
Int. Journal of Ad Hoc and Ubiquitous Computing 1, Vol. x, No. x, 2018 1

A Scalable Middleware for Context-aware Mobile
Applications

Loris Belcastro
DIMES, University of Calabria,
Rende, Italy
E-mail: lbelcastro@dimes.unical.it

Fabrizio Marozzo*

DIMES, University of Calabria,
Rende, Italy
E-mail: fmarozzo@dimes.unical.it
*Corresponding author

Paolo Trunfio
DIMES, University of Calabria,
Rende, Italy
E-mail: trunfio@dimes.unical.it

Abstract: A core functionality of context-aware mobile applications is storing, indexing,
and retrieving information about users, places, events and other resources. The goal of
this work is to design and provide a service-oriented middleware, called Geocon, which can
be used by mobile developers to implement such functionality. To represent information
about users, places, events and resources of context-aware applications, Geocon defines a
metadata model that can be extended to match specific application requirements. The
middleware includes a geocon-service for storing, searching and selecting metadata about
users, resources, events and places of interest, and a geocon-client library that allows
mobile applications to interact with the service through the invocation of local methods.
The paper describes the Geocon middleware and presents an experimental evaluation of
its scalability on a cloud platform with a real-world mobile application.

Keywords: Context-aware; Mobile applications; Middleware; Scalability; Cloud
computing.

1 Introduction

In the last ten years, mobile applications became an
essential part of human life as they provide a wide range
of tools for communication, productivity, entertainment,
social networking and many other purposes. The
large number of mobile applications being constantly
released and the ever increasing power of mobile devices
(smartphones, tablets), have significantly improved the
user experience in many fields that just a few years ago
were monopolized by standard web applications (e.g.,
e-commerce, traveling services, online games, etc.).

The advent of location-based services, which provide
ubiquitous access to context-aware information, has given
a great impulse to the development of a new generation of
mobile applications. Mobile context-aware computing is a
paradigm in which mobile applications can discover and
take advantage of contextual information (e.g., date and
time, user position, nearby users) [1, 2, 3]. Some examples
of context-aware mobile applications are: interactive
trolleys to help shoppers finding groceries [4], monitors

to remind medication for elderly [5], location-aware
telephone call forwarding [6], and targeted advertisement
based on social group information [7].

A core functionality of any context-aware ubiquitous
system is storing, indexing, and retrieving information
about entities that are commonly involved in these
scenarios, such as (mobile) users, places, events and other
resources (e.g., photos, media, comments). The goal of
this work is to design and provide a service-oriented
middleware, called Geocon1, which can be used by mobile
application developers to implement such functionality.
Geocon can be used to discover location-aware content,
to share context-related information, and to facilitate
interaction among users of mobile apps. Some examples
of services that can be implemented in a mobile app
using Geocon are: i) discovery of cultural places to be
visited during a trip; ii) publication of user reviews about
hotels and restaurants; iii) find nearby free-time activities

1 https://github.com/SCAlabUnical/Geocon

Copyright c© 201X Inderscience Enterprises Ltd.

https://github.com/SCAlabUnical/Geocon

2 author

of a user and his/her friends; iv) sharing of real-time
information about events, traffic, etc.

A key benefit for developers using Geocon is the
possibility to focus on the front-end functionality
provided by their mobile application, without the need of
implementing by scratch back-end components for data
storing, indexing and searching, since they are provided
by the middleware. In order to represent information
about users, places, events and resources of mobile
context-aware applications, Geocon defines a metadata
model that can be extended to match most application
requirements [8]. The widely-used JavaScript Object
Notation (JSON) format is employed to represent such
metadata. The architecture of the middleware includes a
geocon-service that exposes methods for storing, searching
and selecting metadata about users, resources, events and
places of interest, and a geocon-client library that allows
mobile applications to interact with the service through
the invocation of local methods. The interaction between
service and client is based on the REST model.

Given the huge number of users, places, events
and resources that may be involved in context-aware
ubiquitous applications, scalability plays a fundamental
role [9]. Geocon was designed to ensure scalability
through the use of a NoSQL indexing and search engine,
Elasticsearch [10], that can scale horizontally on multiple
nodes as the system load increases.

Compared to related work, Geocon is the only publicly
available (and open source) Cloud-oriented system that
provides a scalable middleware for context-aware mobile
applications. Geocon was designed to be deployed on
a public/private Cloud infrastructure, thus allowing an
elastic resource allocation in a pay-per-use manner [11].

