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Abstract

The increasing use of computers in all the areas of human activities
is resulting in huge collections of digital data. Databases are common ev-
erywhere and are used as repositories of every kind of data. Knowledge
discovery techniques and tools are used today to analyze those very large
data sets to identify interesting patterns and trends in them. When data is
maintained over geographically distributed sites the computational power
of distributed and parallel systems can be exploited for knowledge dis-
covery in databases. In this scenario the Grid can provide an effective
computational support for distributed knowledge discovery on large data
sets. To this purpose we designed a system called Knowledge Grid. This
chapter describes the Knowledge Grid architecture and discusses some re-
lated systems and models recently proposed for knowledge discovery on
Grids. The chapter presents also how to design and implement distributed
data mining applications by using the Knowledge Grid tools starting from
searching Grid resources, composing software and data elements, and ex-
ecuting the resulting application on a Grid.

2.1 Introduction

Enlarging our knowledge about the world and the secrets of life is one of
the strongest motivations of the human activities. The use of computers is
changing our way to make discoveries and is improving both speed and quality
of the discovery processes. Advances in electronic data gathering, storage,
and distribution technologies have far outpaced computational advances in
techniques for analyzing and understanding data. This has created the need
for models, tools, and techniques for automated data mining and Knowledge
Discovery in Databases (KDD). These terms indicate the automated analysis
of large volumes of data stored in computers, looking for the relationships and
knowledge that are implicit in large volumes of data and are “interesting”
for users.

To manage the very large amount of data available today, computer scien-
tists are working on efficient systems, algorithms, and applications that can
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handle and analyze very large data repositories. Intensive data-consuming
applications are running on massive amounts of data with the task of ex-
tracting valuable knowledge. Data mining is one of the key technologies in
this scenario. However, these intensive data-consuming applications suffer
from performance problems and single database sources.

Distributed architectures supported by high performance networks and
knowledge-based middleware offer parallel and distributed databases a great
opportunity to support cost-effective everyday applications. Moreover, using
distributed computing systems and tools allows users to share large data
sources, the mining process building, and the extracted knowledge. Large
communities of users can pool their resources from different sites of a single
organization or from a large number of institutions and perform all the steps
of the KDD process from remote sites according to a cooperative approach.

Grid computing is an innovative distributed computational model fo-
cusing on large-scale resource sharing, innovative applications, and high-
performance orientation. Grids can be used today as effective infrastructures
for distributed high-performance computing and data processing [2.1]. Grid
application areas are shifting from scientific computing towards industry and
business applications. To meet those needs data Grids are designed to store,
move, and manage large data sets located in remote sites. Data Grids repre-
sent an enhancement of computational Grids, driven by the need to handle
large data sets without constant, repeated authentication, aiming to support
the implementation of distributed data-intensive applications. Significant ex-
amples are the EU DataGrid [2.2], the Particle Physics Data Grid [2.3], the
Japanese Grid DataFarm [2.4] and the Globus Data Grid [2.5].

As an advancement of the data Grid concept, it is imperative to develop
knowledge-based Grids that may offer tools and environments to support
the process of analysis, inference, and discovery over data available in many
scientific and business areas. These environments will support scientists and
engineers in the implementation and use of Grid-based Problem-Solving En-
vironments (PSEs) for modeling, simulation, and analysis of scientific exper-
iments. The same can occur in industry and commerce, where analysts need
to be able to mine the large volumes of information that can be distributed
over different plants to support corporate decision making.

Knowledge Grids offer high-level tools and techniques for the distributed
mining and extraction of knowledge from data repositories available on the
Grid. The development of such an infrastructure is the main goal of our re-
search, focused on the design and implementation of an environment for ge-
ographically distributed high-performance knowledge discovery applications
called Knowledge Grid. The Knowledge Grid can be used to perform data
mining on very large data sets available over Grids, to make scientific dis-
coveries, improve industrial processes and organization models, and uncover
business valuable information.
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The outline of the chapter is as follows. Section 2.2 discusses related work.
Section 2.3 briefly describes the Knowledge Grid architecture and the main
features of its components. Section 2.4 describes the metadata model adopted
to describe the resources used for developing the data mining applications.
Sections 2.5–2.6 discuss how the tools of the Knowledge Grid support a user
in designing, building, and executing a distributed data mining application.
Section 2.7 concludes the chapter.

2.2 Knowledge Discovery on Grids

Berman [2.6], Johnston [2.7], and some of us [2.8, 2.9] claimed that the cre-
ation of knowledge Grids on top of computational Grids is the enabling con-
dition for developing high-performance knowledge discovery processes and
meeting the challenges posed by the increasing demand of power and ab-
stractness coming from complex Problem-Solving Environments. The design
of knowledge Grids can benefit from the layered Grid architecture, with lower
levels providing middleware support for higher level application-specific ser-
vices.

Whereas some high-performance parallel and distributed knowledge dis-
covery (PDKD) systems recently appeared [2.10] (see also [2.8]), there are
few projects attempting to implement and/or support knowledge discovery
processes over computational Grids. A main issue here is the integration
of two main demands: synthesizing useful and usable knowledge from data,
and performing sophisticated large-scale computations leveraging the Grid
infrastructure. Such integration must pass through a clear representation of
the knowledge base used to translate moderately abstract domain-specific
queries into computations and data analysis operations able to answer such
queries by operating on the underlying systems [2.6].

In the remainder of this section we review the most significant systems
oriented at supporting knowledge discovery processes over distributed/Grid
infrastructures. The systems discussed here provide different approaches to
supporting knowledge discovery on Grids. We discuss them starting from
general frameworks, such as the TeraGrid infrastructure, then outlining data-
intensive oriented systems, such as DataCutter and InfoGrid, and, finally,
describing KDD systems similar to the Knowledge Grid, such as Discovery
Net, and some significant data mining testbed experiences.

