KT contains 2 paths (p1 and p7) with 3 owners;

MergePCLs is invoked by the Merge procedure to merge two PCLs, PCL1 and PCL2.
The new PCL is obtained as follows:

30

procedure Merge(msg1, msg2)
if msg1 instanceof PC Response then

pc← msg1.pc + msg2.pc;
resp← PC Response[pc];
return resp

else if msg1 instanceof PCL Response then
localPCL← MergePCLs(msg1.PCL, msg2.PCL);
pc← msg1.pc + msg2.pc;
nc← msg1.nc + msg2.nc;
resp← PCL Response[PCL, pc, nc];
return resp

else if msg1 instanceof PST Response then
localPST← MergePSTs(msg1.PST, msg2.PST);
resp← PST Response[PST];
return resp;

end
end procedure

Figure 16: Merge procedure.

Path Path key Path owners

p1
 kp1

 N3, N7, N11

p3
 kp3

 N2, N5

p7
 kp7

 N1, N3, N9

p11
 kp11

 N6

p17
 kp17

 N3, N7

KT

BuildLocalPCL

<1,1> <2,2> <2,3>

PCL

Figure 17: Example of PCL generated by BuildLocalPCL.

• Each pair ⟨x1, y1⟩ in PCL1 (resp. PCL2) generates an identical pair in the new PCL
if does not exist another pair ⟨x2, y2⟩ in PCL2 (resp. PCL1) such that y1 = y2.

• Two pairs ⟨x1, y1⟩ and ⟨x2, y2⟩, present in PCL1 and PCL2 respectively, generate a
single pair ⟨x1 + x2, y1⟩ in the new PCL only if y1 = y2.

Procedures BuildLocalPST and MergePSTs

The BuildLocalPST procedure, described in Fig. 18, is responsible for the construction of
the local PST on a given node. It is invoked by Process when a PST Request[I, w, z, n̂]
is received.

The first step is the construction of the PST as a table of pairs ⟨avg,BF⟩. More precisely,
the i-th row of a PST, denoted as PSTi, is a pair ⟨avg,BF⟩ where avg = Ii.avg and BF is
a w-bit BF used to test whether a path has a selectivity in interval Ii. We assume that all
nodes share a suitable number of independent hash functions, and that the first z of them
are used for the BF operations.

The next step is identifying to which selectivity interval belongs the selectivity value of
each path p in the KT of the node and, thus, inserting path p into the BF associated with
that selectivity interval. To this aim, for each path p in the KT, the estimated selectivity
value sp is calculated. At this point, three different cases may hold: 1) If sp is lower than the
average selectivity of the first bucket of the PST, path p is inserted into the BF associated
with the first selectivity interval. 2) If sp is greater than the average selectivity of the
last bucket of the PST, path p is inserted into the BF associated with the last selectivity

31

procedure BuildLocalPST(I, w, z, n̂)
for each interval Ii ∈ I do

avg← Ii.avg;
BF← BloomFilter(w, z);
PSTi ← ⟨avg,BF⟩;

end
for each path p ∈ KeyTable do

sp ← np/n̂;
if (sp < PST1.avg) then

PST1.BF.InsertPath(p);
end
else if (sp > PSTv.avg) then

PSTv.BF.InsertPath(p);
end
else

for i← 1 to v − 1 do
if (sp ≤ PSTi+1.avg) then

if ((sp − PSTi.avg) < (PSTi+1.avg − sp)) then
PSTi.BF.InsertPath(p)

end
else

PSTi+1.BF.InsertPath(p)
end

end
end

end
end
return PST

end procedure

Figure 18: BuildLocalPST procedure.

interval. 3) In the other cases, path p is assigned to the BF associated with the selectivity
interval whose average value is the closest one to sp.

MergePSTs (see Fig. 19) is invoked by the Merge procedure to merge two PSTs, PST1
and PST2, received in input. As a first step, the new PST is obtained by cloning one of
the two PSTs in input (e.g., PST1). Then, a union operation is performed between each
BF of such PST and the BF in the same row of PST2. Since the BFs have the same size
and share the same set of hash functions, the union is simply performed with a bitwise or
operation.

procedure MergePSTs(PST1, PST2)
PST← PST1;
for i← 1 to v do

for j← 1 to w do
PSTi.BFj ← PSTi.BFj or PST2i.BFj;

end
end
return PST;

end procedure

Figure 19: MergePSTs procedure.