The scalability of Geocon is the results of three
main elements: i) a scalable software architecture,
which includes a geocon-service natively designed to
support replication on multiple processing nodes; ii) a
scalable data indexing and searching service provided
by Elasticsearch; iii) the use of a scalable cloud
infrastructure, which provides auto-scaling and load
balancing to run Geocon and Elasticsearch services. To
assess the scalability of Geocon in a real case scenario,
we used it to develop a location-aware mobile application,
called GeoconView. The application allows users to
share information about events exploiting the Geocon
middleware for storing, indexing, and retrieving such
information.

We evaluated the performance of Geocon varying
the number of Cloud machines used to run the Geocon
software components, the number of events stored in the
middleware, and the number of queries submitted to the
system. The experimental results that will be described
later in detail, show that the latency speedup is basically
independent from the number of queries per second, but
is significantly higher when the system stores a larger
number of events.

The remainder of the paper is organized as follows.
Section 2 discusses related work. Section 3 describes
the metadata model. Section 4 describes the middleware

architecture and components. Section 5 describes the
performance experiments carried out to assess the
scalability of Geocon. Finally, Section 6 concludes the
paper.

2 Related Work

Several research projects and software systems have been
proposed to support the implementation of context-aware
mobile applications.

CRUMPET [12] (Creation of User-Friendly Mobile
Services Personalised for Tourism) was a European
research project aimed to deal with issues related
to the mobility of tourists. In particular, the system
provides tourists with information filtered by mobile users’
positions and interests. Yu and Chang [22] extended
CRUMPET to overcome the limitations of handheld
devices regarding the screen size and transmitting
bandwidth.

The COMPASS system [13] (Context-aware Mobile
Personal Assistant) was developed to provide users
with relevant information and services. The relevance
is determined exploiting information extracted from the
user profile (e.g., preferences, interests, locations visited).
COMPASS uses two search criteria for selecting relevant
services/information: i) strict criteria, for discarding
irrelevant results; and ii) soft criteria, for sorting and
assigning a score to remaining results.

Driver and Clarke [14] proposed a framework
to support the development of mobile trails-based
applications. A trail is a scheduled collection of activities,
such as to-do lists, that can be properly reordered when
context change. The framework supports context-based
activity schedule composition, identification of whether
or not schedule reordering is required following context
change and subsequent automatic schedule reordering as
appropriate.

MobiSoC [15] is a service-oriented middleware for
capturing, managing, and sharing the social state of
physical communities. This state is composed of people
profiles, place profiles, people-to-people affinities, and
people-to-places affinities. The middleware provides real-
time recommendations about people, places, and events,
and delivers customized information based on users’ geo-
social context. The latency time of MobiSoC has been
evaluated varying the query type and the number of
users, showing the limitation of having a fixed number of
computing nodes.

Context Toolkit [16] is a framework designed to
support the development of context-aware applications.
It consists in a set of widgets, which are software
components with a common interface used to separate
applications from context acquisition issues. The toolkit
provides developers different components responsible
for acquiring, aggregating and interpreting context
information.

CaMWAF [17] is a framework designed to support
the development of context-aware mobile applications

A Scalable Middleware for Context-aware Mobile Applications 3

Table 1 Comparison with related systems.

System Goal Cloud Scalable
Publicly
available

CRUMPET [12]
Content filtering based on
mobile user’s position

No No No

COMPASS [13]
Services and information filtering
on user’s preferences and interests

No No No

Driver and Clarke [14]
Context-aware management
of user activities

No No No

MobiSoC [15]
Middleware for developing
mobile social applications

No Yes Yes

Context Toolkit [16]
Composition of widgets for
accessing context information

No No Yes

CaMWAF [17]
Context-aware applications
using HTML5, CSS3 and JS

No No No

Malcher et al. [18]
Client middleware for
local and remote data exchange

No No No

SALES [19]
Contextual data dissemination in
heterogeneous wireless networks

No Yes No

CARISMA [20]
Context-aware applications exploiting
reflection and micro-economic policies

No Yes No

EgoSpaces [21]
Agent-based middleware for applications
in ad-hoc mobile environments

No No Yes

Geocon
Scalable middleware for
context-aware mobile applications

Yes Yes Yes

and simplify the exchange of context information in
heterogeneous environments. It allows developers to
easily create cross-platform context-aware applications
using common web technologies (e.g., HTML5, CSS3,
JavaScript). To deal with the resource limitation of mobile
devices, CaMWAF delegates the execution of intensive
tasks to the server.

Malcher et al. [18] proposed a client middleware for
developing context- and location-aware applications with
capabilities of data sharing, dynamic deployment of
new components, and combination of basic collaboration
services. Given its client-side approach, the middleware
does not take into account the server side architecture
and related scalability issues.

