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1   Introduction 

Grids are receiving even more attention by a significant number of scientific, indus-
trial, and economical bodies, thanks to their capability to enable collaborations, even 
cross-organizational, based on large scale resource sharing and performance orienta-
tion. 

In the latest years Grids researchers and professionals have been concerned with 
the development of a series of experiments and demonstrations aimed at showing 
basic Grid features and potentials. Large scale Grids were deployed to solve computa-
tional or data intensive problems as well as to perform complex simulations. Pres-
ently, Grids are widely recognized as the next generation computing architecture, the 
natural evolution of the Web towards the delivery of computing power, information, 
and knowledge.  

Now, Grid community efforts are focused to make that technology robust, reliable, 
and available to those interested in adopting it. The recent involvement of companies 
like IBM, Sun, and Microsoft is a clear symptom of the relevance the matter is going 
to assume in the near future. Belong this trend, providing high-level environments and 
advanced instruments able to support end users and developers, is of main importance 
to explore many of the Grid related benefits not yet fully exploited. 

In the Grid era people have not to worry about the acquisition of powerful com-
puters or expensive instruments, but rather the key aspect is the capability of effec-
tively exploit shared resources through high level environments providing the needed 
abstractions and facilities. Indeed, today this scenario is still not realistic due to re-
search and technological challenges that must be faced, but it should lead scientists 
and professionals to provide more abstract techniques and tools for supporting Grid 
computing. 

Most problems addressed by Grids are not simply solved through the execution of a 
specific ad hoc “program”, but often require several software modules, most likely 
interacting each others, to run separately and/or concurrently over a given set of in-
puts. During a certain period of time Grid Portals have been the most advanced in-



strument for the solution of this kind of problems. But they represent still a limited 
programming approach and are often tailored to specific application domains.  

Till today not much work has been done to build high-level design facilities for 
complex Grid applications in which many programs and data sets are involved. This 
class of applications are quite common in several domains, such as knowledge man-
agement, computational science, and e-business; in addition they share common traits 
with software component based applications. 

Software component technology is now a standard part of many software design 
practices. Microsoft COM and much of .NET [1] are based on component concepts, 
as well as Enterprise Java Beans [2], that is another important technology for building 
large scale e-commerce applications. A software component model is a system for 
assembling applications from smaller units called components. The system defines a 
set of rules that specify the precise execution environment provided to each compo-
nent, the rules of behavior, and special design features components may have. A com-
ponent is then nothing more than an object (or collection of objects) that obey the 
rules of the component architecture. A component framework is the software envi-
ronment that provides the mechanisms to instantiate components, compose and use 
them to build applications. The software component model can be effectively used in 
Grid applications integrating legacy code and new software modules. 

In this chapter we present a high-level Grid programming environment that shares 
some common features with the software component paradigm. The system we discuss 
here is VEGA - Visual Environment for Grid Applications. VEGA provides a unified 
environment comprising services and functionalities ranging from information and 
discovery services to visual design and execution facilities. VEGA was designed and 
implemented to support users in the design of data-intensive Grid applications as part 
of the Knowledge Grid [6], a software infrastructure for developing knowledge dis-
covery applications. However its high-level features make it useful in the development 
of a large class of Grid applications. 

The remainder of the chapter is organized as follows. Section 2 presents the design 
aspects and the main features of VEGA. Section 3 introduces the visual language used 
to design an application in VEGA. Section 4 illustrates the architecture of the envi-
ronment and Section 5 goes more deeply into some implementation aspects. Several 
enhancements and additional features under development are presented in Section 6, 
where “open issues” are discussed. Section 7 presents two case studies and Section 8 
discusses some of the major related projects. Finally, Section 9 concludes the chapter. 

2   Main Features and Requirements 

The main goal of VEGA is to offer a set of visual functionalities that give the users the 
possibility to design complex software, such as complex solving environments and 
knowledge discovery applications, starting from a view of the present Grid status (i.e., 
available nodes and resources), and composing the different steps inside a structured 
environment, without having to write submission scripts or resource description files. 



The high-level features offered by VEGA are intended to provide the user with 
easy access to Grid facilities with a high level of abstraction, in order to leave her/him 
free to concentrate on the application design process. To fulfill this aim VEGA builds 
a visual environment based on the component framework concept, by using and en-
hancing basic services offered by the Knowledge Grid and the underlying Grid mid-
dleware. 

To date, a Grid user willing to perform a Grid application must know and handle a 
number of detailed information about involved resources (computing nodes, software, 
data, etc.), such as their names and locations, software invocation parameters, and 
other details. Thus, in the absence of high level tools the planning and submission of 
an application could result in a long and annoying work, exposed even to failures due 
to user mistakes in writing allocation scripts with a given syntax, wrong memory about 
resources details, etc. 

As a first feature, VEGA overcomes these difficulties by interacting with the 
Knowledge Directory Service (KDS) of the Knowledge Grid to know available nodes 
in a Grid and retrieve additional information (metadata) about their published re-
sources. Published resources are those made available for utilization by a Grid node 
owner by means of the insertion of specific entries in the Grid Information Service. 
Therefore, when a Grid user starts to design its application, she/he needs first of all to 
obtain from KDS metadata about available nodes and resources. After this step, 
she/he can select and use all found resources during the application design process (as 
described in the following). This first feature aims at making available useful informa-
tion about Grid resources, showing the user their basic characteristics and permitting 
her/him to design an application. 

The application design facility allows the user to build typical Grid applications in 
an easy, guided, and controlled style, having always a global view of the Grid status 
and the overall building application. VEGA offers the users a way to look at Grid 
resources as a collection of typed resources and a set of defined "relationships" be-
tween them.  This can be identified as the core functionality of VEGA. To support 
structured applications, composed of multiple sequential stages, VEGA makes avail-
able the workspace concept, and the virtual resource abstraction. Thanks to these 
entities it is possible to compose applications working on data processed in previous 
phases even if the execution has not been performed yet (useful in many knowledge 
discovery applications).   

