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Abstract The increasing computing power of mobile devices has opened the way
to perform analysis and mining of data in many real-life mobile scenarios, such
as body-health monitoring, vehicle control, and wireless security systems. A key
aspect to enable data analysis and mining over mobile devices is ensuring energy
efficiency, as mobile devices are battery-power operated. We worked in this direc-
tion by defining a distributed architecture in which mobile devices cooperate in a
peer-to-peer style to perform a data mining process, tackling the problem of en-
ergy capacity shortage by distributing the energy consumption among the available
devices. Within this framework, we propose an energy-aware (EA) scheduling strat-
egy that assigns data mining tasks over a network of mobile devices optimizing the
energy usage. The main design principle of the EA strategy is finding a task alloca-
tion that prolongs network lifetime by balancing the energy load among the devices.
The EA strategy has been evaluated through discrete-event simulation. The exper-
imental results show that significant energy savings can be achieved by using the
EA scheduler in a mobile data mining scenario, compared to classical time-based
schedulers.
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1 Introduction

A growing number of mobile data intensive applications appeared on the market
in recent years. Examples include cell-phone- and PDA-based systems for body-
health monitoring, vehicle control, and wireless security systems. Advanced sup-
port for data analysis and mining is necessary for such applications. A key aspect
that must be addressed to enable effective and reliable data mining over mobile de-
vices is ensuring energy efficiency, as most commercially available mobile devices
have battery power which would last only a few hours. Therefore, data mining tasks
in mobile environments should be allocated and scheduled so as to minimize the
energy consumption of low-capacity mobile devices.

Only very few studies have been devoted on energy characterization of data min-
ing algorithms on mobile devices [1], but not in cooperative distributed scenarios.
We worked in this direction by defining a distributed architecture in which mobile
devices cooperate in a peer-to-peer style to perform a data mining task, tackling
the problem of energy capacity shortage by distributing the energy consumption
among the available devices. Efficient resource allocation and energy management
is achieved through clustering of mobile devices into local groups, also termed clus-
ters. Such a cooperative architecture can be seen as a set of requestors, i.e., mobile
applications generating data mining tasks to be executed, and a clustered set of re-
sources, i.e., mobile devices characterized by different levels of energy and process-
ing power, where tasks can be executed. To make the most of all available resources,
a proper distribution of tasks among clusters and individual devices is crucial. The
design and evaluation of such energy-aware (EA) task allocation (or task schedul-
ing) strategy is the main goal of this paper.

The design principle of the EA scheduling strategy is to find a task allocation
that prolongs network lifetime by balancing the energy load among clusters. To
this end, the EA scheduler implements a two-phase heuristic-based algorithm. The
algorithm first tries to assign a data mining task locally to the cluster that generated
the execution request, by maximizing the cluster residual life. If the task cannot be
assigned locally, the second phase of the algorithm is performed by assigning the
task to the most suitable node all over the network of clusters, maximizing this way
the overall network lifetime. We characterize the energy consumption of mobile
devices defining an energy model in which the energy costs of both computation
and communication are taken into account.

The EA approach has been introduced in our previous work [2]. In this paper
we propose an extensive evaluation of the EA allocation strategy using a custom
discrete-event simulator, which allowed us to assess it effectiveness on a large range
of data mining tasks. The experimental results show that a significant improvement
can be achieved using our EA scheduler compared to the time-based round-robin
scheduler. In details, our algorithm: i) is effective in prolonging network lifetime
by reducing the energy consumption, without sacrificing the number of tasks com-
pleted; ii) in all the experiments performed, it was able to keep alive most of the
mobile devices thanks to its energy load balancing strategy.
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The remainder of the paper is organized as follows. Section 2 introduces the ref-
erence architecture. Section 3 presents the EA allocation scheme. Section 4 presents
the experimental results. Section 5 discusses related work. Finally, Section 6 con-
cludes the paper.

2 Reference Architecture

In a mobile ad hoc network, efficient resource allocation, energy management and
routing can be achieved through clustering of mobile nodes. In a clustering scheme,
mobile nodes are divided into clusters. Generally, geographically adjacent devices
are assigned to the same cluster. Under a cluster-based structure, mobile nodes
may be assigned different roles, such as cluster-head or cluster member. A cluster-
head normally serves as the local coordinator for its cluster, performing intra-cluster
transmission arrangement, data forwarding, and so on. A cluster member is a non
cluster-head node without any inter-cluster links.

cluster 
head 

cluster 

cluster-to- 
cluster link 

M2M link 

cluster 
member 

Fig. 1 Reference architecture for mobile-to-mobile collaborations between mobile devices.