The TeraGrid project is building a powerful Grid infrastructure, called
Distributed TeraScale Facility (DTF), connecting four main sites in the USA
(the San Diego Supercomputer Center, the National Center for Supercom-
puting Applications, Caltech, and Argonne National Laboratory). Recently,
the NSF funded the integration into the DTF of the TeraScale Computing
System (TCS-1) at the Pittsburgh Supercomputer Center; the resulting Grid
environment will provide, besides tera-scale data storage, 21 TFLOPS of
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computational capacity [2.11]. Furthermore, the TeraGrid network connec-
tions, whose bandwidth is in the order of tenths of Gbps, have been designed
in such a way that all resources appear as a single physical site. The con-
nections have also been optimized to support peak requirements rather than
an average load, as is natural in Grid environments. The TeraGrid adopts
Grid software technologies and, from this point of view, appears as a “virtual
system” in which each resource describes its own capabilities and behav-
ior through Service Specifications. The basic software components are called
Grid Services, and are organized into three distinct layers. The Basic layer
comprises authentication, resource allocation, data access, and resource in-
formation services; the Core layer comprises services such as advanced data
management, single job scheduling, and monitoring; the Advanced layer com-
prises superschedulers, resource discovery services, repositories, etc. Finally,
TeraGrid Application Services are built using Grid Services. The definition of
such services is still under discussion, but they should comprise, for example,
the support of on-demand/interactive applications, the support of GridFTP
interface to data services, etc.

The most challenging application on the TeraGrid will be the synthesis
of knowledge from very large scientific data sets. The development of knowl-
edge synthesis tools and services will enable the TeraGrid to operate as a
Knowledge Grid. A first application is the establishment of the Biomedical
Informatics Research Network to allow brain researchers at geographically
distributed advanced imaging centers to share data acquired from different
subjects and using different techniques. Such applications make a full use of
a distributed data Grid with hundreds of terabytes of data online, enabling
the TeraGrid to be used as a knowledge Grid in the biomedical domain.
The use of the Knowledge Grid services can be potentially effective in these
applications [2.12].

InfoGrid is a service-based data integration middleware engine designed
to operate on Grids. Its main objective is to provide information access and
querying services to knowledge discovery applications [2.13]. The informa-
tion integration approach of InfoGrid is not based on the classical idea of
providing a “universal” query system: instead of abstracting everything for
users, it gives a personalized view of the resources for each particular appli-
cation domain. The assumption here is that users have enough knowledge
and expertise to handle the absence of “transparency”. In InfoGrid the main
entity is the Wrapper; wrappers are distributed on a Grid and each node
publishes a directory of the wrappers it owns. A wrapper can wrap infor-
mation sources and programs, or can be built by composing other wrappers
(Composite Wrapper). Each wrapper provides: (i) a set of query construction
interfaces that can be used to query the underlying information sources in
their native language, and (ii) a set of administration interfaces that can be
used to configure its properties (access metadata, linkage metadata, configu-
ration files). In summary, InfoGrid puts the emphasis on delivering metadata
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describing resources and providing an extensible framework for composing
queries.

DataCutter is another middleware infrastructure that aims to provide
specific services for the support of multi-dimensional range querying, data
aggregation, and user-defined filtering over large scientific data sets in shared
distributed environments [2.14]. DataCutter has been developed in the con-
text of the Chaos project at the University of Maryland; it uses and ex-
tends features of the Active Data Repository (ADR), that is a set of tools
for the optimization of storage, retrieval, and processing of very large multi-
dimensional data sets. In ADR, data processing is performed at the site where
data is stored, whereas in Grid environments this is naturally unfeasible, due
to inherent data distribution and resource sharing at servers, which may lead
to inefficiencies.

To overcome this, in the DataCutter framework an application is decom-
posed into a set of processes, called filters, that are able to perform a rich set
of queries and data transformation operations. Filters can execute anywhere
but are intended to run on a machine close (in terms of connectivity) to the
storage server. DataCutter supports efficient indexing. In order to avoid the
construction of a huge single index that would be very costly to use and
keep updated, the system adopts a multi-level hierarchical indexing scheme,
specifically targeted at the multi-dimensional data model adopted.

Different from the two environments discussed above, the Datacentric
Grid is a system directed at knowledge discovery on Grids designed for mainly
dealing with immovable data [2.15]. The system consists of four kinds of en-
tities. The nodes at which computations happen are called Data/Compute
Servers (DCS). Besides a compute engine and a data repository, each DCS
comprises a metadata tree, that is a structure for maintaining relationships
among raw data sets and models extracted from them. Furthermore, ex-
tracted models become new data sets, potentially useful at subsequent steps
and/or for other applications.

The Grid Support Nodes (GSNs) maintain information about the whole
Grid. Each GSN contains a directory of DCSs with static and dynamic in-
formation about them (e.g., properties and usage), and an execution plan
cache containing recent plans along with their achieved performance. Since
a computation in the Datacentric Grid is always executed on a single node,
execution plans are simple. However, they can start at different places in
the model hierarchy because, when they reach a node, they may find already
computed models. The User Support Nodes (USNs) carry out execution plan-
ning and maintain results. USNs are basically proxies for user interface nodes
(called User Access Points or UAPs). This is because user requests (i.e., task
descriptions) and their results can be small in size, so in principle UAPs could
be simple devices not always online, and USNs could interact with the Dat-
acentric Grid when users are not connected.
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An agent-based data mining framework, called ADaM (Algorithm Devel-
opment and Mining), has been developed at the University of Alabama [2.16].
Initially, this framework was adopted for processing large data sets for geo-
physical phenomena. More recently, it has been ported to the NASA’s Infor-
mation Power Grid (IPG) environment, for the mining of satellite data [2.17].
In this system, the user specifies what is to be mined (data set names and
locations) and how and where to perform the mining (sequence of opera-
tions, required parameters, and IPG processors to be used). Initially, “thin”
agents are associated with the sequence of mining operations; such agents
acquire and combine the needed mining operations from repositories that
can be public or private, i.e., provided by mining users or private companies.
Data is acquired “on-the-fly”, through SRB/MCAT and GridFTP, in order
to minimize storage requirements at the mining site. ADaM comprises a mod-
erately rich set of interoperable operation modules, comprising data readers
and writers for a variety of formats, preprocessing modules, for example for
data subsetting, and analysis modules providing data mining algorithms.