Once the application design has been completed, resulting job requests are to be 
submitted to the proper Grid Resource Allocation Manager (GRAM). VEGA includes 
in its environment the execution service, which gives the designers the possibility to 
execute an application and to view its output.  

Another important feature is the monitoring of the jobs execution, needed to allow 
the user to get information about the different jobs running on different machines as 
originated by the application execution. 

 A Grid-based application is often more complex with respect to a similar one 
based on classical computing systems. Issues like distribution of software, data, and 
computers themselves have to be addressed. The availability of computing nodes able 
to host a given computation is related to strict constraints about performance and 



platform requirements, as well as specific policies about access to resources, as de-
fined by the related virtual organization [4].  

In addition, a Grid application seeks out to take advantage of all benefits coming 
from the distributed and potentially parallel environment. For that reason some other 
problems may arise. In complex applications, large simulations and expecially knowl-
edge discovery applications, collaborations and interchanges between several concur-
rent or sequential stages of the overall computation are very common and able to 
boost up their capabilities and performance. 

To conclude about the design properties and choices that guided us in the design of 
VEGA, here we list a set of properties that we identified to draw up the general re-
quirements for a high level Grid programming environment: 

§ the environment has to provide a set of useful abstractions about Grid re-
sources and basic and enhanced actions supported by them;  

§ an abstract model for defining relationships among Grid resources and con-
structs for composing an applications must be provided; 

§ an advanced use of information about resources availability and status is fun-
damental to allow for a dynamic adaptation of applications to the changing 
conditions of the Grid; 

§ the system architecture must be as much as possible independent from low 
level mechanisms used to gather information about resources, allocate jobs, 
etc.; but at the same time, 

§ more specialized and high level services must be compatible with low level ba-
sic Grid services, so as to facilitate the implementation and take advantage of 
the underlying middleware; 

§ when the planning of an application implies choices that may affect its per-
formance, the system needs to implement the right combination between a user 
driven and a system driven policy in taking decisions.  

3   A Visual Language to Specify Applications 

A structured way to model and express the variety of constraints and implications of  
complex Grid applications is needed. We believe that a way to address discontinuities 
(in systems characteristics as well as domain policies) and problems related to the 
scattered nature of resources is to look at a Grid application as a collection of re-
sources and a set of well defined relationships among them.  

VEGA, rather than devise a set of customized syntactical rules, makes available a 
visual language to express “relationships” among “resources”, and to describe with a 
graphical representation the overall computation. 

VEGA provides developers with a set of graphical objects representing different 
kinds of resources they can select and use to compose an application. In particular, 
there are three types of graphical objects:  

 



§ hosts, 
§ software, and   
§ data. 

Each of these objects represents a physical resource in the Grid. The user can insert 
several instances of the same resource into a workspace of the current project if 
needed. A workspace is thus a working area of the VEGA environment, in which 
objects representing resources are hosted to form a particular stage of the application. 
When a resource is inserted in a workspace, a label containing the name of the related 
physical resource is added to the corresponding graphical object. 

Several relationships, indicating interactions between resources, can be defined. 
Relationships are represented in VEGA as graphical links between the resources 
which they refer to. Through relationships it is possible to specify one or more desired 
actions on resources included in a workspace. In other words, it is possible to describe 
one or more jobs (see Fig. 1).  

Fig. 1. Objects and links in VEGA 

A common definition of “Grid job” states that it is the execution of a given soft-
ware on a specific Grid node, with its input and output parameters/files specified as 
well. Relationships available to describe jobs are: 
§ execution of a given software on a given host, 
§ file transfer, of a certain software or dataset on a specified host 
§ input, (a given dataset as input for a software) and  
§ output (a given file as collector of a software output). 

The file transfer relationship is a special kind of job, since it can be viewed as the 
execution of a file transfer program which parameters are the file to be moved, the 
destination host, etc. Thus, in VEGA a job is a software execution or a file transfer. 

While introducing relationships between resources, some rules must be followed, in 
order to make the composition have sense. For instance, an execution relationship 
(link) cannot be inserted between a data object and a host object. Moreover, no link 
can be inserted between objects of the same type.  

The set of admissible links is listed in Table 1, with enclosed the meaning each one 
takes in the specific context. Objects refer to specific resources offered by Grid nodes 
included in the deploying project; they can be linked with resources owned by the 
same node as well as with resources of a different node. In the latter case a staging 
operation is implicitly defined.  If, for instance, a software component SW owned by 
the host H1 is linked with an execute link with a host H2, then the executable associ-



ated to SW will be first transferred to H2, and will be deleted from there after the exe-
cution. 

Table 1. Admissible links between resources 

A computation is generally composed by a number of different sequential or paral-
lel steps. In VEGA it is possible to distinguish sequential and parallel execution of 
jobs through the workspace concept. All jobs that can be executed concurrently are to 
be placed inside the same workspace, whereas different workspaces can be used to 
specify a priority relationship. It is worth to note that when different sets of jobs are 
placed into different workspaces often they share common data, on which they make 
different computations. 

As an example, let us consider a typical execution of the data mining tool DM-tool 
on the specific Grid node Host_X, taking as input the pre-processed.dat file, and 
producing as result the file classes.dat. This job (say simple submission) is de-
scribed in the VEGA visual language by linking the objects representing the resources 
as showed in Fig. 2-A. A multiple submission, that is the parallel execution of the 
same software component on more than a Grid node, is quite similar to a simple exe-
cution, the only exception is that the same software object is linked with more hosts 
(see  Fig. 2-B). Similarly, different submissions, i.e. two different software to be exe-
cuted on different hosts, may share the same dataset, like in Fig. 2-C. 

The design of an application is obtained through the composition of a graphical 
model representing it. This is accomplished by using some graphical objects on which 
several actions (like insertion in a workspace, linking with other objects, specification 
of attributes and properties, etc.) can be invoked, given that they assure consistency 
and logic sense to the computation. All this happens giving always freedom to the user 
in choosing how to build its application and the ordering of the actions applied to 
graphical objects. 