In this work we assume, as a reference, the cluster-based architecture shown in
Figure 1, which is meant to support mobile-to-mobile (M2M) collaborations be-
tween mobile devices. Examples of M2M collaborations occur in several domains
such as disaster relief, construction management and healthcare. Mobile nodes
within a cluster interact through ad-hoc connections (e.g., wi-fi, bluetooth), that
we refer to as M2M links, represented as dashed arrows in the figure. Interactions
between clusters (cluster-to-cluster links) take place through ad-hoc connections be-
tween the respective cluster-heads, and are represented as continuous arrows in the
figure.

The architecture is based on a fully distributed cluster formation algorithm in
which nodes take autonomous decisions; no global communication is needed to
setup the clusters but only local decisions are taken autonomously by each node.
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This means that the proposed architecture is self-organized into mobile clusters:
when mobile devices meet each other, i.e., when they are within the same transmis-
sion range, they can form a mobile group. The self-organization nature of the clus-
tering scheme distributes the responsibility between all the mobile nodes. We do not
focus in this paper on the cluster formation algorithm as it has been presented in a
previous work [3].

All types of interactions in the architecture shown in Figure 1 take place either to
ask for a computation request, or to perform a distributed allocation of a data mining
task, as detailed in the next section.

3 Distributed Task Allocation Strategy

The energy-aware (EA) scheduling strategy deals with a set of independent data
mining tasks, dynamically generated over time, which have to be allocated over
mobile nodes organized into the cluster-based architecture introduced earlier.

Task allocation is a step of the more general scheduling problem; it can also
be seen as a global scheduling or meta-scheduling that distributes the tasks among
the devices. Once tasks have been allocated, the problem becomes one of defining
a feasible local schedule that manages task execution for each node. In this paper
we focus on the task allocation problem and we refer to task allocation or task
scheduling interchangeably.

The task allocation problem has been proven to be NP-Complete in its general
form [4]. However, some optimal algorithms have been proposed for restricted ver-
sions of the problem and some heuristic-based algorithms have been proposed for
the more general versions of the problem allowing to find good allocations in poly-
nomial time [5].

We propose a two-phase heuristic-based, decentralized algorithm. When an as-
signment decision has to be made for a task, the first phase, referred to as local
assignment phase, is responsible for local task arbitration: it considers the energy
consumption of task execution on the different devices within the local cluster. The
algorithm tries to minimize the total consumed energy in the cluster by assigning
the task to the device that allows to extend the cluster residual life. If the first phase
is not feasible, the second phase, referred to as global assignment phase, is responsi-
ble for task arbitration among clusters: the task will be assigned to the most suitable
device, all over the network of clusters, that maximizes the overall network lifetime.

Some definitions and notations are introduced in the following to support the
description of the proposed distributed allocation strategy.

• PCi(t): processing capacity of device di at time t.
• Mi(t): memory availability of device di at time t.
• EECi(tj,s): estimated energy consumed for computation by device di to process

a task tj over a data set of size s.
• EETi(tj,s): estimated energy consumed for communication by device di to pro-

cess a task tj over a data set of size s.
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• EMCi(tj,s): estimated memory consumption of device di to run a task tj over a
data set of size s.

• EPCi(tj,s): estimated processing capacity required by device di to execute a task
tj over a data set of size s.

• RLi(t): residual life of node i at time t, defined as follows:

RLi(t) = REi(t)/Pi(t) (1)

where REi(t) is the residual energy available at node i at time t, and Pi(t) the
instantaneous power.

The classical task allocation problem can be reformulated here as the problem of
finding the proper task assignment that minimizes the energy dissipated in the sys-
tem. In other words, we formalize the problem of task allocation as an optimization
problem. The aim of the optimization is to maximally extend the life of all the nodes
in the network by balancing the load proportionally to the energy of each node. We
achieve this goal by iteratively trying to improve a candidate solution. A feasible
allocation is optimal if the corresponding group residual life (in case of local as-
signment) or system lifetime (in case of global assignment) is maximized among all
the feasible allocations.