32

6.2.3. Complexity of PST CP

Theorem 4. The PST CP algorithm constructs and propagates a PST in O(log2 n) hops,
where n is the number of nodes in the network.

Proof . The total number of hops, H, performed during the four phases of the PST CP
algorithm, is given by

∑4
i=1Hi, where H1, H2, H3, and H4 are the number of hops per-

formed during the path density estimation, path distribution estimation, PST creation,
and PST propagation phases, respectively. We remind that each one of the four phases
performs either a broadcast-without-feedback or a broadcast-with-feedback. A broadcast-
without-feedback is performed in O(log2 n) hops [32]. The same asymptotic complexity
holds to a broadcast-with-feedback, since it requires exactly twice the number of hops of
a broadcast-without-feedback [33]. Therefore, Hi = O(log2 n) for any 1 ≤ i ≤ 4, and conse-
quently H = O(log2 n).

Theorem 5. The PST CP algorithm generates O(n) messages to construct and propagate
a PST, where n is the number of nodes in the network.

Proof . This can be easily proven taking into account that a single broadcast-without-
feedback generates exactly n− 1 messages [32], which double in the case of a broadcast-
with-feedback [33]. Since each one of the four PST CP phases performs either a broadcast-
without-feedback or a broadcast-with-feedback, the total number of messages generated at
the end of the four phases is O(n).

6.3. On the use of the PST in holistic approaches

The PST approach could be used in other systems where it is necessary to store informa-
tion about selectivity of XML data, including the ones that follow a holistic query evaluation
approach. In addition, the PST Construction and Propagation (PST CP) algorithm could
be adapted to these systems to construct a PST-like data structure in a distributed way
and to propagate selectivity estimations all over the network.

As an example, let us consider the TreeSketch holistic approach [20] introduced in Sec-
tion 2.1. TreeSketch builds a synopsis which allows to estimate the selectivity of the tree
pattern queries in a given XML dataset. In a distributed DHT-based setting, we can envi-
sion the following scenario:

• The dataset D is distributed over the DHT nodes;

• The tree pattern queries in D are indexed in the DHT, by assigning each of them to
a given DHT node through hashing;

• The PST CP algorithm is used to build and propagate a PST containing selectivity
information about tree pattern queries, instead of single paths, as detailed in the
following.

Let D be an XML dataset, synopsis(D) the TreeSketch synopsis of D and q a tree pattern
query in D. We can define the estimated selectivity of q, denoted sq, as the TreeSketch
estimated selectivity.

As in the original design, the PST is a table with v rows, one for each selectivity interval.
The i-th row of the PST, denoted as PSTi, is a pair ⟨avg,BF⟩, where avg is the average of

33

the i-th selectivity interval and BF is a w-bit Bloom Filter (BF). In a TreeSketch scenario,
PSTi.BF can be used to represent all the tree pattern queries in D whose selectivity belongs
to the i-th selectivity interval, while PSTi.avg is a representative selectivity value for all
such tree pattern queries.

7. PST performance

This section evaluates the accuracy of PSTs for path selectivity estimation and their
effectiveness in supporting APS-based query processing.

7.1. Accuracy evaluation

We experimentally evaluated how the accuracy of the estimates produced by a PST
varies in function of the PST CP input parameters. As a measure of a PST accuracy we
adopt the Average Relative Error (ARE):

ARE =
1

t
·

t∑
i=1

|spi − ŝpi |
spi

(18)

where t is the number of paths in the system, spi is the real selectivity of a path pi, and ŝpi
is the selectivity estimate of pi returned by the PST.

The evaluation has been carried out using a custom network simulator. The simulator
builds the network in three steps:

1. A random Chord network with n nodes is created; as a result of this step, the FTs of
all nodes are initialized.

2. t different paths are created; to each path p, a selectivity sp is assigned in the range
(0, u].

3. Each path p is assigned to sp · n nodes; as a result of this step, the KTs of all nodes
are initialized.

After having built the network, the simulator runs the PST CP algorithm, based on the
four input parameters described in Section 6.2: nf, mp, fr, and v. As soon as the PST has
been created and propagated to all nodes in the network, the simulator calculates the ARE
associated with the PST.