A fundamental characteristic is the possibility to model the designing application 
through a visual language offering a set of abstractions as flexible as possible and able 
to describe a significant part of  the typical Grid scenarios and applications. In this 
approach lies the novelty and the power of an environment like VEGA, because till 
now the community was lacking of such a reference model and structured operational 
way on which to model a Grid application. 

resource1 resource2 link Meaning 
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File Transfer 
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Execute 
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Moreover, it should be noted that although a set of predefined links are employed, 
there are several specific attributes and parameters that contribute to increase the ex-
pressiveness and the flexibility of the visual language.  

Fig. 2. Some jobs in the VEGA visual language 

4   Architecture 

This section outlines how the VEGA environment  works on top of the Knowledge 
Grid and the underlying Grid middleware, basic relationships and interchanges among 
these entities are also explained. 

The Knowledge Grid is a software infrastructure for distributed data mining and ex-
traction of knowledge in Grid environments. The Knowledge Grid accomplishes its 
objectives through the implementation of a set of basic services and high level tools 
designed to support geographically distributed high-performance knowledge discovery 
applications [6]. 

The set of services and functionalities offered by VEGA is composed basically by 
two categories: design facilities and execution handling. The first ones are concerned 
with functions for designing and planning a Grid application, whereas the others make 
possible to execute the application. Fig. 3 shows hierarchies and some basic interac-



tions between them and the Knowledge Grid and Grid services. In particular, the de-
sign facilities make use of the knowledge directory service, implemented by the 
Knowledge Grid, to discover resources and their properties, whereas basic Grid ser-
vices are used during the authentication and the execution phases. 

 

 

Fig. 3. VEGA overall architecture 

There are at least four steps a user must follow to execute one or more jobs em-
ploying Grid resources: 
§ definition of involved resources and specifications of the relationships among 

them; 
§ checking of the planned actions consistency; 
§ generation of the job set to be submitted to one or more Grid resource alloca-

tion managers; 
§ execution of the jobs and monitoring of their life cycle. 



The job submission procedure in VEGA can be divided in the previous four steps. 
Fig. 4 shows the VEGA software modules implementing them together with the 
needed data exchanges. 

Fig. 4. VEGA software modules 

The visual composition phase is useful to the user during the application design. It 
is accomplished by the Graphic Composer software module and its sub-modules. To 
design her/his application a user may compose graphical objects representing re-
sources (datasets, software components, computing nodes). These objects are com-
posed through visual facilities, aimed to specify existing relationships among them, to 



form a graphical representation of each job of the entire computation, accordingly 
with the rules discussed in the previous section.  

Namely, this task is accomplished by the following sub-modules: Workspace Man-
ager, Object Manager and Resource Manager.  

The Resource Manager (RM) is concerned with the browsing of a local cache 
called Task Metadata Repository (TMR), where metadata about retrieved resources 
are stored, in order to allow the selection of resources to include in the designing 
computation. The Resource Manager is divided into two sections, directly showed to 
the user: the first one contains the list of the chosen computing nodes (hosts); the 
second one contains the resources belonging to the currently selected host, divided 
into two categories, data and software, on the basis of the content of associated meta-
data (see Fig. 5). Such a structure gives an overall view of the available hosts and 
related resources, permitting, at the same time, to include them inside a workspace of 
the current project. 

Additional information about these resources are retrieved through the Knowledge 
Directory Service, a system able to include customized metadata into the Grid Infor-
mation Service, and to delivery them to each user of the Grid when requested. Meta-
data used in the Knowledge Grid are constituted by XML encoded information de-
scribing software and data resources. The analysis of the Knowledge Grid information 
system functioning is out the purposes of this chapter (details can be found in [6] and 
[7]). For what concerned with the operations of the RM, it is enough to know that 
XML documents specify some resources attributes among which: owner host, file 
name and related path. 

The TMR is located on the file system of each node of the Knowledge Grid running 
VEGA and is organized as a set of directories, one for each host. Each of these direc-
tories contains XML documents about resources published by related hosts by using 
KDS services. A host can publish basically two types of resources, software and data.  

The Workspace Manager (WM) is given the task of creating and managing work-
spaces. It maintains an internal representation of the entire computation designed by 
the user (internal model) and a priority relationship between workspaces, as they con-
stitute a whole computation, in which the workspace sequence represents the planned 
sequence of tasks to be executed. In addition, it may be possible that some jobs in a 
given workspace need to operate on resources generated in a previous one; in this case 
the WM, since these resources aren’t physically available at design time, generates the 
so called virtual resources, and make them available to subsequent workspaces 
through the Resource Manager.    

The Object Manager (OM) copes with the management of the graphical objects 
associated with the resources chosen by the user to compose an application. Each 
object is associated with information regarding the resource which it refers to. This 
information is used during the creation of the internal model of the computation and to 
the end of generating the execution plan (see below). Objects, as already mentioned in 
the previous section, are data, software, and hosts.  

During the composition phase, several operations can be applied to the objects such 
as: insertion in a given workspace, movement inside the owning workspace, selection, 
un-selection, linking with other objects and deletion from a workspace. All these op-
erations are handled and supervised by the Object Manager. Moreover, it takes care of 



the links labeling and the setting of their properties and/or attributes, like: file transfer 
destination path, parameters to be used in the software invocation, etc.  

The Consistency Checking phase is needed to obtain a correct and consistent 
model of the computation. This process is accomplished not only as a checking of a 
set of requirements after the design phase is completed, but mainly through several 
interactions with the user while the design is in progress. Regarding the type of consis-
tency checking and the time which it is performed on, two stages can be distinguished: 
pre-processing and post-processing. The pre-processing takes place simultaneously to 
the composition of the graphical representation made by the user. It operates in a 
context sensitive way, detecting situations that may lead to errors and undertaking 
actions to guide the user towards the right choices. The checking is completed with the 
post-processing, nonetheless needed to catch those error situations that are impossible 
to discover during the pre-processing phase. 

When the consistency checking is carried out, it is time to parse the model of the 
computation to generate the execution plan and the specific script needed for the allo-
cation. The generation of the execution plan is performed by the Execution Plan 
Generator (EPG) module. It parses the internal model of the computation and, on the 
basis of the properties of links and resources, produces an XML document describing 
the planned tasks, the so called execution plan. The execution plan describes the com-
putation at a high level, without physical information about resources (identified by 
metadata references), and about the status and current availability of such resources. 
Specific information about the involved resources will be included during the transla-
tion into the script to be passed to the underlying middleware. 