The candidate nodes to which a task ta could be assigned have to satisfy the
following constraints:

1. a node di must have enough processing power to perform the task over a data set
of size s: EPCi(ta,s)< PCi(t)

2. a node di must have enough energy to perform the task over a data set of size s:
EECi(ta,s)< REi(t)

3. a node di must have enough memory to perform the task over a data set of size s:
EMCi(ta,s)< Mi(t)

During the local assignment phase, a cluster-head, or the set of neighboring cluster-
heads in case of the global assignment, will choose the local node, among the ones
satisfying the above constraints, that will prolong the life of the corresponding local
group by using the following objective function:

RLLGj (t) = Max
NLGj

∑
i=1

αiRLi(t) (2)

where RLLGj denotes the residual life of local group LGj, NLGj is the number of
nodes within the local group LGj, RLi is the residual life of node i in the group, and
parameter αi takes into account the importance of node i in the local group. The node
associated with the maximum value in the objective function will be selected by the
cluster-head as candidate node. Note that throughout the experimental evaluation
presented in the next section, the parameter αi is set to 1 thus, all the nodes have the
same role within the local group.

If the global assignment phase is activated, the final decision is taken by consid-
ering all the candidate nodes proposed by the neighboring clusters. The task will be
assigned to the local group that maximizes the life of the whole network:
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RLnet(t) = Max
N

∑
j=1

αjRLLGj(t) (3)

where N is the number of groups in the network.

4 Experimental Results

In this section we present an experimental evaluation of the proposed EA scheduler,
performed using a custom discrete-event simulator. As a first step, the simulator
builds a network composed of 100 mobile devices, and let them grouping into clus-
ters based on the algorithm described in [3]. Then, an initial energy capacity ranging
from 3,000 J to 11,000 J is assigned to each device, following a normal distribution.
After the initial setup, mobile devices start generating a set of data mining tasks to
be executed, which are allocated to the available nodes according to the EA strategy
described in the previous section.

To the purpose of our simulation, we characterize the data mining tasks on the
basis of the energy required to complete their execution. To this end, we selected
three reference data mining algorithms (J48, for data classification; Kmeans, for
data clustering; and Apriori, for association rules discovery). Each algorithm was
used to analyze a sample dataset (of varying size), using an Android smartphone as
mobile device. After each execution we measured the actual energy consumed to
perform the task, which was used as input for the simulations.

The simulation aims at studying the behavior of the scheduler with respect to the
energy depletion and network lifetime. Accordingly, as performance metrics, we use
the number of alive devices, the number of completed tasks, and the network residual
life at the end of the simulation. To assess the effectiveness of the EA strategy, we
compared its performance with the one achieved by round-robin (RR) scheduling
algorithm.

In a first set of experiments, for each reference algorithm (J48, Kmeans, or Apri-
ori), we ran a set of tasks by varying the size of the dataset to be mined from 100
kB to 3.2 MB. Each simulation lasts 30 hours, with tasks that arrive following a
Poisson distribution with a frequency λ = 160 tasks per hour. Figures 2(a), 3(a) and
4(a) show the number of alive devices at the end of the simulation for J48, Kmeans,
and Apriori, respectively, using the EA and RR strategies. With all data mining al-
gorithms and dataset sizes, the number of alive devices with EA is greater than (and
in a few cases equal to) that of RR. In particular, Figures 2(a) and 3(a) show that
there are no alive devices with RR for datasets greater than 200-400 kB using J48
and Kmeans. In contrast, in the same configurations, EA keeps alive a high percent-
age of the devices. Additionally, we can note that, with EA, the number of alive
nodes increases with the dataset size. This is due to the fact that, when the dataset
size increases, also the energy required to complete the task increases. Since the EA
scheduler does not allocate tasks when the available devices do not have enough
energy, this lead to a higher number of alive nodes. It is important to note that the
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higher number of alive devices ensured by EA compared to RR, is obtained without
reducing the number of tasks completed, as shown in Figures 2(b), 3(b) and 4(b).
Figure 5(a) shows the network residual life measured at the end of the experiments.
The figure confirms that the EA scheduler is effective in prolonging network lifetime
compared to the RR algorithm.
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Fig. 2 (a) Number of alive devices and (b) Number of completed tasks w.r.t. dataset size, using
EA and RR with J48.
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Fig. 3 (a) Number of alive devices and (b) Number of completed tasks w.r.t. dataset size, using
EA and RR with Kmeans.