We carried out several experiments aimed at evaluating how the ARE is influenced by the
input parameters of the PST CP algorithm. Out of the four input parameters, we found that
the first two ones (nf and mp), are not critical. After some preliminary tests, we chose nf = 7
and mp = 10, 000, which have been used in all the subsequent experiments. Additionally,
all the experiments have been performed on a network composed by n = 100, 000 nodes,
with t = 200, 000 paths, and selectivity values in the range (0, 0.5].

Fig. 20 shows the ARE of a PST resulting from different numbers of selectivity intervals
(v) and false positive rates (fr). In particular, Fig. 20a shows how the ARE varies when
v passes from 10 to 100, for three selected values of fr (0.001, 0.005, 0.01), while Fig. 20b
shows how the ARE varies when fr increases from 0.001 to 0.01, for three values of v (10,
50, 100).

The results in Fig. 20a show that, for a given fr, the ARE is inversely proportional to v.
This depends on the fact that the higher the number of selectivity intervals, the lower their

34

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

A
vg

 r
el

at
iv

e
er

ro
r

(%
)

v

n = 100000; t = 200000; 0 < spi
 <= 0.5

fr=0.001
fr=0.005
fr=0.01

 0

 20

 40

 60

 80

 100

.01.009.008.007.006.005.004.003.002.001

A
vg

 r
el

at
iv

e
er

ro
r

(%
)

fr

n = 100000; t = 200000; 0 < spi
 <= 0.5

v=10
v=50

v=100

(a) (b)

Figure 20: Average relative error (%) obtained with different values of v and fr: a) v ranging from 10 to
100; b) fr ranging from 0.001 to 0.01.

average width. Since the estimated selectivity of a path p is equal to the average value of
the selectivity interval to which p belongs to, smaller-width selectivity intervals results in
lower approximation errors. Fig. 20b shows that, fixed v, the ARE is directly proportionally
to fr. This is due to the fact that the higher the false positive rate, the higher the number
of paths belonging to multiple BFs of the PST. In these cases the average error increases,
because the selectivity of a path p is estimated as the mean of the average values of all the
selectivity intervals associated with the BFs to which p belongs to.

We carried out some additional simulations to evaluate the average overhead traffic
generated by the APS search technique, assuming that the selectivity values of all the paths
extracted from the query to be processed are estimated using the PST. The average overhead
traffic is estimated using the same methodology adopted in Section 5.1 to estimate TAPS.
However, while in Section 5.1 we assumed that the APS algorithm knows in advance the
real selectivity values of all the paths (scenario hereafter referred to as ideal APS), here we
assume that APS can get only an estimate of such values using the PST. The difference
between the PST-based APS overhead traffic and that of the ideal APS allows us to evaluate
the effectiveness of the PST in supporting APS search.

Fig. 21 shows the PST-based APS overhead traffic generated in two scenarios: a)
v=10, 50, 100, with fr=0.001; b) fr=0.001, 0.005, 0.01, with v=100. The overhead traffic
is evaluated for queries with a number of paths m from 2 to 12. For comparison purposes,
Fig. 21a and 21b show also the overhead traffic generated by the WPS algorithm, and by
the APS algorithm using the real selectivity values of all the paths (ideal APS).

Fig. 21a shows that, fixed the false positive rate, the overhead traffic decreases by
increasing the value of v. For v=100, the PST-based overhead traffic is close to that
generated by the ideal APS. For lower values of v the overhead traffic slightly increases,
according to the fact that also the ARE increases by using a lower number of selectivity
intervals (see Fig. 20a). From Fig. 21b we can observe that, fixed the number of selectivity
intervals, the overhead traffic decreases by choosing lower fr values. Also in this case, as
one might expect, the overhead traffic follows the same trend of the ARE (see Fig. 20b),
i.e., the lower the average relative error of a PST, the lower the overhead traffic resulting
from the use of the PST to perform an APS search.

We conclude by observing that even when we choose relatively low values for v or high
values for fr, the PST-based overhead traffic resulted significantly lower than that generated

35

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 2 4 6 8 10 12

O
ve

rh
ea

d
tr

af
fic

 (
kB

yt
es

)

m

n = 100000; t = 200000; 0 < spi
 <= 0.5; fr=0.001

WPS
Ideal APS
APS v=10
APS v=50

APS v=100

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 2 4 6 8 10 12

O
ve

rh
ea

d
tr

af
fic

 (
kB

yt
es

)

m

n = 100000; t = 200000; 0 < spi
 <= 0.5; v=100

WPS
Ideal APS

APS fr=0.001
APS fr=0.005
APS fr=0.01

(a) (b)

Figure 21: PST-based APS overhead traffic, compared to WPS and ideal APS: a) v=10, 50, 100, with
fr=0.001; b) fr=0.001, 0.005, 0.01, with v=100.

by a WPS search, thus confirming the efficiency of the PST in supporting APS search in a
distributed scenario.