SALES [19] is a middleware for contextual data
dissemination in heterogeneous wireless communication
networks. It proposes a hierarchical distributed
architecture, some caching techniques for reducing
context data traffic (e.g., a locality-based policy to
speed up accesses to context data strictly related with
locality), and two models for representing data (i.e.,
key-value and object-based model). Concerning data
representation, the key-value model allows reducing
management overhead, especially in terms of required
bandwidth, while the object-oriented model facilitates
development by supporting extendibility.

CARISMA [20] is a mobile computing middleware
that exploits the reflection principle for enhancing
the development of adaptive and context-aware mobile
applications. It provides developers with a set of
primitives for describing how context changes should be
handled using policies. Such policies use a micro-economic
approach, which relies on a particular type of sealed-bid
auction to take decision during application execution.

EgoSpaces [21] is an agent-based middleware for
developing applications in ad-hoc mobile environments.
It proposes an agent-centered notion of context, called a
view, which is a collection of relevant data (or context).
Each agent can operate over multiple views (which can
be redefined over time as needs change) that include
data/resources associated with the agent.

Table 1 summarizes the main features of the related
systems discussed above, in comparison with Geocon’s
features. For each system, the table indicates: (i) the
main goal of the system; (ii) whether or not the system
was designed to be deployed on the Cloud; (iii) whether
or not the server side focuses on scalability; (iv) whether
or not the system is publicly available. In particular, the
second feature (“Cloud”) is important as it allows mobile
application developers to know whether a system can be
natively deployed on a Cloud. In fact, mobile context-
aware applications store, index, and retrieve information
about entities very often on Cloud storage services and
only rarely on on-promises private services (e.g., private
servers, private clusters).

As shown in the table, Geocon is explicitly designed
for a Cloud, with a set of back-end components for
data storing, indexing and searching, that can be easily
deployed on any public/private Cloud infrastructure.
Moreover, Geocon provides ad hoc scalability mechanisms,
which are fundamental to provide satisfactory services
as the amount of users and/or data to be managed grow.
The test results demonstrate that Geocon scales well, thus
allowing the development of mobile applications with a
large number of users. It is worth noticing that three
related works ([15] [19] [20]) highlight the importance of
the scalability problem, but do not provide experimental
evaluations on this aspect. It is also important to point
out that context-aware systems that are not natively

4 author

designed for the Cloud, may be ported to the Cloud,
but this does not mean that they become automatically
scalable. In particular, when the workload grows and
can only be managed efficiently using multiple servers
(scale out), legacy systems need to be fully redesigned
to support this kind of scalability. In contrast, Geocon
is natively able to scale its workload on multiple servers
since its software architecture has been designed to scale
out using Cloud facilities (for more details, see Section
4.2).

In summary, Geocon is the only publicly available
(and open source) Cloud-oriented system that provides
a scalable middleware for context-aware mobile
applications. Another important added value, not
highlighted in the table, is the methodology provided
by Geocon that defines an expendable metadata model
supported by scalable set of back-end components for data
storing, indexing and searching. This allows developers
to focus on the front-end functionality provided by their
mobile applications, without worrying on low-level back-
end aspects and scalability issues that are managed
transparently by Geocon.

3 Metadata Model

We defined a metadata model for representing information
about users, places, events and resources of mobile
context-aware applications. The model identifies a
number of categories for indexing items in the domain of
interest, which are generic enough to satisfy most of the
application contexts. In particular, the metadata model
is divided into four categories:

• User : defines basic information about a user (e.g.,
name, surname, e-mail).

• Place: describes a place of interest (e.g., square,
restaurant, airport), including its geographical
coordinates.

• Event : describes an event (e.g., concert, exhibition,
conference), with information about time and
location.

• Resource: defines a resource (e.g., photo, video, web
site, web service) associated to a given place and/or
event, including its Uniform Resource Identifier
(URI).

Tables 2-5 present the basic metadata fields for each
of the four categories listed above. Metadata are meant
to be extensible, i.e., it is possible to include additional
fields based on the specific application. For example, the
user schema may be extended to include birth date, city,
linked social network accounts, etc.

To represent metadata, the JavaScript Object
Notation (JSON) is used. JSON is a widely-used text
format for the serialization of structured data that is
derived from the object literals of JavaScript [23]. Figure 1

Table 2 Basic User metadata.

Name Type Description

id String Unique user identifier
name String Given name
surname String Family name
email String E-mail
token String Authentication token

Table 3 Basic Place metadata.