The InfoGrid system mentioned before has been designed as an application-
specific layer for constructing and publishing knowledge discovery services.
In particular, it is intended to be used in the Discovery Net (D-NET) system.
D-NET is a project of the Engineering and Physical Sciences Research Coun-
cil at Imperial College [2.18, 2.19] whose main goal is to design, develop, and
implement an infrastructure to effectively support scientific knowledge dis-
covery processes from high-throughput informatics. In this context, a series of
testbeds and demonstrations are being carried out for using the technology in
the areas of life sciences, environmental modeling, and geo-hazard prediction.

The building blocks in Discovery Net are the so-called Knowledge Discov-
ery Services (KDSs), comprising Computation Services and Data Services.
The former typically comprise algorithms, e.g., data preparation and data
mining, while the latter define relational tables (as queries) and other data
sources. Both kinds of services are described by means of adapters that pro-
vide information about input and output data types, allowed parameters,
location, platform constraints, and available factories, i.e. objects allowing
for the creation of service instances. KDSs are used to compose moderately
complex data-pipelined processes. The composition may be carried out by
means of a GUI which provides access to a library of services. The XML-
based language used to describe processes is called Discovery Process Markup
Language (DPML). Each composed process can be deployed and published
as a new process. Typically, process descriptions are not bound to specific
servers since the actual resources are later resolved by lookup servers (see
below).

Discovery Net is based on an open architecture using common protocols
and infrastructures such as the Globus Toolkit. Servers are distinguished into
(i) Knowledge Servers, allowing storage and retrieval of knowledge (meant
as raw data and knowledge models) and processes; (ii) Resource Discovery
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Servers, providing a knowledge base of service definitions and performing
resource resolution; and (iii) Discovery Meta-Information Servers, used to
store information about the Knowledge Schema, i.e., the sets of features of
known databases, their types, and how they can be composed with each other.

Finally, we outline here some interesting data mining testbeds developed
at the National Center for Data Mining (NCDM) at the University of Illinois
at Chicago (UIC) [2.20]:

– The Terra Wide Data Mining Testbed (TWDM). TWDM is an infrastruc-
ture for the remote analysis, distributed mining, and real time exploration
of scientific, engineering, business, and other complex data. It consists of
five geographically distributed nodes linked by optical networks through
StarLight (an advanced optical infrastructure) in Chicago. These sites in-
clude StarLight, the Laboratory for Advanced Computing at UIC, SARA
in Amsterdam, and Dalhousie University in Halifax. In 2003 new sites
will be connected, including Imperial College in London. A central idea
in TWDM is to keep generated predictive models up-to-date with respect
to newly available data in order to achieve better predictions (as this is
an important aspect in many “critical” domains, such as infectious disease
tracking). TWDM is based on DataSpace, another NCDM project for sup-
porting real-time streaming data. In DataSpace the Data Tranformation
Markup Language (DTML) is used to describe how to update “profiles”,
aggregate data which are inputs of predictive models, on the basis of new
“events”, i.e., new bits of information.

– The Terabyte Challenge Testbed. The Terabyte Challenge Testbed is an
open, distributed testbed for DataSpace tools, services, and protocols. It
involves a number of organizations, including the University of Illinois at
Chicago, University of Pennsylvania, University of California at Davis, Im-
perial College. The testbed consists of ten sites distributed over three con-
tinents connected by high performance links. Each site provides a number
of local clusters of workstations which are connected to form wide area
meta-clusters maintained by the National Scalable Cluster Project. So far,
meta-clusters have been used by applications in high energy physics, com-
putational chemistry, nonlinear simulation, bioinformatics, medical imag-
ing, network traffic analysis, and digital libraries of video data. Currently,
the Terabyte Challenge Testbed consists of approximately 100 nodes and
two terabytes of disk storage.

– The Global Discovery Network (GDN). The GDN is a collaboration between
the Laboratory for Advanced Computing of the National Center for Data
Mining and the Discovery Net project (see above). It will link the Discovery
Net to the Terra Wide Data Mining Testbed to create a combined global
testbed with a critical mass of data.

In summary, many of the recent knowledge discovery-oriented systems
have been designed for specific domains, and have later been extended to
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support more general applications. Some of such systems are essentially ad-
vanced interfaces for integrating, accessing, and elaborating large data sets.
Furthermore, they provide specific functionalities for the support of typical
knowledge discovery processes. The Knowledge Grid we designed is one of
the first attempts to build a domain-independent knowledge discovery en-
vironment on the Grid. Moreover, our system provides services specifically
designed for the integration of parallel and sequential data mining algorithms,
and the management of base data sets and extracted knowledge models.

2.3 The Knowledge Grid Architecture

The Knowledge Grid architecture [2.8] is defined on top of Grid toolkits and
services, i.e., it uses basic Grid services to build specific knowledge extraction
services. Following the Integrated Grid Architecture approach [2.21], these ser-
vices can be developed in different ways using the available Grid toolkits and
services. The current implementation is based on the Globus toolkit [2.22].
As in Globus, the Knowledge Grid offers global services based on the coop-
eration and combination of local services. We designed the Knowledge Grid
architecture so that more specialized data mining tools are compatible with
lower-level Grid mechanisms and also with the Data Grid services. This ap-
proach benefits from “standard” Grid services that are more and more utilized
and offers an open parallel and distributed knowledge discovery architecture
that can be configured on top of Grid middleware in a simple way.