7.2. Effect of churn

The results presented above are computed in a static scenario, i.e., in a network where
nodes do not join and leave the system and data does not change over the time. This implies
that the PST, once it is constructed and propagated, constantly ensures the same level of
performance since it is always updated and fully available to all nodes in the network. To
evaluate the system in dynamic conditions, we present here an additional set of simulations
in which joins and leaves of nodes, as well as query submissions, are modeled as Poisson
processes; therefore, the inter-arrival times of all the join, leave and query submission events
are independent and obey an exponential distribution with a given rate. This model has
been adopted in literature to evaluate several P2P systems (see, for example, [1]), for its
ability to approximate real network dynamics reasonably well.

To simulate node churn, we defined a joining rate JR and a leaving rate LR. On
average, every minute JR nodes join the network and LR nodes leave the network. In our
simulation JR = LR to keep the total number of nodes approximatively constant during
the whole simulation. In particular, we used three values for JR and LR: 1, 5 and 10, so
as to evaluate the system under different churn rates. The stochastic behavior of queries
is determined by a submission rate SR, which represents the average number of queries
submitted every minute to the system. Seven values for SR have been considered: 100, 200,
400, 800, 1,600, 3,200 and 6,400. In addition, each query is characterized by a number of
paths uniformly distributed between 2 and 12.

As for the above experiments, the network is initialized with n=100,000 nodes and
t=200,000 paths. Then, the PST CP algorithm is executed with the following input param-
eters: nf=7, mp=10,000, fr=0.001 and v=50. After the PST is constructed and propagated,
the simulation proceeds for 24 hours, during which nodes join, leave and submit queries at
the average rates introduced earlier. The PST CP algorithm is never re-executed after the
beginning of the simulation; this has two implications:

• The newly joined nodes do not possess a PST5. Therefore, when such nodes wants to

5This is a conservative assumption, in order to evaluate the effect of dynamism in the worst case scenario.

36

 4000

 6000

 8000

 10000

 12000

 14000

24181260

O
ve

rh
ea

d
tr

af
fic

 (
kB

yt
es

)

Simulation time (hours)

n = 100000; t = 200000; 0 < spi
 <= 0.5; fr=0.001; v=50; SR=800

WPS
Ideal APS
APS LR=1
APS LR=5

APS LR=10

1.2*108

1.0*108

0.8*108

0.6*108

0.4*108

0.2*108

0
640032001600800400200100

C
um

ul
. o

ve
rh

ea
d

tr
af

fic
 a

fte
r

24
 h

 (
M

B
yt

es
)

SR (queries/minute)

n = 100000; t = 200000; 0 < spi
 <= 0.5; fr=0.001; v=50

WPS
Ideal APS
APS LR=1
APS LR=5

APS LR=10

(a) (b)

Figure 22: PST-based APS overhead traffic with LR=1, 5 and 10, compared to WPS and ideal APS: a)
average values at different times, with SR=800; b) cumulative values after 24 hours, with SR ranging from
100 to 6400.

perform an APS search, they are forced to execute a WPS search instead.

• The nodes that did not leave the network possess a PST that gets gradually outdated
whenever new nodes, and associated data, join the network. If the PST does not
contain information about a path p, the average of all the selectivity values present
in the PST is returned as an estimate of p’s selectivity.

Figure 22(a) shows the average values of the PST-based APS overhead traffic, compared
to WPS and ideal APS, in a dynamic network characterized by the system parameters
introduced above, with LR=1, 5 and 10, and SR=800. The values are calculated at the
end of each hour of simulation, so as to observe the effect of dynamism over the time. The
figure shows that, while the overhead traffic of WPS and ideal APS remains approximatively
constant over the time (around 13,400 kB and 6,000 kB, respectively), the average traffic
generated by the PST-based APS increases linearly over the time. The increase strongly
depends from LR: with the lowest churn level (LR=1) the performance degradation is
negligible, since the overhead traffic passes from 6,021 kB at the beginning of the simulation,
to 6,196 kB after 24 hours. In contrast, with the highest churn level (LR=10), the overhead
traffic passes from 6,071 kB to 7,289 kB in 24 hours. Even in this case, however, the amount
of traffic generated by APS is significantly lower than that produced by WPS.