Name Type Description

id String Unique place identifier
name String Name of the place
description String Textual description of the place
latitude Real Latitude of the place
longitude Real Longitude of the place
address String Full address of the place
user id String Id of the user who created the place

Table 4 Basic Event metadata.

Name Type Description

id String Unique event identifier
name String Name of the event
description String Textual description of the event

start date String
Date and time when the event
begins

end date String
Date and time when the event
ends

place id String
Id of the place where the event
is held

user id String
Id of the user who created
the event

Table 5 Basic Resource metadata.

Name Type Description

id String Unique resource identifier
name String Name of the resource
description String Textual description of the resource
URI String Link to the resource

place id String
Id of the place to which the
resource is associated

event id String
Id of the event to which the
resourceis associated

user id String
Id of the user who created the
resource

shows an example of JSON metadata describing a User.
Beyond the basic metadata (id, name, etc.), it includes
some additional fields (city, linked accounts and food
preferences).

Figure 2 shows an example of Place metadata,
regarding the “Kabuki” restaurant in Washington, DC,
USA, which is tagged as a Japanese and sushi specialties
restaurant using an additional “tags” field.

A Scalable Middleware for Context-aware Mobile Applications 5

{ "id": "jdoe",

"name": "John",

"surname": "Doe",

"email": "john.doe@example.com",

"token": "19800308",

"city": "New York, NY, USA",

"linked-accounts": [

{"name":"facebook", "token":"424911363"},

{"name":"google", "key":"23467223454"}

],

"food-preferences": ["sushi", "pizza"],

"date-created": "2016-03-27T08:05:43.511Z"}

Figure 1 Example of User metadata in JSON.

{ "id": "534",

"name": "Kabuki",

"description": "Japanese Restaurant",

"latidude": "38.897683",

"longitude": "-77.006081",

"address": "Union Station 50, Washington, DC, USA",

"user_id": "jdoe",

"tags": ["Japanese", "sushi"]}

Figure 2 Example of Place metadata in JSON.

4 Middleware

This section describes the software components of the
Geocon middleware and how these components are
deployed within a distributed architecture.

4.1 Software components

Figure 3 shows the software structure of the middleware,
which includes two main components:

• geocon-service, which contains a central registry
for indexing users, resources, events and places of
interest, and exposes methods for storing, searching
and selecting metadata about these entities.

• geocon-client, which is a client-side library allowing
mobile applications to interact with geocon-service
through the invocation of local methods.

The interaction between service and client is based on
the REST model [24]. To this end, a complete support to
CRUD (Create, Read, Update, and Delete) operations
on the metadata has been defined through Java APIs.

4.1.1 Geocon-service

The geocon-service has been implemented as a JSON
RESTful Web service application developed using Jersey2.
Jersey is a Java open source framework that uses
annotations to map a Java class to a Web resource,
and natively supports JSON representations through

2 http://jersey.java.net/

Figure 3 Software components of the Geocon middleware.

the integrated library Jackson3. The Jersey Web
service application has been exposed using the Grizzly
container4.

The core component of geocon-service is the indexing
and search engine, which has been implemented
using Elasticsearch5. Elasticsearch is an open-source,
distributed, scalable, and highly available search server
based on Apache Lucene6, and provides a RESTful web
interface. Elasticsearch has been chosen because of several
benefits, including:

• it is document-oriented, which means that entities
can be structured as JSON documents;

• it is schema-free, which means it is able to detect
the data structure automatically without need to
specify a schema before indexing documents;

• it is horizontally scalable: if more power is needed,
other nodes can be added and Elasticsearch will
reconfigure itself automatically;

• it has APIs for several programming languages,
including Java, which makes it easily integrable
with other systems.

Geocon-service uses the query language provided by
Elasticsearch, which is a full Query DSL (Domain Specific
Language) based on JSON. Therefore, queries can be
defined through the following main commands:

• term: returns all the documents whose specified
field contains a given term. The following example
returns all the documents whose field name contains
the word “Mary”:

{"term" : { "name" : "Mary" }}

3 http://jackson.codehaus.org/
4 https://grizzly.java.net
5 https://www.elastic.co/
6 https://lucene.apache.org/

http://jersey.java.net/
http://jackson.codehaus.org/
https://grizzly.java.net
https://www.elastic.co/
https://lucene.apache.org/

6 author

• prefix : returns all the documents whose specified
field contains a term beginning with a given prefix.
The following example returns all the documents
whose field surname begins with “Ro”:

{"prefix" : { "surname" : "Ro" }}

• bool : returns all the documents containing a boolean
combination of queries. It is built using one or
more boolean clauses (i.e., must, must not, should,
and the parameter minimum should match that is
the minimum number of clauses to be met). The
following example returns all the users whose name
is “Mary”, that are not between 10 and 20 years
old, and that like eating sushi or pizza:

{"bool" : {

"must" : { "term" : { "name" : "Mary" } },

"must_not" : {

"range" : {"age" : {"from": 10, "to": 20}}

},

"should" : [

{"term" : {"food-preferences" : "sushi"}},

{"term" : {"food-preferences" : "pizza"}}

],

"minimum_should_match" : 1

}}

• filter : returns all the documents filtered according
to a given condition. The following example returns
all the documents whose field location falls within
50km from the center of Los Angeles sorting by
distance.

{"query": {

"filtered" : {

"filter" : {

"geo_distance" : { "distance" : "50km",

"location" : {"lat" : 34.052235,

"lon" : -118.243683

}}}}},

"sort": [{

"_geo_distance": {

"location": { "lat" : 34.052235,

"lon" : -118.243683},

"order": "asc", "unit": "m",

"distance_type": "plane"}}]

}

4.1.2 Geocon-client

Geocon-client is the library used by mobile applications to
interact with geocon-service. The library aims to facilitate
communication with the geocon-service methods, hiding
some low-level details (e.g., authentication, REST
invocation, etc.) and providing users with a complete
set of functions for executing CRUD operations. These
functions are implemented using a set of objects and
methods provided by the client library to the application
layer.

Geocon-client consists of five classes: four classes are
used to represent the metadata categories (User, Place,
Event and Resource), while a fifth class (SearchEngine) is
used to expose the methods for storing and searching data
on geocon-service. For each class representing a metadata
category, the SearchEngine class provides a set of CRUD
methods: register, get, update, and delete. As an example,
Table 6 shows the CRUD methods provided to register,
get, update and delete Resource elements in the service.

Table 6 CRUD methods for Resource elements.

Method Description

register(Resource r) Registers a resource to the service

get (Resource r)
Returns the metadata
of a resource

update (Resource r)
Updates the metadata
of a resource

delete (Resource r) Deletes a resource

4.2 Distributed architecture

This section describes how the Geocon components are
deployed within a distributed architecture. As described
above, Geocon exploits Elasticsearch (ES) as indexing
and search engine that can scale horizontally on a very
large number of nodes as the system load increases. ES
implements a clustered architecture that uses partitioning
to distribute data across multiple nodes, and replication
to provide high availability.

There are three types of ES nodes: i) ES Data nodes,
which can hold one or more partitions containing index
data; ii) ES Client nodes, that do not hold index data
but handle incoming requests made by client applications
to the appropriate data node; and iii) ES Master node
that performs cluster management operations, such as
maintaining routing information, coordinating recovery
after node failure, relocating data partitions among nodes.

As shown in Figure 4, four types of nodes are present
in the distributed Geocon architecture:

• Mobile devices, which interact with the geocon-
service using the geocon-client library.

• Load Balancer, which evenly distributes requests
from mobile devices to a pool of server nodes.
Even though it is represented as a single node,
it is actually implemented as a redundant Cloud
service. This fact, coupled with the lightweight task
it performs, fully prevents the Load Balancer to
become a bottleneck for the system.

• Server nodes, which are a pool of virtual machines
handling the mobile devices’ requests. Each request
is managed by a geocon-service instance that
translates it into an Elasticsearch query. The query
is processed by an ES Client node that interacts
with the appropriate ES Data nodes. One of Server
nodes hosts the ES Master node.

A Scalable Middleware for Context-aware Mobile Applications 7

Figure 4 Distributed architecture of the Geocon middleware.

• Data nodes, which are a pool of virtual machines
running the ES Data nodes, which process the
queries upon request of the ES Client nodes.

5 Performance evaluation

An experimental performance evaluation was carried out
to assess the scalability of the Geocon middleware in a
real case scenario. The section is structured into three
parts: i) introduction to the mobile application used
as real case; ii) description of experimental setup and
performance parameters; iii) presentation and discussion
of the performance results.

5.1 Mobile application

In order to assess the scalability of Geocon in a real
case scenario, we developed a location-aware mobile
application, called GeoconView, which allows users to
share information about events, exploiting the Geocon
middleware for storing, indexing, and retrieving such
information. More in detail, a GeoconView user can share
events characterized by the following features: (i) place:
the place where the event will happen; (ii) images: one
or more photos representing the event; (iii) datetimes:
the range of dates and times when the event will occur;
(iv) tags: a set of keywords describing the event; and (v)
comments: user comments and ratings about the event.