2.3.1 Knowledge Grid Services

The Knowledge Grid services are organized in two hierarchic levels: the Core
K-grid layer and the High level K-grid layer depicted in Fig. 2.1. The figure
shows layers (as implemented on top of Globus services), the Knowledge Grid
data, and metadata repositories. In the following the term K-grid node will
denote a Globus node implementing the Knowledge Grid services.

The core K-grid layer offers the basic services for the definition, compo-
sition, and execution of a distributed knowledge discovery computation over
the Grid. Its main goal is the management of all metadata describing fea-
tures of data sources, third party data mining tools, data management, and
data visualization tools and algorithms. Moreover, this layer coordinates the
application execution by attempting to fulfill the application requirements
and the available Grid resources. The core K-grid layer comprises two main
services:

– The Knowledge Directory Service (KDS) extends the basic Globus MDS
service and is responsible for maintaining metadata describing data and
tools used in the Knowledge Grid. They comprise repositories of data to
be mined (data sources), tools, and algorithms used to extract, analyze,
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and manipulate data, distributed knowledge discovery execution plans, and
knowledge obtained as result of the mining process, i.e., learned models and
discovered patterns. The metadata information is represented by eXtensi-
ble Markup Language (XML) documents stored in a Knowledge Metadata
Repository (KMR).

– The Resource Allocation and Execution Management Service (RAEMS) is
used to find the best mapping between an execution plan and available re-
sources, with the goal of satisfying the application requirements (computing
power, storage, memory, database, network bandwidth, and latency) and
Grid constraints. The mapping is obtained by co-allocating resources. After
the execution plan activation, this layer manages and coordinates the ap-
plication execution and the storing of knowledge results in the Knowledge
Base Repository (KBR). Resource requests of each single data mining pro-
cess are expressed using the Resource Specification Language (RSL) [2.23].

DAS

Data Access

Service

TAAS

Tools and Algorithms

Access Service

EPMS

Execution Plan

Management Service

RPS

Result

Presentation Service

KDS

Knowledge Directory

Service

RAEMS

Resource Alloc.

Execution Mng.

KEPRKMR

KBR

High level K-Grid layer

Core K-Grid layer

Fig. 2.1. The Knowledge Grid architecture

The high-level K-grid layer includes services used to compose, validate,
and execute a parallel and distributed knowledge discovery computation.
Moreover, the layer offers services to store and analyze the discovered knowl-
edge. Main services here are:

– The Data Access Service (DAS) is responsible for the search, selection (data
search services), extraction, transformation, and delivery (data extraction
services) of data to be mined.

– The Tools and Algorithms Access Service (TAAS) is responsible for search-
ing, selecting, and downloading data mining tools and algorithms.
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– The Execution Plan Management Service (EPMS). An execution plan is
represented by a graph describing interactions and data flows between data
sources, extraction tools, DM tools, and visualization tools. The Execution
Plan Management Service is a semi-automatic tool that takes data and
programs selected by the user, and generates a set of different possible
execution plans that meet user, data, and algorithms requirements and
constraints. Execution plans are stored in the Knowledge Execution Plan
Repository (KEPR).

– The Results Presentation Service (RPS) specifies how to generate, present,
and visualize the knowledge models extracted (e.g., association rules, clus-
tering models, classifications). The results metadata are stored in the KMR
to be managed by the KDS.

2.4 An XML-Based Metadata Model for the Knowledge
Grid

The large heterogeneity of the resources involved in a distributed data mining
computation is tackled in the Knowledge Grid through the definition of a
suitable metadata model that is exploited by core and high level services to
manage resources in a standard and efficient way. The resources involved in
a typical distributed data mining computation are:

– computational resources (computers, storage devices, etc.);
– data to be mined, such as databases, plain files, semi-structured documents,

and other structured or unstructured data (data sources);
– tools and algorithms used to extract, filter, and manipulate data (data

management tools);
– tools and algorithms used to mine data, i.e., data mining tools available

on the Grid nodes;
– knowledge obtained as a result of the mining process, i.e., learned models

and discovered patterns;
– tools and algorithms used to visualize, store, and manipulate discovered

models.

Heterogeneity arises mainly from the large variety of resources within
each category. For instance, software can run only on some particular host
machines whereas data can be extracted from different data management
systems such as relational databases, semi-structured databases, plain files,
etc. The management of such heterogeneous resources requires an intense use
of metadata, whose purpose is to provide information about the features of
resources and their effective use. Since metadata represents a key element for
effective resource discovery and utilization, Grids need to use mechanisms
and models that define rich metadata schemas able to represent the variety
of resources involved.
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The Knowledge Grid uses the Globus MDS, and therefore the LDAP
protocol, to publish, discover, and manage information about the generic re-
sources of the underlying Grid (e.g., CPU performance, memory size, etc.).
However, the complexity of the information associated with specific Knowl-
edge Grid resources (data sources, mining algorithms, models), led us to
design a more effective model to represent and manage the corresponding
metadata.

The basic objectives that guided us through the definition of the Knowl-
edge Grid metadata model are the following:

– Metadata should document in a simple and human-readable fashion the
features of a data mining application and of the resources involved.

– Metadata should allow an effective search of resources.
– Metadata should provide an efficient way to access resources.

To satisfy such requirements, we chose to express metadata in XML, as it
provides a set of functionalities and capabilities that are making it a common
model for data description and exchange.

XML metadata documents are defined according to a set of XML schemas
properly defined to describe and categorize the different classes of resources.
In the remainder of this section, we will give some hints on the definition of
metadata related to software, data sources, data mining tools, and discov-
ered knowledge. Furthermore, we will show how metadata can be used to
distinguish abstract from concrete resources, and we will introduce execution
plans, also defined with an XML formalism, used by the Knowledge Grid to
manage complex data mining applications. More information on the topical
issue of metadata management in the Knowledge Grid can be found in [2.24].