To better highlight the last point, Figure 22(b) shows the cumulative overhead traffic
generated during 24 hours by WPS, ideal APS, and PST-based APS, with LR=1, 5 and
10, and SR ranging from 100 to 6,400. The figure shows that the cumulative overhead traf-
fic increases proportionally with the query submission rate with all the search techniques.
However, the absolute amount of traffic saved by APS compared to WPS increases signifi-
cantly with the submission rate, despite the slight increase of traffic (in all the cases lower
than 8%) registered by APS when the leaving rate passes from 1 to 10.

7.3. Validation on a Cloud environment

We made an experimental evaluation of the system in a real network to validate the
simulation results. The experiments have been performed on the Microsoft Azure cloud

Alternatively, we could have assumed that a newly joined node gets a copy of the PST from one of its
neighbors in the DHT overlay.

37

Table 3: PST size (kBytes) as a function of fr and v.

v=10 v=20 v=30 v=40 v=50 v=60 v=70 v=80 v=90 v=100

fr=0.01 12.2 13.6 14.3 14.9 15.3 15.6 15.9 16.1 16.3 16.5
fr=0.005 13.5 14.8 15.6 16.1 16.5 16.8 17.1 17.4 17.6 17.8
fr=0.001 16.4 17.7 18.5 19.0 19.4 19.7 20.0 20.3 20.5 20.7

platform using 128 servers (virtual machines), each one equipped with a single-core 1.66
GHz CPU, 1.75 GB of RAM, and 225 GB of disk space. For the construction of the Chord
overlay we used Open Chord, an implementation of the Chord algorithm by the University
of Bamberg6.

We managed to run 16 Chord nodes on each server, thus we were able to test the
system in a network composed by n=2048 nodes. The number of 16 nodes per server was
determined experimentally as the maximum number of Chord nodes that was possible to
run concurrently on a single server, given the amount of RAM available on each server.

For the experiments we used the TreeBank dataset7, which contains t=7073 distinct
paths, with a size of 86 MB. In order to create a distributed data scenario, we proceeded as
follows:

1. From the original dataset, D0, we generated n smaller datasets, D1...Dn, each one
containing between 5 and 15 percent of the instances of D0, taken randomly.

2. Each one of the datasets D1...Dn was randomly assigned to one of the n Chord nodes.

3. Each one of the t paths was assigned, through hashing, to the KT of a Chord node.

After having built the network, we measured an average of 3.45 distinct paths per KT,
and path selectivity values ranging between 0.01 and 0.37.

As a first set of experiments, we measured the Average Relative Error (ARE) of a PST
in estimating the selectivity values of all the t paths indexed in the network. The ARE
has been measured using different PSTs, which differ for the false positive rate (fr=0,001,
0,005 or 0,01) and the number of selectivity intervals (from v=10 to v=100). In all cases,
the other PST CP parameters were nf=7 and mp=5,000. Table 3 reports the size of the
different PSTs used in these experiments, as a function of fr and v.

The experimental results are reported in Fig. 23, which compares the measured values
(dashed line) with the simulated values (continuous lines). The latter ones were obtained
by simulating a system with the same parameters (number of nodes, number of paths,
selectivity ranges and PST parameters) of the real network. As shown in the graphs, the
measured ARE values are very close to the simulated ones, particularly for v greater than
50 in all three scenarios. In addition, by comparing Fig. 23a with Fig. 23c, we can observe
the advantage of decreasing by a factor ten the fr value (from 0.01 to 0.001), which results
in a significant decrease of the ARE values, with a negligible increase of the PST size (4
kBytes on average, as shown in Table 3).

As a second set of experiments, we measured the PST-based APS overhead traffic gen-
erated using three PSTs with fr equal to 0.01, 0.005 and 0.001, and v fixed to 100. The
traffic has been measured considering a number of paths m ranging from 2 to 12.