Figure 5 shows some screenshots of GeoconView.
In particular, Figure 5(a) visualizes a number of
GeoconView’s events on a map. Figure 5(b) shows
a preview of the Arco Magno’s sunset, a daily event
that occurs on a beach in San Nicola Arcella (Italy).
Figure 5(c) provides full details about this event.

Figure 5(d) shows a second event describing the arrival
of grey herons in Tarsia (Italy) in December.

To implement the GeoconView application, the
basic Event metadata scheme has been extended with
additional fields to store URLs of images, descriptive
tags, and information about the periodicity (e.g., weekly,
monthly, yearly) of the events. Comments and ratings
associated to the events have been stored as Resource
metadata instances.

5.2 Experimental setup and performance
parameters

The distributed architecture used for the evaluation is
composed of 9 cloud machines hosted by the Microsoft
Azure platform [25], each one equipped with a single-core
1.66 GHz CPU, 3.5 GB of memory, and 50 GB of disk
space.

Table 7 shows the system parameters that have been
used during the evaluation. As shown in the table, we
used from 1 to 8 Data nodes, each one running on a
separate cloud machine. An additional cloud machine was
used to run a Server node. The number of geo-located
events stored in the Geocon middleware ranges from 250k
to 2000k. A varying number of queries per second (from
15 to 120) was submitted to the system, so as to evaluate
its performance under different load levels. Every query
asks for the ten active events that are closest to a location
that changes randomly from query to query.

Table 7 System parameters.

Description Values

Number of data nodes 1, 2, 4, 8
Number of events 250k, 500k, 1000k, 2000k
Queries per second 15q/s, 30q/s, 60q/s, 120q/s

8 author

(a) Geotagged events on a
map.

(b) Arco Magno’s sunset
(preview).

(c) Arco Magno’s sunset
(details).

(d) Grey herons arrival
(details).

Figure 5 GeoconView: A location-aware mobile application based on the Geocon middleware.

For executing the load tests and measuring the
performance of the system we used Apache JMeter7.
According to the evaluation approach proposed in [26],
the following performance parameters have been
considered:

• Latency time: the average amount of time elapsed
from query submission to query answer;

• Speed-up: the ratio of the latency time using 1 data
node to the latency time using n data nodes, which
indicates how much performance gain is obtained
by distributing data over an increasing number of
cloud machines;

• Scale-up: the latency time when the problem size is
increased linearly with the number of data nodes,
which measures the capability of the system to
manage increasing loads when machines are added
to accommodate that growth.

5.3 Performance results

Figure 6 shows how the latency time changes using a fixed
number of data nodes and varying the number of events
stored and the number of queries per second submitted
to the system. Figure 6(a) presents the results obtained
using 2 data nodes. For the smallest number of events
(250k), the latency time increases from 0.078 seconds
with 15q/s, to 0.373 seconds with 120 q/s. For the largest
number of events (2000k) the latency time ranges from
0.457 seconds to 1.651 seconds. Figure 6(b) shows the
results obtained using 8 data nodes. For 250k events,
the latency time ranges from 0.063 seconds with 15q/s,

7 http://jmeter.apache.org/

to 0.300 seconds with 120 q/s, while for 2000k events
the latency time increases from 0.168 seconds to 0.621
seconds. In both cases, the latency time increases linearly
with the number of requests per second, independently
from the number of events stored in the system.

The scalability of Geocon can be evaluated through
Figure 7, which shows the speedup obtained varying the
number of data nodes and the number of queries per
second submitted to the system.

Figure 7(a) presents the results obtained with 500k
events stored in the system. With a load of 15 queries
per second, the speedup increases from 1.54 using 2 data
nodes, to 2.29 using 8 data nodes. With the highest load
(120 q/s) the speedup passes from 1.62 using 2 nodes, to
2.79 using 8 nodes. Figure 7(b) shows the results obtained
when the number of events is increased to 2000k. With 15
queries per second, the speedup passes from 1.74 using 2
data nodes, to 4.74 using 8 data nodes. With 120 queries
per second, the speedup passes from 1.45 using 2 nodes, to
3.86 using 8 nodes. As expected, the speedup is basically
independent from the number of queries per second, but
is significantly higher when the system stores a larger
number of events (e.g., 2000k vs 500k).