2.4.1 Data Mining Software

Categorization of data mining software is based on the following classification
parameters [2.25]:

– the kind of data sources the software works on;
– the kind of knowledge that is to be discovered by the software;
– the type of techniques that the software uses in the data mining process;

and
– the driving method, i.e., whether the mining process is autonomous, driven

by data or queries, or driven by the user (interactive).

As an example, Fig. 2.2 reports the XML metadata related to the data
mining software AutoClass. The XML document is composed of two parts.
The first part is the software Description, the second one is the software
Usage. The Description section specifies, for each classification parameter,
one or more values that characterize the software. The Usage section con-
tains all the information that can be used by a client to access and use the
software. This section is composed of a set of subsections, among which are
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Syntax, Hostname, ManualPath, and DocumentationURL. The Syntax subsection
describes the format of the command that the client should use to invoke the
software. This subsection is defined as a tree, where each node is an Arg ele-
ment and the root is the name of the software itself. The root children specify
the arguments that should follow the software name in the software invoca-
tion, and these arguments can in turn have children, i.e., sub-arguments,
and so on. Each Arg element has the following attributes: the description at-
tribute, which is a textual description of the argument and the type attribute,
which specifies whether the argument is optional, required, or alternative.
In the last case, all the sibling arguments should have the same value for
this attribute, meaning that only one of the siblings should be used in the
software invocation. Finally, the value attribute (optional) specifies the fixed
value of the argument. If the value attribute is omitted, the value is to be
provided by the client. In the example shown in Fig. 2.2, in the AutoClass

execution command the executable name should be followed by the -search

argument, to ask for a classification, or by the -reports argument, to ob-
tain the model file. If the -search argument is chosen, it should be followed
by four sub-arguments, all required. Therefore, AutoClass can be invoked
with the command /usr/autoclass/autoclass -search aFile.db2 aFile.hd2

aFile.model aFile.s-params.

<DataMiningSoftware name="AutoClass">

<Description>

<KindOfData>flat file</KindOfData>

<KindOfKnowledge>clusters</KindOfKnowledge>

<KindOfTecnique>statistics</KindOfTecnique>

<DrivingMethod>autonomous knowledge miner</DrivingMethod>

</Description>

<Usage>

...

<Syntax>

<Arg description="executable" type="required" value="/usr/autoclass/autoclass">

<Arg description="make a classification" type="alternative" value="-search">

<Arg description="a .db2 file" type="required"/>

<Arg description="a .hd2 file" type="required"/>

<Arg description="a .model file" type="required"/>

<Arg description="a .s-params file" type="required"/>

</Arg>

<Arg description="create a report" type="alternative" value="-reports">

<Arg description="a .results-bin file" type="required"/>

...

</Arg>

...

</Arg>

</Syntax>

<Hostname>icarus.cs.icar.cnr.it</Hostname>

<ManualPath>/usr/autoclass/read-me.text</ManualPath>

<DocumentationURL>http://ic-www.arc.nasa.gov/ic/projects/...</DocumentationURL>

...

</Usage>

</DataMiningSoftware>

Fig. 2.2. An extract from an XML metadata sample for the AutoClass software
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2.4.2 Data Sources

Data sources are the input on which data mining algorithms work to extract
new knowledge. They can be provided by relational databases, plain files, and
other structured and semi-structured documents. In spite of the wide variety
of the possible data source types, we aim to define a common structure of
data source metadata in order to standardize access and search operations
on such resources.

The common structure of source metadata is composed of two parts: (i) an
Access section including information for retrieving the data source (location,
size, etc.), and (ii) a Structure section providing information about the data
source logical and/or physical structure.

As an example, Fig. 2.3 shows an XML metadata document for a flat file
that can be used as an input by the AutoClass software. The Structure section
includes two subsections, Format and Attributes. The Format subsection con-
tains information about the physical structure of the flat file, e.g., the strings
that are used to separate the records and the attributes within a record. The
Attributes subsection contains information about the logical structure, i.e.,
it lists the table attributes and provides the relative specifications (such as
the name of the Attribute, its type, etc.).

The high-level metadata model is the same for all kinds of data sources,
but some details can be added or omitted depending on the specific kind of
data to be represented. For example, in a relational database no information
is needed to describe the structure of data, since it is directly managed by
the database management system.

2.4.3 Abstract and Concrete Resources

The resources discussed so far (software, data sources, models) can be either
concrete or abstract. A concrete resource is a resource, published on a KMR
of a Knowledge Grid node, which is completely specified by its metadata. In
abstract resource metadata, some features are expressed as constraints and
not as well known values: an abstract resource is not used to identify a specific
resource, but to define a set of requirements on the resources that should be
discovered by the KDS service.

For instance, whereas the metadata described in Fig. 2.2 describes the
concrete software Autoclass available on a given node, the metadata docu-
ment shown in Fig. 2.4 describes an abstract data mining software able to
perform a clustering computation on flat files.

An abstract resource can be instantiated into an existing concrete resource
whose metadata matches the specified constraints.

2.4.4 Execution Plans

A distributed data mining computation is a process composed of several steps
which are executed sequentially or in parallel. In the Knowledge Grid frame-
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<FlatFile>

<Access>

<Location>/usr/share/imports-85c.db2</Location>
<Size>26756</Size>
...

</Access>

<Structure>

<Format>

<AttributeSeparatorString>,</AttributeSeparatorString>
<RecordSeparatorString>#</RecordSeparatorString>
<UnknownTokenString>?</UnknownTokenString>
...

</Format>

<Attributes>

<Attribute name="symboling" type="discrete">
<SubType>nominal</SubType>
<Parameter>range 7</Parameter>

</Attribute>

<Attribute name="normalized-loses" type="real">
<SubType>scalar</SubType>
<Parameter>zero_point 0.0</Parameter>
<Parameter>rel_error 0.01</Parameter>

</Attribute>

...