This script is constituted by a set of job requests expressed into a particular Re-
source Specification Language; it is produced by the Script Generator as a result of a 
subsequent elaboration on the execution plan. 

The Execution Manager (EM) permits to start the execution of the application and 
handles communications between activated jobs and the user. The execution phase 
makes a direct use of specific GRAM services. 

The EM includes as a sub-module the Job Monitor, whose purpose is to provide in-
formation about the executing jobs. In particular it shows to the user changes in the 
jobs status (pending, active, and so on) and whether they fail, giving her/him also the 
possibility to clean-up jobs from the queues where they are waiting in or to kill them 
while executing.  

To start the execution, a valid proxy of the user authentication on the Grid must 
have been created. The Utilities section contains the Authentication Manager (see Fig. 
4), which offers a visual facility to create and set up the proxy for accessing Grid 
resources.  

Finally, the Utilities section comprises a functionality designed to serialize and re-
store the graphical model of the application. During the restoring, if the saved project 
contained virtual resources and the virtual resources were not materialized (because 
the saving was performed before the execution), these are restored as well. 



5   Implementation 

VEGA was implemented in Java, to guarantee the portability upon different platforms. 
Namely, the user interface components are all Swing based, whereas the access to 
specific Grid services is accomplished by using APIs of the Grid middleware. 

The Resource Manager offers the so called resource pane, as showed in Fig. 5. It is 
divided into two subsections, one containing hosts and the other one the resources 
each host owns. Showed hosts are those chosen by the user, among ones available in 
the TMR, to be part of the current application. When a host is selected in the host sub-
pane, the RM accesses the corresponding entry in the TMR, scans all metadata and 
shows the resources owned by this Grid node in the resource pane, each in the related 
category (software or data). To deal with XML documents, the RM makes use of the 
Xerces Java Parser [8], an open source implementation from Apache Software Foun-
dation of the DOM (the W3C Document Object Model) [9]. Through the RM it is also 
possible to retrieve information about the status of the resources involved in the cur-
rent project. For example, the user may query current CPU load and available mem-
ory, as well as static information like operating system name, etc. 

Fig. 5. VEGA user interface 
 

To import a resource in a workspace the user can drag & drop it. When the RM de-
tects the drag-started event, it provides the Object Manager with all the information 
found in the resource metadata document, so that the graphical object for that resource 
can be created.  

Host pane 

Resource pane 

Workspace Manager 



The Workspace Manager performs a preliminary analysis of the composing compu-
tation, to discover conditions that may originate virtual resources: like the presence of 
a file transfer operation or the presence of an output resource generated by a job in the 
computation. When such a condition holds, the WM generates appropriate metadata 
and put them in the TMR, marking them as temporary entries (waiting for the real 
execution of the application). Metadata about virtual resources are homogeneous to 
ones about “real” resources and can be thus managed by the RM. Temporary entries, 
created during the design phase, will become permanent only when the execution is 
performed and it terminates successfully. Otherwise, if the user exits the working 
session without executing the application, they will be removed from the TMR. The 
user interface of the WM is basically constituted by a tabbed pane that allows for 
selecting the workspace on which to operate (see Fig. 5). The WM accomplishes also 
the task of building the internal model of the computation on the basis of the graphical 
composition made by the user and constituted by the workspaces sequence. The con-
struction of the internal model takes place together with its graphical definition by the 
user. 

The Object Manager can be thought as a “service module”, in fact it hasn’t a spe-
cific corresponding element in the user interface and most part of the code implement-
ing it is distributed in several listeners. Java implements the events driven program-
ming paradigm, in which listeners are classes notified of the occurrence of particular 
events (e.g. mouse and keyboard activities); these classes contain methods to handle 
such events. 

The internal model consistency checking ensures that the model to be passed to the 
Model Analyzer is correct and without inconsistencies, that is, able to represent co-
herently a Grid application. The Model pre-processor operates during the application 
composition. Its main objective is to prevent the planning of jobs in a wrong or in-
complete fashion. To this end, it supervises the links insertion, checking for the right 
association (see Table 1) between resource types and links. 

When no type of link is admitted for a given couple of resources, each attempt to 
insert any link will fail. Whereas when one or more links are admitted, a generic link 
with a “no type” label is first traced, afterwards the user will specify the actual type by 
choosing among those available in a popup menu.  

At the end of the design session, the user may have defined one or more work-
spaces. Although the workspaces composition has been guided by the Model pre-
processor, there are some ambiguous situations that can be only recognized when the 
designing phase is over. Main constraints verified by the Model post-processor are: 
§ at least one host must be present in each workspace; 
§ all inserted links must have a specified type; 
§ each software component must be linked with at least one host; 
§ every resource must be linked with at least another one. 

As previously mentioned, the execution plan is coded in XML and represents the 
application at a high level of abstraction; it is generated to make aware the Knowledge 
Grid Execution Plan Management Service (EPMS) of the computation structure (the 
formalism is well described in [10]). To generate the execution plan, the EPG ana-
lyzes the internal model of the computation to individuate all the jobs planned by the 
user.   



Execution and file transfer jobs are described in the execution plan, accordingly 
with a set of well defined rules. In particular, they originate a set of Computation 
and DataTransfer elements, comprising attributes of the jobs and references to 
metadata of involved resources. To specify priority relationships among these jobs 
some TaskLink elements are used.  