Figure 8 measures the application scaleup by showing
the latency times obtained when the number of events
stored in the system increases proportionally to the
number of data nodes used (i.e., from 250k events stored
on 1 data node, to 2000k events stored on 8 data nodes).
The results show that, for any number of queries per
second submitted to the system, the latency time is almost
constant. These results demonstrate that the system can
manage an amount of data that increases almost linearly
with available data nodes.

http://jmeter.apache.org/

A Scalable Middleware for Context-aware Mobile Applications 9

 0

 0.5

 1

 1.5

 2

15 30 60 120

L
a
te

n
c
y
 t
im

e
 (

s
)

Number of queries/second

 250k
 500k
1000k
2000k

(a)

 0

 0.5

 1

 1.5

 2

15 30 60 120

L
a
te

n
c
y
 t
im

e
 (

s
)

Number of queries/second

 250k
 500k
1000k
2000k

(b)

Figure 6 Latency time vs number of queries per second,
for different numbers of events stored in the
system, using: a) 2 data nodes; b) 8 data nodes.

6 Conclusions

The increasing power of mobile devices and the huge
number of mobile applications available today have
significantly improved the mobile users’ experience. In
particular, the advent of location-based services has given
a great impulse to the development of context-aware
mobile applications.

Geocon is a service-oriented middleware designed
to help developers to implement context-aware mobile
applications. Geocon provides a service and a client
library for storing, indexing, and retrieving information
about entities that are commonly involved in these
scenarios, such as (mobile) users, places, events and other
resources (e.g., photos, media, comments). A key benefit
for developers using Geocon is the possibility to focus
on the front-end functionality provided by their mobile
application, without the need of implementing by scratch
back-end components for data management and querying,
which are provided by the middleware.

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 4 8

S
p
e
e
d
u
p

Number of data nodes

 15q/s
 30q/s
 60q/s
120q/s

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 4 8

S
p
e
e
d
u
p

Number of data nodes

 15q/s
 30q/s
 60q/s
120q/s

(b)

Figure 7 Speedup vs number of data nodes, for different
numbers of queries per second, using: a) 500k
events; b) 2000k events.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 N/
250k

2N/
500k

4N/
1000k

8N/
2000k

L
a
te

n
c
y
 t
im

e
(s

)

Number of data nodes/Number of events

 15q/s
 30q/s
 60q/s
120q/s

Figure 8 Latency time vs number of data nodes/number
of events (scaleup), for different numbers of queries
per second.

Geocon defines a metadata model to represent
information about users, places, events and resources of

10 author

mobile context-aware applications, which can be easily
extended to match specific application requirements. In
order to ensure a high level of decoupling and efficient
communication between client and service, the REST
model has been adopted. Moreover, given the huge
number of users, places, events and resources that may
be involved in context-aware mobile applications, Geocon
uses the Elasticsearch engine that can scale horizontally
on a multiple nodes.

To assess the scalability of Geocon in a real-
world scenario, we developed a location-aware mobile
application, called GeoconView. The application allows
users to share information about events exploiting the
Geocon middleware for storing, indexing, and retrieving
such information. The experimental results show that
the latency speedup is basically independent from the
number of queries per second, but is significantly higher
when the system stores a larger number of events
(e.g., 2000k vs 500k). For instance, when the system
stores 2000k events, with 15 queries per second, the
latency speedup passes from 1.74 using 2 data nodes,
to 4.74 using 8 data nodes. The Geocon middleware is
available as open-source software at https://github.

com/SCAlabUnical/Geocon.

References

[1] B. Schilit, N. Adams, and R. Want. Context-aware
computing applications. In Proceedings of the 1994
First Workshop on Mobile Computing Systems and
Applications, WMCSA ’94, pages 85–90, 1994.

[2] Anind K. Dey. Understanding and using context.
Personal Ubiquitous Comput., 5(1):4–7, January
2001.

[3] M. Baldauf, S. Dustdar, and F. Rosenberg. A survey
on context-aware systems. International Journal of
Ad Hoc and Ubiquitous Computing, 2(4):263–277,
2007.

[4] Darren Black, Nils Jakob Clemmensen, and Mikael B.
Skov. Pervasive computing in the supermarket:
Designing a context-aware shopping trolley. Int. J.
Mob. Hum. Comput. Interact., 2(3):31–43, July 2010.

[5] Anand Agarawala, Saul Greenberg, and Geoffrey
Ho. The context-aware pill bottle and medication
monitor. 2004.

[6] Roy Want, Andy Hopper, Veronica Falcão, and
Jonathan Gibbons. The active badge location system.
ACM Trans. Inf. Syst., 10(1):91–102, January 1992.

[7] Paul Adams. Grouped: How small groups of friends
are the key to influence on the social web. New
Riders, 2011.