</Attributes>

</Structure>

</FlatFile>

Fig. 2.3. An extract from an XML metadata sample for a flat file

<DataMiningSoftware name="genericSoftware">
<Description>

<KindOfData>flat file</KindOfData>
<KindOfKnowledge>clusters</KindOfKnowledge>

</Description>

</DataMiningSoftware>

Fig. 2.4. An XML metadata sample for a generic clustering software

work, the management of complex data mining processes is carried out by
defining an execution plan. An execution plan is a graph that describes inter-
actions and data flows between data sources, data mining tools, visualization
tools, and output models.

Execution plans are also described through an XML formalism. Such de-
scriptions contain information about relationships among atomic tasks (e.g.,
computations and data transfers), along with references to the XML docu-
ments that describe the involved resources.

Execution plans can be either abstract or instantiated. An abstract exe-
cution plan contains at least one abstract resource, whereas an instantiated
execution plan contains only concrete resources. Such a distinction is made
to take into account the dynamic nature of a Grid environment, in which
resources fail and become available, data gets deleted, software gets updated,
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etc. In general, a user builds an abstract execution plan, and the RAEMS
attempts to transform it into an instantiated execution plan, by mapping
abstract resources into concrete resources. Such an action is performed by a
scheduler that allows the generation of a suitable execution plan. From an
abstract execution plan, different instantiated execution plans could be gen-
erated, depending on the resources that are available on the Knowledge Grid
at different times. This topic will be further discussed in Sect. 2.5, where a
sample execution plan will be shown.

2.4.5 Data Mining Models

The knowledge discovered through the data mining process is represented by
“data mining models”. Whereas so far no common models have been defined
for the definition of the data mining resources discussed before, a standard
model called Predictive Model Markup Language (PMML) has been defined
to describe data mining results. PMML is an XML language which provides
a vendor-independent method for defining data mining models [2.26]. The
PMML provides a Document Type Definition (DTD) to describe different
kinds of models such as classification rules and association rules. We use it
to define data mining models in the Knowledge Grid.

2.4.6 Metadata Management

As stated before, the metadata management process is a key aspect in the
development of data mining applications over the Knowledge Grid. A typical
life cycle of metadata consists of the following steps:

1. Resource metadata are published on the KMRs of the corresponding
nodes.

2. The user specifies the features of the resources needed to design a data
mining application.

3. The DAS and TAAS services search the KMRs of the Knowledge Grid
nodes for the requested resources, using the core level KDS service (which
directly interacts with local and remote KMRs) to manage resource meta-
data.

4. Metadata describing the resources of interest are delivered by such ser-
vices to the requesting user. Figure 2.5 shows the flows of resource-related
metadata in the Knowledge Grid architecture.

5. Metadata related to software, data, and operations are combined into
an execution plan to design a complete data mining application. The
execution plan metadata are managed by the EPMS service; they are
accessed through the core level RAEMS service and stored in the KEPR
(see Fig. 2.6).
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6. After application execution, results and related model metadata are
stored in the KBR and processed by the RPS service. Moreover, meta-
data related to new and/or modified resources are published in the cor-
responding KMRs for future use (see Fig. 2.7).

DAS

Data Access

Service

TAAS

Tools and Algorithms

Access Service

KDS

Knowledge Directory

Service

KMR

High level K-Grid layer

Core K-Grid layer

RAEMS

Resource Alloc.

Execution Mng.

Fig. 2.5. Resource metadata flows and services involved

EPMS

Execution Plan

Management Service

RAEMS

Resource Alloc.

Execution Mng.
KEPR

High level K-Grid layer

Core K-Grid layer

Fig. 2.6. Execution plan metadata flows and services involved

2.5 Design of a PDKD Computation

The design of a PDKD computation on the Knowledge Grid is performed
as shown in Fig. 2.8. The process starts by searching and selecting the re-
sources to be used in a PDKD computation. This step is accomplished by
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Fig. 2.7. Knowledge metadata flows and services involved

means of the DAS and TAAS tools that analyze the XML metadata docu-
ments stored in the KMRs of the participant K-grid nodes, which represent
the resources available on those nodes. Such an analysis attempts to find in-
formation about useful resources (e.g., software implementing a specific data
mining algorithm, data sources about a specific argument, etc.), and is carried
out on the basis of the search parameters and selection filters chosen by the
user. Metadata about the resources selected for the computation (i.e., those
satisfying the searching and filtering criteria) are then stored in the Task
Metadata Repository (TMR), a local storage space that contains information
about resources (computational nodes, data sources, and software) selected
to perform a computation. The TMR is organized as a set of directories: each
one is named with the fully qualified hostname of a Grid node, and contains
metadata documents about its resources.

The design of a PDKD computation is performed by means of the EPMS.
To allow a user to build the computation in a simple way, we developed a
toolset named VEGA (Visual Environment for Grid Applications). Its archi-
tecture is depicted in Fig. 2.9. VEGA integrates functionalities of the EPMS
and other K-grid services; in particular, it provides the following EPMS op-
erations:

– task composition, i.e., definition of the entities involved in the computation
and specification of the relationships among them;

– checking of the consistency of the planned task;
– generation of the execution plan for the task.

2.5.1 Task Composition

The task composition phase is performed by means of a graphical interface
(see Fig. 2.10), which provides a user with a set of graphical objects represent-
ing the resources (data sets, data mining tools, Grid nodes). These objects
can be composed using visual facilities that allow a user to insert links among
them, forming a graphical representation of the computation. In particular,
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Fig. 2.8. The PDKD computation design process

such a phase is realized by the Resource Manager, the Object Manager, and
the Workspace Manager.

The Resource Manager permits a user to browse the TMR in order to
search and choose the resources to be used in the computation. Selected hosts
are displayed into the Hosts panel, and the user can explore resources of each
one by clicking on its label. Those resources are displayed by categories in
the Resources panel.