The script generation takes place on the basis of the execution plan and the infor-
mation provided by metadata referred in it. All jobs in the execution plan are trans-
lated into requests expressed into the specific scripting language. For example, in the 
RSL script generator this is accomplished by assigning proper values to specific 
Globus RSL attributes. Details about Globus RSL tags can be found in [11]. Main 
attributes used by the VEGA RSL script generator are: 
§ resourceManagerContact, the node to which the request is to be submitted; 
§ executable, path and name of the program to run; 
§ arguments, a set of arguments to be passed to the program through the com-

mand line. 
§ stdout, the file to redirect standard output of the program to (if required by 

the user). 
Computation elements in the execution plan are translated into job requests speci-

fying the execution of a given executable with some inputs and outputs; as already 
mentioned, all details on executable inputs and outputs are retrieved in the referred 
XML files. DataTransfer elements are processed using as an executable the file 
transfer program provided by the Grid middleware, with source and destination pa-
rameters as indicated in the execution plan. If the middleware used is Globus all file 
transfer operations may be carried out using the GridFTP protocol [12] implemented 
by the file transfer program globus-url-copy. To reflect the workspace sequence 
in the jobs execution, job requests present in different workspaces are placed in sepa-
rated script files and will be submitted to execution in strict sequence by the Execution 
Manager. 

After the script files are generated, they will be executed through the proper sub-
mission command (i.e. globusrun in Globus). It is invoked by the VEGA Execution 
Manager taking into consideration each script file and allocating a new process for it 
on the machine which the user is working on. In addition, to provide the user with a 
feedback about the computation execution, standard output and error streams of that 
process are redirected to the EM and showed as well. 

During this phase the Job Monitor gathers information about the activated jobs. 
The Job Monitor operates in strict relation with the middleware component in charge 
of the resource allocation, the GRAM. It periodically queries each node involved in 
the application about the status of the activated jobs, and update a set of information 
about the total execution time, the execution time of each job, its current status, the 
history of the statuses of each job, with enclosed the amount of time elapsed before a 
status change. This information is shown to the user in a table; moreover the user can 
clean up or kill each single job if needed, and eventually she/he can choose to save all 
this information into a report file. 



6   Open Issues 

In the current VEGA implementation workspaces can be connected in a pipelined 
fashion. This may represent a limitation of representing some computation patterns, 
even if complex patterns can be designed inside a single workspace. To make more 
flexible the way of composing workspaces, the sequential workspace composition is 
going to be replaced by an acyclic graph model.  

In a varying and discontinuous environment such as a Grid, users’ requests cannot 
be always deterministic in all details. It would be unacceptable, and flexibility loss 
leading, to pretend the user to specify all the details about the resources involved in a 
computation. Therefore, when the user doesn’t worry about which will be the target 
machine for a given job, provided that it is able to satisfy a set of expressed require-
ments, it should be up to the system to find a suitable host and to assign it the job 
execution. 

This could be also a powerful mechanism that can give the user the opportunity to 
design applications independent from the particular Grid on which they will be exe-
cuted, hence, reusable upon different Grid systems and over time. 

To this purpose the concept of “abstract resources” has been designed to be intro-
duced in VEGA, This concept allows for specifying resources by means of constraints 
(i.e., required main memory, disk space, CPU speed, operating system version, etc.). 
In addition, a meta-scheduler will also be included to instantiate abstract resources. 
After the appropriate matching of abstract resources with physical ones and an optimi-
zation phase, the system can submit for execution all the jobs defined in the applica-
tion design on the basis of the application structured layout. 

VEGA defines in a particular way “file transfer” jobs, permitting also to specify 
and configure a particular protocol to be used in the transferring, this because the file 
transfer has been historically a fundamental mechanism of communications between 
team of scientists and the most used one in Grid applications. The existence of  spe-
cific services and features such as those provided by the so called “Data Grids” con-
firms the particular importance of this matter.  

Nevertheless, there are a lot of applications that need to operate on streams of data 
coming from a sensor or more generally from a network connection. Moreover, some 
other applications might achieve best performances, even if file-based,  if it was pos-
sible for them to start their computations while the stream of data is reaching the Grid 
node to be stored on the file system (see Section 7.2 for an example). 

7   Case Studies 

This section presents two case studies through which the main features and potentials 
of VEGA will be better explored. At the same time a practical use of VEGA will be 
shown and some issues that may arise in this kind of applications will be analyzed. 
The first one consists of a Grid-enabled version of a knowledge discovery application, 
the second one is an example of a general purpose data intensive application. 



7.1   Distributed Bank Scoring 

This example takes into consideration the evaluation process done by banks when 
approving a loan. Loan officers must be able to identify potential credit risks and 
decide whether grant the money, and, in that case, the amount of the loan. Usually this 
is accomplished by evaluating information about people to whom the institution pre-
viously loaned money (such as debt level, income level, marital status, etc.).  

Fig. 6. Distributed bank scoring application 

Let us consider the case of three banks whose purpose is to join their efforts and 
extract a loan-scoring prediction model, based on the information each of them own 
about their clients. Since preserving client’s privacy is a must for credit institutes, the 
treatment of this information by third parts is often prohibited or subject to restric-
tions. To overcome this problem the banks decide to make the computations locally, at 
each of the three sites, and to transfer on a centralized location only the obtained mod-
els.  

In this way, no sensitive information has to be accessed by unauthorized organiza-
tions, but only the data models have to be shared. Privacy commitments are thus as-
sured, because the data models are constituted by coded information about aggregated 
data.  



When a decision is based on several factors, a decision tree can help to identify 
which factors to consider and how each factor has historically been associated with 
different outcomes of the decision. A decision tree creates a model as either a graphi-
cal tree or a set of text rules that can predict (classify) each applicant as a good or bad 
credit risk. The training process that creates the decision tree is usually called induc-
tion. One important characteristic of the tree splitting algorithm is that it is greedy. 
Greedy algorithms make decisions locally rather than globally. When deciding on a 
split at a particular node, a greedy algorithm does not look forward in the tree to see if 
another decision would produce a better overall result. This allows for creating partial 
models from subsets of the data that can be then joined into a global model.  

Fig. 7. Distributed bank scoring: workspace 1 

Prior to integrating any decision tree into a business process as a predictor, a test 
and a validation of the model using an independent dataset is generally performed. 
Once accuracy has been measured on an independent dataset and is determined to be 
acceptable, the tree (or a set of production rules) is ready to be used as a predictor. 
The testing phase in this example is done after the combination of the three models. 