[8] Loris Belcastro, Giulio Di Lieto, Marco Lackovic,
Fabrizio Marozzo, and Paolo Trunfio. Geocon:

A middleware for location-aware ubiquitous
applications. In Proc. of the First International
Workshop on Ultrascale Computing for Early
Researchers (UCER 2016), 2016.

[9] F. Marozzo, D. Talia, and P. Trunfio. Using
clouds for scalable knowledge discovery applications.
Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 7640 LNCS:220–
227, 2013.

[10] Clinton Gormley and Zachary Tong. Elasticsearch:
The Definitive Guide. ” O’Reilly Media, Inc.”, 2015.

[11] Domenico Talia, Paolo Trunfio, and Fabrizio
Marozzo. Data Analysis in the Cloud. Elsevier,
October 2015.

[12] Stefan Poslad, Heimo Laamanen, Rainer Malaka,
Achim Nick, Phil Buckle, and Alexander Zipl.
CRUMPET: creation of user-friendly mobile
services personalised for tourism. In 3G
Mobile Communication Technologies, 2001. Second
International Conference on (Conf. Publ. No. 477),
pages 28–32, 2001.

[13] Mark Van Setten, Stanislav Pokraev, and Johan
Koolwaaij. Context-aware recommendations in the
mobile tourist application compass. In International
Conference on Adaptive Hypermedia and Adaptive
Web-Based Systems, pages 235–244. Springer, 2004.

[14] Cormac Driver and Siobhan Clarke. An
application framework for mobile, context-aware
trails. Pervasive and Mobile Computing, 4(5):719–
736, 2008.

[15] Ankur Gupta, Achir Kalra, Daniel Boston, and
Cristian Borcea. Mobisoc: a middleware for mobile
social computing applications. Mobile Networks and
Applications, 14(1):35–52, 2009.

[16] Anind K Dey, Gregory D Abowd, and Daniel Salber.
A conceptual framework and a toolkit for supporting
the rapid prototyping of context-aware applications.
Human-computer interaction, 16(2):97–166, 2001.

[17] Jianchao Luo and Hao Feng. A web-based framework
for lightweight context-aware mobile applications.
International Journal of Database Theory and
Application, 9(4):119–134, 2016.

[18] Marcelo Malcher, Juliana Aquino, Hubert Fonseca,
Lincoln David, Allan Valeriano, and Markus Endler.
A middleware supporting adaptive and location-
aware mobile collaboration. In Mobile Context
Workshop: Capabilities, Challenges and Applications,
Adjunct Proceedings of UbiComp, 2010.

[19] A. Corradi, M. Fanelli, and L. Foschini.
Implementing a scalable context-aware middleware.
In 2009 IEEE Symposium on Computers and
Communications, pages 868–874, July 2009.

https://github.com/SCAlabUnical/Geocon
https://github.com/SCAlabUnical/Geocon

A Scalable Middleware for Context-aware Mobile Applications 11

[20] L. Capra, W. Emmerich, and C. Mascolo. Carisma:
context-aware reflective middleware system for
mobile applications. IEEE Transactions on Software
Engineering, 29(10):929–945, Oct 2003.

[21] C. Julien and G. C. Roman. Egospaces:
facilitating rapid development of context-aware
mobile applications. IEEE Transactions on Software
Engineering, 32(5):281–298, May 2006.

[22] Chien-Chih Yu and Hsiao-Ping Chang. Personalized
location-based recommendation services for tour
planning in mobile tourism applications. In
International Conference on Electronic Commerce
and Web Technologies, pages 38–49. Springer, 2009.

[23] ECMA. Ecma-262: ECMAscript Language
Specification. Fifth edition. ECMA (European
Association for Standardizing Information and
Communication Systems), 2009.

[24] Leonard Richardson and Sam Ruby. RESTful web
services. O’Reilly Media, Inc., 2008.

[25] F. Marozzo, D. Talia, and P. Trunfio. A cloud
framework for big data analytics workflows on azure.
Advances in Parallel Computing, 23:182–191, 2013.

[26] Albino Altomare, Eugenio Cesario, Carmela Comito,
Fabrizio Marozzo, and Domenico Talia. Trajectory
pattern mining for urban computing in the cloud.
Transactions on Parallel and Distributed Systems
(IEEE TPDS), 28(2):586–599, 2017.

	Introduction
	Related Work
	Metadata Model
	Middleware
	Software components
	Geocon-service
	Geocon-client

	Distributed architecture

	Performance evaluation
	Mobile application
	Experimental setup and performance parameters
	Performance results

	Conclusions