The Object Manager deals with the graphical objects during the visual
composition. Each graphical object is associated with information about the
related resources; this information is used for the creation of the internal
model and for the execution plan generation. The Object Manager handles
three kinds of objects: data, software, and hosts. It allows the user to drag the
objects presented in the hosts and resources panels into a workspace. After
this, those objects can be linked to indicate the interactions among them.
Links can represent different actions, such as data transfer, program execu-
tion, and input and output relationships. The Object Manager performs the
labeling of the links and the attribution of other properties characterizing
them. The data transfer link is used to move resources among different loca-
tions of the Grid. The execute link is used to run an application on a Grid
host; the input and output links are used to respectively indicate input and
output of a program. For each link type it is possible to set related parame-
ters (e.g., protocol and destination path of the data transfer, job manager of
the execution, etc.).

A complex computation is composed of several jobs. The design environ-
ment is organized into workspaces. Jobs present in a given workspace can
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be executed concurrently, whereas workspaces are executed sequentially. To
this end, an ordering between the workspaces is defined. In addition, the
Workspace Manager handles an internal model of the graphical representa-
tion shown to the user. We describe here an example that shows the task
composition process.

A user logged on the K-grid node g1.isi.cs.cnr.it intends to perform a
data mining application composed of two data mining steps, clustering and
classification, on the data set Unidb stored on the same node. The data set
must be clustered using three different algorithms running in parallel on three
copies of the data set. Clustering results must be analyzed by a classification
algorithm that will be executed in parallel on three different nodes, generating
three classification models of the same data set. Finally, the three different
models will be shown to the user, who will select the more accurate one.
The user has located the K-grid nodes k1.deis.unical.it, k2.deis.unical.it,
and k3.deis.unical.it offering, respectively, the clustering algorithms K-
Means [2.27], Intelligent Miner [2.28], and AutoClass [2.29], and the node
g2.isi.cs.cnr.it, offering the C5.0 classifier [2.30].

Figures 2.10–2.13 show the sequence of the four workspaces composed by
the user to design such a computation:

– Workspace 1 (Fig. 2.10). The data set Unidb (which is located on the node
g1) and the classifier C5.0 (which is located on g2) are copied to the nodes
k1, k2, and k3.

– Workspace 2 (Fig. 2.11). The data set Unidb is analyzed on k1 by K-Means,
producing as output K-Means.out; on k2, the data set Unidb is analyzed
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Fig. 2.10. VEGA: Example workspace 1

by Intelligent Miner, producing Iminer.out; on k3, the data set Unidb is
analyzed by AutoClass, producing Autoclass.out.

– Workspace 3 (Fig. 2.12). On k1, K-Means.out is analyzed by C5.0, pro-
ducing K-Means c5.out; on k2, IMiner.out is analyzed by C5.0, produc-
ing Iminer c5.out; on k3, Autoclass.out is analyzed by C5.0, producing
Autoclass c5.out.

– Workspace 4 (Fig. 2.13). K-Means c5.out, IMiner c5.out, and Autoclass c5.out

are moved from k1, k2, and k3 to g1.

Since the set of workspaces represents a unique logical computation, the
Workspace Manager must deal with the case in which a task in a given
workspace needs to operate on resources generated by tasks in previous
workspaces. Such resources are not physically generated when the user starts
composing a subsequent workspace of the same computation because all the
workspaces are processed for the execution only at the end of the design ses-
sion. The Workspace Manager recognizes such a situation during the compo-
sition of a workspace, generates the needed virtual resources, and makes them
available, through the Resource Manager, to the subsequent workspaces. For
instance, in workspace 1 (Fig. 2.10), the data set Unidb is copied to the node
k1.deis.unical.it; therefore, a new metadata document is created for Unidb

and stored in the directory k1.deis.unical.it of the TMR. The document
specifying the new location of Unidb is marked as temporary until the data
transfer is performed. However, in workspace 2 (Fig. 2.11), the data set Unidb
is displayed as already available under the resources of k1.deis.unical.it.
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Fig. 2.11. VEGA: Example workspace 2

2.5.2 Task Consistency Checking

The goal of this phase is to obtain a correct and consistent model of the com-
putation. The validation process is performed by means of two components:
the model preprocessor the model postprocessor.

The preprocessing of the computation model takes place during the graph-
ical composition. The model preprocessor verifies the composition consis-
tency, allowing the user, with a context-sensitive control, to create links only
if they represent actions that can really be executed. For instance, given a
data set, it allows the user to link it to a software through an input/output
link, not to a host through an execution link.

The checking is completed by the model postprocessor, which is respon-
sible for catching error occurrences that cannot be recognized during the
preprocessing phase. For example, it indicates accordingly if the graphical
composition in a workspace does not contain at least one host.

2.5.3 Execution Plan Generation

In this phase, the computation model is translated into an execution plan
represented by an XML document. This task is performed by the Execution
Plan Generator.

Basically, the Execution Plan Generator is a parser that analyzes the
computation model produced during the graphical composition, and is able
to generate its equivalent XML representation, taking into account the prop-
erties of the involved resources and the parameters of the links. The XML
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Fig. 2.12. VEGA: Example workspace 3

execution plan describes a data mining computation at a high level, con-
taining physical information neither about resources (which are identified by
metadata references) nor about the status and current availability of such
resources. In fact, specific information about the resources involved will be
included in the RSL generation phase, when the computation model is trans-
lated into this language. Figure 2.14 shows an extract of the execution plan
for the example described above. The execution plan gives a list of tasks
and task links, which are specified using the XML tags Task and TaskLink,
respectively. The label attribute of a Task element identifies each basic task
in the execution plan, and is used in linking various basic tasks to form the
overall task flow.