6Open Chord. http://open-chord.sourceforge.net.
7The PENN Treebank Project, http://www.cis.upenn.edu/treebank

38

 0

 10

 20

 30

 40

 50

 10 20 30 40 50 60 70 80 90 100

A
vg

 r
el

at
iv

e
er

ro
r

(%
)

v

n = 2048; t = 7073; 0.01 <= spi
 <= 0.37; fr=0.01

simulated
measured

 0

 10

 20

 30

 40

 50

 10 20 30 40 50 60 70 80 90 100

A
vg

 r
el

at
iv

e
er

ro
r

(%
)

v

n = 2048; t = 7073; 0.01 <= spi
 <= 0.37; fr=0.005

simulated
measured

 0

 10

 20

 30

 40

 50

 10 20 30 40 50 60 70 80 90 100

A
vg

 r
el

at
iv

e
er

ro
r

(%
)

v

n = 2048; t = 7073; 0.01 <= spi
 <= 0.37; fr=0.001

simulated
measured

(a) (b) (c)

Figure 23: Measured vs simulated average relative error (%) obtained with v ranging from 10 to 100, with
three values of fr: a) fr=0.01; b) fr=0.005; c) fr=0.001.

The results are reported in Fig. 24. The three graphs compare the traffic measured in
the real network with that resulting by simulating a network with identical parameters. We
registered a maximum difference of 7% between simulated and measured values with the
first two PSTs (fr=0.01 and 0.005) particularly in correspondence of m=2 and 3. With the
third PST (fr=0.001), the difference between measured and simulated values was below 3%
for any value of m. Also in this case, we can observe the advantage of using a PST with
fr=0.001, which is just 4kBytes larger than that with fr=0.01, but allowed us to reduce by
several kBytes the average traffic generated by each single query (e.g., 13 kBytes for queries
with m=2).

 70

 80

 90

 100

 110

 120

 130

 140

 2 4 6 8 10 12

O
ve

rh
ea

d
tr

af
fic

 (
kB

yt
es

)

m

n = 2048; t = 7073; 0.01 < spi
 <= 0.37; fr=0.01; v=100

simulated
measured

 70

 80

 90

 100

 110

 120

 130

 140

 2 4 6 8 10 12

O
ve

rh
ea

d
tr

af
fic

 (
kB

yt
es

)

m

n = 2048; t = 7073; 0.01 < spi
 <= 0.37; fr=0.005; v=100

simulated
measured

 70

 80

 90

 100

 110

 120

 130

 140

 2 4 6 8 10 12

O
ve

rh
ea

d
tr

af
fic

 (
kB

yt
es

)

m

n = 2048; t = 7073; 0.01 < spi
 <= 0.37; fr=0.001; v=100

simulated
measured

(a) (b) (c)

Figure 24: Measured vs simulated PST-based APS overhead traffic obtained with m ranging from 2 to 12,
with v=100 and three values of fr: a) fr=0.01; b) fr=0.005; c) fr=0.001.

As a final remark, the results presented above show that the ARE and overhead traffic
values measured in the real network are very close to those calculated by the simulator,
which confirms the validity of the simulation results, in line with the theoretical findings
discussed earlier in the paper.

8. Conclusions

We analytically compared the WPS and MSP search strategies to query XML data in-
dexed in a DHT-based system. Based on this study, we defined the Adaptive Path Selection
(APS) search strategy that adaptively resolves an XML query by querying either the most
selective path or the whole path set. Experimental results confirmed that APS saves a
significant amount of traffic compared to WPS and MSP.

39

Like MSP, APS needs to know the selectivity of the paths in the query. This required
two issues to be addressed: i) finding a space-efficient data structure to store the selectivity
of each path in the network; ii) defining an effective solution to build and propagate such
data structure across the network. Concerning the first issue, we defined the PST data
structure, allowing for accurate and efficient path selectivity estimation.

The second issue has been addressed by defining the PST CP algorithm, which allows
us to construct and propagate the PST with logarithmic performance bounds. Experimen-
tal results show that the PST accurately estimates the path selectivity values, and that
the traffic generated by APS using PST-estimated selectivity values is comparable to that
produced by APS assuming to know the real path selectivity values.

References

[1] I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, H. Balakrishnan. Chord: A Scal-
able Peer-to-Peer Lookup Service for Internet Applications. ACM SIGCOMM’01, San
Diego, USA, 149-160, 2001.