In a second set of experiments, for each reference algorithm (J48, Kmeans, or
Apriori), we ran a set of tasks with a fixed dataset size (200 kB) but with task ar-
rival rate λ varying from 80 to 1280 tasks per hour. Figures 5(b) shows the network
residual life measured at the end of the experiments for the three algorithms, us-
ing EA and RR. As expected, increasing the task arrival rate, the network residual
live tends to zero both for EA and RR. However, for the lightest of the three data
mining algorithms (Apriori), the residual life does not reach zero and the difference
between EA and RR increases with λ in favor of EA. Figure 6(a) shows the number
of alive devices for the three algorithms, using EA and RR. The results demon-
strate, also in this case, that the number of alive devices with EA is greater than that
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Fig. 4 (a) Number of alive devices and (b) Number of completed tasks w.r.t. dataset size, using
EA and RR with Apriori.
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Fig. 5 Network residual life using EA and RR with Apriori, Kmeans and J48, w.r.t. (a) dataset
size; (b) task arrival frequency.

achieved by RR. Figure 6(b) compares the performance of EA and RR in terms of
completed tasks for the three algorithms. With Apriori, both EA and RR are able to
complete more tasks as λ increases, but EA ensures better performance. With J48
and Kmeans, over a given task arrival rate, the number of completed tasks cannot in-
crease because the network residual life is zero, as shown in Figures 5(b). However,
even in this cases, there is a slight advantage for EA compared to RR for λ < 320
tasks per hour.

The experimental results discussed above demonstrated that a significant im-
provement can be achieved using the EA scheduler compared to the RR scheduler in
a distributed mobile scenario. In details, our algorithm: i) resulted effective in pro-
longing network lifetime by reducing the energy consumption, without sacrificing
the number of data mining tasks completed; ii) in all the experiments performed, it
was able to keep alive most of the mobile devices thanks to its energy load balancing
strategy.
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Fig. 6 (a) Number of alive devices and (b) Number of completed tasks w.r.t. task arrival frequency
using EA and RR with Apriori, Kmeans and J48.

5 Related Work

Most of the existing research work in the area of energy-aware systems are hardware-
based techniques focusing on reducing the energy consumption of the processor.
One of the most adopted techniques is turning off idle components [6]. Dynamic
Voltage Scaling (DVS) is another technique of energy conservation. DVS refers to
the technique of simultaneously varying the processor voltage and frequency as per
the energy performance level required by the tasks [7, 8, 9]. Remote execution is
a software-based technique in which a device with limited energy transfers a com-
putational task to a nearby device which is more energy powerful. Energy-aware
task scheduling is another software method where the scheduling policy aims at
optimizing the energy.

To the best of our knowledge, little work has been done on energy-aware schedul-
ing over a mobile ad hoc networks (MANETs), and not for data mining scenarios.
In [10] an energy-aware dynamic task allocation algorithm over MANETs is pro-
posed. However, this work is different from ours, both for the considered application
scenarios and for the underlying architecture and cost function to be optimized. We
group the devices in clusters to promote local cooperation among nearby devices
and to minimize the transmission energy. This issue is particularly relevant because
we have experimentally found that the transmission energy highly impacts on the
overall energy consumption. In contrast to ours, the solution proposed in [10] is
effective for compute intensive applications and does not address the communica-
tion aspects of the system. Furthermore, we adopt a different objective function: we
maximize the network residual life rather than minimizing the energy consumption.

Using the residual life parameter we are able to actually consider the real energy
consumption rate of single devices, single clusters and the overall network. Con-
versely, [10] does consider only the local computation issues and it works at a node
level ignoring the workload in the rest of the network. Thus, differently from us,
they do not take into account the actual load of the devices with the possibility of
assigning a task to a device that consumes less energy, but which is less charged
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compared to another one that consumes more energy but it is more energy powerful
and thus could efficiently execute that task.

6 Conclusions

Supporting data mining in mobile environments requires effective architectures and
allocation strategies to improve energy utilization of battery-operated devices. We
addressed this issue by defining a distributed architecture in which mobile devices
cooperate in a peer-to-peer style to perform a data mining process, tackling the
problem of energy capacity shortage by distributing the energy consumption among
the available devices.

Within this framework, we proposed an energy-aware (EA) task allocation scheme
focusing on energy efficiency. To conservatively consume energy and maximize net-
work lifetime the EA adopts a heuristic algorithm that balances the energy load
among all the devices in the network. Experimental results show that significant im-
provements in terms of residual network lifetime, number of alive devices can be
achieved by using the EA scheduler in a mobile data mining scenario, compared to
classical time-based schedulers such as round-robin.
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