Each Task element contains a task-specific sub-element, which indicates
the parameters of the particular task represented. For instance, the task
identified by the ws1 dt2 label contains a DataTransfer element, indicating
that it is a data transfer task. The DataTransfer element specifies Protocol,
Source, and Destination of the transfer. The href attributes of such ele-
ments specify the location of metadata about protocol, source, and destina-
tion objects. In this example, metadata about the source of the data transfer
in the ws1 dt2 task are provided by the Unidb.xml file stored in the direc-
tory named g1.isi.cs.cnr.it of the TMR, whereas metadata about the des-
tination are provided by the Unidb.xml file stored in the directory named
k2.deis.unical.it of the same TMR. The first of such XML documents pro-
vides metadata about the Unidb data set when stored on g1.isi.cs.cnr.it,
whereas the second one provides metadata about Unidb when, after the data
transfer, it is stored on k2.deis.unical.it. The TaskLink elements represent
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Fig. 2.13. VEGA: Example workspace 4

<ExecutionPlan>

...

<Task ep:label="ws1_dt2">

<DataTransfer>

<Protocol ep:href="g1../GridFTP.xml"

ep:title="GridFTP on g1.isi.cs.cnr.it"/>

<Source ep:href="g1../Unidb.xml"

ep:title="Unidb on g1.isi.cs.cnr.it"/>

<Destination ep:href="k2../Unidb.xml"

ep:title="Unidb on k2.deis.unical.it"/>

</DataTransfer>

</Task>

...

<Task ep:label="ws2_c2">

<Execution>

<Program ep:href="k2../IMiner.xml"

ep:title="IMiner on k2.deis.unical.it"/>

<Input ep:href="k2../Unidb.xml"

ep:title="Unidb on k2.deis.unical.it"/>

...

<Output ep:href="k2../IMiner.out.xml"

ep:title="IMiner.out on k2.deis.unical.it"/>

</Execution>

</Task>

...

<TaskLink ep:from="ws1_dt2" ep:to="ws2_c2"/>

...

</ExecutionPlan>

Fig. 2.14. The extract of an execution plan

the relationships among the tasks of the execution plan. For instance, the
TaskLink shown indicates that the ws2 c2 task follows ws1 dt2, as specified by
its from and to attributes.
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As stated in Sect. 2.4, execution plans are abstract if some of the re-
sources are not completely determined. They are specified by means of one
or more constraints. In this case, the Execution Plan Generator produces an
abstract execution plan, i.e., an XML document similar to the example shown
in Fig. 2.14, except that at least one resource is an abstract resource. For ex-
ample, the XML Program element within the description of the computation
task ws2 c2, in Fig. 2.14, could contain a reference to an abstract resource
which specifies the features of a data mining software able to perform the
requested type of analysis.

2.6 Execution of a PDKD Computation

Figure 2.15 shows the steps of a PDKD computation execution. The execution
plan optimization and translation are performed by the RAEMS, whose basic
functionalities are provided by the VEGA components (see Fig. 2.9).

In the optimization phase, the RAEMS scheduler searches the Knowledge
Grid for concrete resources that satisfy the constraints specified in the cor-
responding abstract resources. The searching is performed by means of the
KDS service. Once a proper number of candidate resources have been found,
the RAEMS selects those resources that allow the generation of the optimal
execution plan.

Currently, VEGA integrates an RSL Generator module, which produces
an RSL script that can be directly submitted to the Globus Resource Alloca-
tion Manager (GRAM) of a Grid node running Globus. The RSL (Resource
Specification Language) is a structured language with which resource require-
ments and parameters can be outlined by a user [2.23]. In contrast with the
XML execution plan, the RSL script entirely describes an instance of the
designed computation, i.e., it specifies all the physical information needed
for the execution (e.g., name and location of resources, software parameters,
etc.). Figure 2.16 shows an extract of a sample RSL script.

The execution of the computation is performed by means of the VEGA
Execution Manager module. The Execution Manager allows the system to
authenticate a user to the Grid, using the Globus GSI (Grid Security In-
frastructure) services, and to submit the RSL script to the Globus GRAM
for its execution. The Execution Manager is also responsible for the moni-
toring of the jobs that compose the overall data mining computation during
their life cycle. Finally, the Execution Manager collects results of the PDKD
computation and presents them to the user.

2.7 Conclusions

Grid computing is enlarging its scope and is going to be more and more
complete and complex both in the number of developed tools and in the va-
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+

...

(&(resourceManagerContact=g1.isi.cs.cnr.it)
(subjobStartType=strict-barrier)
(label=ws1_dt2)
(executable=$(GLOBUS_LOCATION)/bin/globus-url-copy)
(arguments=-vb –notpt gsiftp://g1.isi.cs.cnr.it/.../Unidb

gsiftp://k2.deis.unical.it/.../Unidb
)

)

...

(&(resourceManagerContact=k2.deis.unical.it)
(subjobStartType=strict-barrier)
(label=ws2_c2)
(executable=.../IMiner)
...

)

)

...

Fig. 2.16. The extract of a sample RSL script

riety of supported applications. Deployed Grids are growing up very quickly
and support high-performance applications in science, industry, and business.
According to this trend, Grid services are shifting from generic computation-
oriented services to high-level information management and knowledge dis-
covery services. It is vitally important to design and develop knowledge-based
systems for supporting sophisticated Grid applications. The Knowledge Grid
system we discussed here is a significant system that, according to this ap-
proach, aims to support the implementation of knowledge discovery processes
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on Grids. It integrates and completes the data Grid services by supporting
distributed data analysis and knowledge discovery and management services
that will enlarge the application scenario and the community of Grid com-
puting users [2.6].

In this chapter we also presented the Knowledge Grid features and tools
by showing how a user through a step-by-step process can compose and ex-
ecute a knowledge discovery application on a Grid in a simple way. Besides
completing the Knowledge Grid implementation we are developing real dis-
tributed data mining applications in different domains that exploit the sys-
tem features and give us feedback on the user needs in terms of capabilities
and performance. These experiments will help us to improve and extend the
system functionalities.
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