[2] A. Rowstron, P. Druschel. Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems. 18th IFIP/ACM Int. Conf. on Distributed Systems
Platforms (Middleware 2001), Heidelberg, Germany, 329-350, 2001.

[3] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, J. Kubiatowicz. Tapestry: A
Resilient Global-scale Overlay for Service Deployment. IEEE J. on Sel. Areas in Comm.,
22(1):41-53, 2004.

[4] P. Maymounkov, D. Mazières: Kademlia: A Peer-to-Peer Information System Based on
the XORMetric. 1st Int. Workshop on Peer-to-Peer Systems (IPTPS 2002), Cambridge,
USA, 53-65, 2002.

[5] L. Galanis, Y. Wang, S. R. Jeffery, D. J. DeWitt. Locating data sources in large
distributed systems. 29th Int. Conf. on Very Large Data Bases (VLDB’03), Berlin,
Germany, 874-885, 2003.

[6] G. Skobeltsyn, M. Hauswirth, K. Aberer. Efficient Processing of XPath Queries with
Structured Overlay Networks. CoopIS/DOA/ODBASE Conf., Agia Napa, Cyprus,
2005.

[7] S. Abiteboul, I. Manolescu, N. Polyzotis, N. Preda, C. Sun. XML Processing in DHT
Networks. 24th IEEE Int. Conf. Data Engineering (ICDE’08), Cancun, Mexico, 606-
615, 2008.

[8] K. Karanasos, A. Katsifodimos, I. Manolescu, S. Zoupanos. ViP2P: Efficient XML
Management in DHT Networks. 12th International Conference, ICWE 2012, Berlin,
Germany, July 23-27, 2012.

[9] G. Koloniari, E. Pitoura. Peer-to-peer management of XML data: issues and research
challenges. SIGMOD Record, 34(2), 2005.

[10] K. Aberer. Peer-to-peer data management. Synthesis Lectures on Data Management,
Morgan & Claypool Publishers, 3:87-94, 2011.

40

[11] L. Garces-Erice, P. A. Felber, E. W. Biersack, G. Urvoy-Keller, and K. W. Ross. Data
Indexing in Peer-to-Peer DHT Networks. Proceedings of the 24th IEEE International
Conference Distributed Computing Systems (ICDCS’04), Hachioji, Tokyo, Japan, 200-
208, 2004.

[12] I. Miliaraki, Z. Kaoudi, and M. Koubarakis. XML Data Dissemination Using Automata
on Top of Structured Overlay Networks. 17th International conference on World Wide
Web (WWW’08),865-874 2008.

[13] P. R. Rao, B. Moon. Locating XML Documents in a Peer-to-Peer Network Using Dis-
tributed Hash Tables. IEEE Trans. on Knowledge and Data Engineering, 21(12):1737-
1752, 2009.

[14] A. Aboulnaga, A. R. Alameldeen, J. F. Naughton. Estimating the Selectivity of XML
Path Expressions for Internet Scale Applications. VLDB Journal, 591-600, 2001.

[15] L. Lim, M.Wang, S. Padmanabhan, J. S. Vitter, R. Parr. XPathLearner: An On-line
Self-Tuning Markov Histogram for XML Path Selectivity Estimation. VLDB, 442-453,
2002.

[16] V. Slavov, P. Rao. A gossip-based approach for Internet-scale cardinality estimation
of XPath queries over distributed semistructured data. The VLDB Journal,Volume 23
Issue 1, February 2014 pp. 51-76.

[17] Y. Wu, J. M. Patel, H. V. Jagadish. Estimating Answer Sizes for XML Queries. 8th
International Conference on Extending Database Technology, Prague, 59017608, 2002.

[18] J. Freire, J. R. Harista, M. Ramanath, P. Roy, J. Simone. StatiX: Making XML Count.
SIGMOD Conf., 2002.

[19] N. Polyzotis, M. Garofalakis. Statistical Synopses for Graph Structured XML
Databases. SIGMOD Conf., 2002.

[20] N. Polyzotis, M. Garofalakis, Y. Ioannidis. Approximate XML Query Answers. SIG-
MOD Conf., 2004.

[21] N. Polyzotis, M. Garofalakis. XCluster Synopses for Structured XML Content. 22th
Int. Conf. on Data Engineering, Atlanta, 2006.

[22] Riham Abdel Kader. Optimization in Relational Database Systems. In VLDB, 2007.