To summarize, the entire application is composed of two main phases (see Fig. 6 
for a graphical schema): the induction of the decision trees, performed locally at each 
of the three banks, and the models combination and validation operated at one of the 
three sites after the others models have been produced and moved there. 

Fig. 8. Distributed bank scoring: workspace 2 

Let the Grid nodes made available by the banks be: k1.cs.icar.cnr.it, 
k2.cs.icar.cnr.it, and k3.cs.icar.cnr.it. The application design and sub-
mission will be performed on the Knowledge Grid node k1 that will be also the node 
on which the final model will be obtained from the partial ones. All nodes contain a 
dataset about the clients of the bank and a parameters file with a description of the 
structure of the dataset, this file is used by the inductor also to determine which the 
dependent variable is and which columns have to be considered as independent vari-
ables. The datasets are named respectively dataset1.data, dataset2.data, and 
dataset3.data; while the associated parameters files are parameters1.par, pa-
rameters2.par, and parameters3.par. On k1 the software components      DT-
inductor and DT-combiner are also present.  

The design of the application using VEGA produces four workspaces. First of all, 
it is necessary to transfer a copy of the software used for the induction to nodes k2 and 
k3 (where it is not available); this step is planned in workspace1 (see Fig. 7). After-
wards, the trees induction can take place at each of the three hosts by executing  DT-
inductor with the dataset and parameters file as inputs, see workspace 2 in    Fig. 8. 
As a result of the computations in workspace 2, three files (tree1, tree2, tree3) 
containing the resulting partial trees will be obtained on each host. The subsequent 
stage performs the transferring of tree2 and tree3 to k1, so as to have all the trees 



on the same node (see Fig. 9). The combination of the partial trees into a global one 
will next happen on k1 by means of the DT-combiner tool, as can be seen in Fig. 10 

From workspaces 3 and 4, it is possible to note that as a direct consequence of the 
transfer of tree1 and tree2 to k1 in workspace 3, they are shown in workspace 4 as 
data resources of k1, even if the execution of the application has not been performed 
yet. This outcome is due to the intervention of the Workspace Manager that creates 
the needed virtual resources so as to allow for the use of this data  in  subsequent 
computations.  

Fig. 9. Distributed bank scoring: workspace 3 

VEGA generates four Globus RSL script files (bank_scoring0.rsl, 
bank_scoring1.rsl, bank_scoring2.rsl, bank_scoring3.rsl), one for each 
workspace, containing the formal description of the jobs to be executed. When re-
quested by the user, the execution will be launched by the environment submitting the 
generated RSL files in sequence to the Globus GRAM. 



Fig. 10. Distributed bank scoring: workspace 3 

The following figures present the content of the Globus RSL files. From a quick 
look is easy to understand the difference between the VEGA programming model and 
the low-level programming model offered by the Globus RSL. The high-level proper-
ties of the visual approach bring several benefits to developers both in terms of struc-
tured approach, easy programming, and code reuse. 

Fig. 11. file bank_scoring0.rsl 

  

+ 
( &(resourceManagerContact=k2.cs.icar.cnr.it) 
   (label=subjob1) 
   (executable=$(GLOBUS_LOCATION)/bin/globus-url-copy) 
   (arguments=-vb -notpt gsiftp://k1.cs.icar.cnr.it/tools/bin/DT-inductor 
              gsiftp://k2.cs.icar.cnr.it/tools/bin/DT-inductor 
   ) 
) 
( &(resourceManagerContact=k3.cs.icar.cnr.it) 
   (label=subjob2) 
   (executable=$(GLOBUS_LOCATION)/bin/globus-url-copy) 
   (arguments=-vb -notpt gsiftp://k1.cs.icar.cnr.it/tools/bin/DT-inductor 
              gsiftp://k3.cs.icar.cnr.it/tools/bin/DT-inductor 
   ) 
) 



Fig. 12. file bank_scoring1.rsl 

 

Fig. 13. file bank_scoring2.rsl 

7.2   A Video Conversion Application 

This example has been taken from a demo developed at IBM laboratories [17], and is 
aimed at showing main advantages coming from the use of a visual environment such 
as VEGA in respect of the classical approach, as well as the ability of VEGA to deal 
with general purpose Grid applications.  

  

+ 
( &(resourceManagerContact=k1.cs.icar.cnr.it) 
   (label=subjob1) 
   (executable=/tools/bin/DT-inductor) 
   (arguments=  -d /data/dataset1.data 
                -p /data/params1.par 
                -o /data/tree1 
   ) 
) 
( &(resourceManagerContact=k2.cs.icar.cnr.it) 
   (label=subjob2) 
   (executable=/tools/bin/DT-inductor) 
   (arguments=  -d /data/dataset2.data 
                -p /data/params2.par 
                -o /data/tree2 
   ) 
) 
( &(resourceManagerContact=k3.cs.icar.cnr.it) 
   (label=subjob3) 
   (executable=/tools/bin/DT-inductor) 
   (arguments=  -d /data/dataset3.data 
                -p /data/params3.par 
                -o /data/tree3 
   ) 
) 

 

+ 
( &(resourceManagerContact=k1.cs.icar.cnr.it) 
   (label=subjob1) 
   (executable=$(GLOBUS_LOCATION)/bin/globus-url-copy) 
   (arguments=-vb -notpt gsiftp://k2.cs.icar.cnr.it/home/data/tree2 
              gsiftp://k1.cs.icar.cnr.it/home/data/tree2 
   ) 
) 
( &(resourceManagerContact=k1.cs.icar.cnr.it) 
   (label=subjob2) 
   (executable=$(GLOBUS_LOCATION)/bin/globus-url-copy) 
   (arguments=-vb -notpt gsiftp://k3.cs.icar.cnr.it/home/data/tree3 
              gsiftp://k1.cs.icar.cnr.it/home/data/tree3 
   ) 
) 



The application starts from a home video tape and converts it to a Video-CD that 
can be played on DVD players supporting this format. Depending on the quality level, 
a typical one hour tape can create over 10 GB of video data, which needs to be com-
pressed to approximately 650 MB to fit on a Video-CD. The compression stage is 
CPU intensive, since it creates an MPEG data stream by encoding the frames after a 
matching process performed on all parts of adjacent video frames containing similar 
sub-pictures. The audio is compressed as well.  