[23] Luo, Cheng and Jiang, Zhewei and Hou, Wen-Chi and Yu, Feng and Zhu, Qiang. A
Sampling Approach for XML Query Selectivity Estimation. In EDBT, pp. 335–344,
2009.

[24] Alrammal, M and Hains, G. A stream-based selectivity estimation technique for for-
ward XPath. In IIT, pp.209 - 214, 2012.

[25] M. Ramanath, L. Zhang, J. Freire, J. R. Haritsa. IMAX: Incremental Maintenance
of Schema-Based XML Statistics. 21st Int. Conf. on Data Engineering, Tokyo, Japan,
27317284, 2005.

41

[26] N. Zhang, M. T. Ozsu, A. Aboulnaga, and I. F. Ilyas. XSEED: Accurate and Fast
Cardinality Estimation for XPath Queries. In Proc. of the 22th IEEE Intl. Conference
on Data Engineering, 61, Atlanta, GA, 2006.

[27] D. K. Fisher and S. Maneth. Structural Selectivity Estimation for XML Documents.
In Proc. of the 23th IEEE Intl. Conference on Data Engineering, 62617635, Istanbul,
Turkey, 2007.

[28] C. Luo, Z. Jiang, W.-C. Hou, F. Yu, Q. Zhu. A Sampling Approach for XML Query
Selectivity Estimation. 12th Int. Conf. on Extending Database Technology, 33517344,
Saint Petersburg, Russia, 2009.

[29] D. Kempe, A. Dobra, J. Gehrke. Gossip-Based Computation of Aggregate Information.
44th IEEE Symposium on Foundations of Computer Science, Cambridge, USA, 2003.

[30] C. Comito, D. Talia, P. Trunfio. Selectivity-based XML query processing in structured
peer-to-peer networks. 14th Int. Database Engineering and Applications Symposium
(IDEAS 2010), Montreal, Canada, 236-244, 2010.

[31] W. Wang, H. Jiang, H. Lu, J. Xu Yu. Bloom Histogram: Path Selectivity Estimation
for XML Data with Updates. 30th Int. Conf. on Very Large Data Bases, Toronto,
Canada, 240-251, 2004.

[32] S. El-Ansary, L. Alima, P. Brand, S. Haridi, Efficient Broadcast in Structured P2P
Networks. 2nd Int. Workshop on Peer-to-Peer Systems (IPTPS’03), Berkeley, USA,
2003.

[33] A. Ghodsi. Multicast and Bulk Lookup in Structured Overlay Networks. In: X. Shen,
H. Yu, J. Buford, M. Akon (Eds.) Handbook of Peer-to-Peer Networking, 933-958,
Springer, 2010.

[34] D. Talia, P. Trunfio, Enabling dynamic querying over distributed hash tables. Journal
of Parallel and Distributed Computing, 70(12):1254-1265, 2010.

[35] V. Poosala, Y. E. Ioannidis, P. J. Haas, E. J. Shekita: Improved Histograms for Selec-
tivity Estimation of Range Predicates. SIGMOD Conf., 294-305, 1996.

[36] Cai, M., Frank, M., Chen, J., Szekely, P.: MAAN: A Multi-Attribute Addressable
Network for Grid Information Services. Journal of Grid Computing 2(1): 3-14 (2004).

[37] B. Bloom. Space/Time Tradeoffs in Hash Coding with Allowable Errors. CACM 13(7),
422-426, 1970.

[38] H. V. Jagadish, V. Poosala, N. Koudas, K. Sevcik, S. Muthukrishnan, T. Suel. Optimal
Histograms with Quality Guarantees. 24rd Int. Conf. on Very Large Databases, 275-
286, 1998.

[39] Li Fan, Pei Cao, Jussara M. Almeida, Andrei Z. Broder: Summary cache: a scalable
wide-area web cache sharing protocol. IEEE/ACM Trans. Netw. 8(3):281-293, 2000.

[40] G. Pirro, D. Talia, P. Trunfio. A DHT-Based Semantic Overlay Network for Service
Discovery. Future Generation Computer Systems, vol. 28, n. 4, pp. 689–707, Elsevier
Science, April 2012.

42

[41] K. Aberer, P. Cudr-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth, M. Punceva, R.
Schmidt. P-Grid: a self-organizing structured P2P system. SIGMOD Record vol. 32,
n. 3, pp. 29–33, 2003.

43