The compression process can take even more than one day, depending on the qual-
ity level and the speed of the system being used. For commercial DVD quality, con-
versions are typically done by a service company that has developed higher quality 
conversion algorithms. Such conversions may take weeks. Hence, Grid technology is 
ideal for improving the process of video conversion. 

Sending many gigabytes of data from one computer to another takes a considerable 
amount of time, even with a 100 Mb Ethernet connection. Thus, for Grid applications 
processing large amounts of data, it is crucial to understand the network topology and 
to keep the data near the processing node that needs to use it. 

Fig. 14. The video conversion application 

Let us assume that all packages and libraries required for performing the acquisi-
tion, the compression and the CD burning have been already installed and properly 
configured on related machines. Since, each phase of the application makes use of 
several calculations carried out by different software, to simplify the comprehension, 



instead of executing them directly, some shell scripts invoking these tools will be used 
(namely, videocapture.sh, videoconversion.sh and                 
videocd.sh).  

Fig. 15. Shell script for the video conversion  application 

#!/bin/sh 
#First, capture video from DVcamera 
./videocapture.sh 
#set environment variables 
target_dir=/home/globususer 
curdir=`pwd` 
#stage code and video to remote machines 
ndx=1 
# List machines to be used here and below (one conversion per machine): 
for target_host in minos.cs.icar.cnr.it icarus.cs.icar.cnr.it  

telesio.cs.icar.cnr.it  
do 
echo Setting up demo on host $target_host 
globus-url-copy file:${curdir}/videoconversion.sh  
                
gsiftp://${target_host}:2811${target_dir}/videoconversion.sh 
echo sending video ${curdir}/videocap00${ndx}.avi 
globus-url-copy file:${curdir}/videocap00${ndx}.avi \ 
gsiftp://${target_host}:2811${target_dir}/videocap00${ndx}.avi 
globus-job-run ${target_host} /bin/chmod 755 videoconversion.sh 
echo Building RSL for $target_host 
echo +>demo_rsl${ndx} 
echo "( &(resourceManagerContact="${target_host}")" >>demo_rsl${ndx} 
echo " (subjobStartType=strict-barrier)" >> demo_rsl${ndx} 
echo " (label="videocap00${ndx}")" >> demo_rsl${ndx} 
echo " (executable= ${target_dir}/videoconversion.sh)" >> demo_rsl${ndx} 
echo " (arguments = videocap00${ndx}.avi )" >> demo_rsl${ndx} 
echo ' (stdout= $(GLOBUSRUN_GASS_URL) \ 
# "'$curdir/videocap00${ndx}.out'")' \>> demo_rsl${ndx} 
echo ' (stderr= $(GLOBUSRUN_GASS_URL) \  
# "'$curdir/videocap00${ndx}.err'")' >> demo_rsl${ndx} 
echo ")" >> demo_rsl${ndx} 
# Jobs submission 
echo submiting job to $target_host 
globusrun -w -f demo_rsl${ndx} & 
ndx=`expr $ndx + 1` 
done 
echo waiting for all conversions to complete 
wait 
echo getting result files now 
rm -f videocap.mpg 
# Getting compressed files 
ndx=1 
for target_host in minos.cs.icar.cnr.it icarus.cs.icar.cnr.it  

       telesio.cs.icar.cnr.it 
do 
globus-url-copy 
gsiftp://${target_host}:2811${target_dir}/videocap00${ndx}.avi.mpg \ 
file:${curdir}/videocap00${ndx}.avi.mpg 
cat videocap00${ndx}.avi.mpg >> videocap.mpg 
rm -f videocap00${ndx}.* 
rm -f demo_rsl${ndx} 
ndx=`expr $ndx + 1` 
done 
# Now create the video cd (VCD) 
./videocd.sh 



In this example the acquisition node is the grid node griso.deis.unical.it, 
whereas the nodes used to execute the compression of the split video files are mi-
nos.cs.icar.cnr.it, icarus.cs.icar.cnr.it and tele-
sio.cs.icar.cnr.it. 

After the capture phase, the video file is then split into a number of smaller files. 
These files are sent via Globus to Linux based grid systems for compression. The 
compressed segments are then reassembled and a CD is written in the VCD format. 
Fig. 14 gives a conceptual schema of the entire process.  

Following a classical approach to grid problems, a set of operations have to be exe-
cuted to prepare and start the execution of the processing jobs on the grid nodes. 
These operations are shown in the shell script of Fig. 15, in which the different phases 
are marked in bold (video files creation, transfer of the video files and the conversion 
software, compression, retrieving of the compressed files, CD burning). 

When the same application is designed using VEGA, it originates the workspace 
sequence reported by Fig. 16 and the following ones. Workspaces 1 and 2 are used to 
record the video files and to move them and the videoconversion.sh script to 
the hosts on which the conversion will take place. Workspace 3 executes concurrently 
the compression on the nodes minos, icarus and telesio; workspace 4 moves 
the resulting files to griso, the origin node. Finally, workspaces 5 and 6 create a 
unique file and write it on a recordable CD. 

Fig. 16. Video conversion: workspace1 

Making a comparison of the two approaches, it is possible to notice that while the 
logical phases that form the application are, obviously, the same, there is a fundamen-
tal difference in how the application will be executed. The shell script is replaced in 



the VEGA version of the application by pure RSL scripts, since all the operations 
required to configure and run the video conversion application are performed using 
Globus services. 

This means that such an application is really architecture independent, because 
based on Globus services. Hence it is reusable on different Grids and over time. In 
addition, thanks to this representation it would be simple, by using VEGA, to recon-
figure the application to fit with a different Grid context or simply to change some 
parameters. 

There are some changes that can be made to improve the performance of the video 
conversion application. One of these changes is to begin the video file transfer during 
the capture phase. Once the first video file is obtained, it can be staged to the remote 
machine and the conversion can begin. Furthermore, using MDS, it may be possible to 
locate on the Grid the machine with a low CPU load and send the video file to it. To 
this end, the considerations made in the open issues section are of primary importance 
and could provide support for application able to better exploit the Grid infrastructure.  

Fig. 17. Video conversion: workspace 2 



Fig. 18. Video conversion: workspace 3 

Fig. 19. Video conversion: workspace 4 

 



Fig. 20. Video conversion: workspace 5 

Fig. 21. Video conversion: workspace 6 



8   Related Work 

This section briefly describes some related projects and tools, giving also a short 
comparison of the common and distinctive features between them and the environment 
we presented here. 

A Grid-based knowledge discovery environment that shares some goals with the 
Knowledge Grid is Discovery Net (D-Net) [13]. The D-Net main goal is to design, 
develop, and deploy an infrastructure to support real time processing, integration, 
visualization, and mining of massive amount of time critical data generated by high 
throughput devices. The building blocks in Discovery Net are the so-called Knowl-
edge Discovery Services (KDS), distinguished in Computation Services and Data 
Services. The former typically comprise algorithms, e.g. data preparation and data 
mining, while the latter define relational tables (as queries) and other data sources. 
Both kinds of services are described (and registered) by means of adapters, providing 
information such as input and output types, parameters, location and/or plat-
form/operating system constraints, factories (objects allowing to retrieve references to 
services and to download them), keywords and a description. KDS are used to com-
pose moderately complex data-pipelined processes. The composition may be carried 
out by means of a GUI which provides access to a library of services. The XML-based 
language used to describe processes is called Discovery Process Markup Language. 
D-Net is based on an open architecture using common protocols and infrastructures 
such as the Globus Toolkit. 

The Parallel Application WorkSpace (PAWS) [14] is a software infrastructure for 
connecting separate parallel applications within a component-like model. PAWS pro-
vides also for dynamically coupling of applications and supports efficient communica-
tion of distributed data structures. The PAWS Controller coordinates the coupling of 
applications, manages resources, and handles user authentication. Heterogeneity issues 
in PAWS are handled by the underlying Nexus library. Currently, PAWS is a C++ 
library (C and Fortran interfaces are under development). Applications written in any 
language that may incorporate such libraries can be interconnected with PAWS and 
may communicate exploiting the common PAWS layer. PAWS is designed to coordi-
nate a parallel execution of multiple, interconnected programs, to this end multiple 
communication channels are exploited. For employing optimized communication 
schedules, PAWS requires information on the layout, the location, and the storage 
type of the data, all of which has to be provided by the user through appropriate 
PawsData objects. 

Recently, a few general purpose grid programming tools have been developed or 
are going to be developed. Graph Enabled Console COmponent (GECCO) is a 
graphical tool developed at Argonne National Laboratory [15][16]. GECCO is based 
on the Globus CoG Kit [5] and provides facilities to specify and monitor the execution 
of sets of tasks with dependencies between them. Specifically it allows to specify the 
jobs dependencies graphically, or with the help of an XML-based configuration file, 
and execute the resulting application. Each job is represented as a node in a graph. A 
job is executed as soon as its predecessors are reported as having successfully com-
pleted. It is possible to set  up the specification of the job while clicking on the node: a 
specification window pops up allowing the user to edit the RSL, the label, and other 



parameters. Editing can also be performed at runtime (job execution), hence providing 
for simple computational steering. 

These systems show how problems and issues of  Grid-based generic, parallel and 
knowledge discovery applications are addressed and solved in various contexts. It can 
be noted that some approaches are similar to that defined into the Knowledge Grid 
architecture and used by VEGA, like the composition of tasks and the employment of 
a XML based formalism to represent the structure of the application. On the other 
hand, several differences are also present, above all the role and structure of the exe-
cution plan and the use in VEGA of a metadata based information system (KDS) from 
which extracting information about grid nodes and datasets characteristics.  

VEGA, as part of the Knowledge Grid, provides access to a set of services for ge-
neric and knowledge discovery applications. An application running into the VEGA 
environment does not contain any limitation about the processing strategy to employ 
(i.e. move data, move model, etc.), neither about the number and the location of the 
grid nodes that will perform a mining process. The integration and use of new data 
access methods or processing algorithms, as well as entire commercial suite or soft-
ware components coming from pre-existent sequential or parallel systems, is simple 
and does not require any customization. It is obtained by their publication in the KDS, 
which will provide the system with all needed information to use that component in-
side an application (i.e. invocation syntax, component requirements, etc.). The XML-
based approach used in the Knowledge Grid and VEGA to define metadata is going to 
be the most used in several Grid-based environments and also the new version of the 
Globus Toolkit (GT3) exploits XML-based metadata for handling resource manage-
ment. 

9   Conclusion 

A condition to bring Grid computing to a mature phase is the availability of high-level 
supporting tools and development environments that allows users and developers to 
effectively exploit Grid features in designing advanced applications. Here we pre-
sented VEGA, a high-level Visual Environment for Grid Application designed to 
support the design and execution of complex applications upon Grid environments. 

VEGA offers the users a programming model that represents Grid resources as a 
collection of typed resources and a set of defined "relationships" between them.  As 
part of the implementation of the Knowledge Grid, VEGA interacts with some of its 
services. In particular, the knowledge directory service is widely used to retrieve basic 
information about Grid resources. The key concepts in the VEGA approach to the 
design of a Grid application are the visual language used to describe the jobs consti-
tuting an application, and the methodology to group these jobs in workspaces to form 
a specific stage. These are also the features that make the environment provided by 
VEGA adhere to the software component framework, that is, a system for composing 
application from smaller software modules.  

The software modules composing the VEGA architecture implement a set of func-
tionalities able to simplify the planning and submission of complex applications, pro-



viding an easy access to Grid facilities with a high level of abstraction. These func-
tionalities range from design facilities to consistency checking, execution manage-
ment, credentials management, and projects management. 

All these features have been developed specifically to support the design of data 
analysis and knowledge discovery applications, but are suitable to satisfy the require-
ments of most general purpose applications. The case studies presented in Section 7 
are intended to show a practical use of VEGA, as well as to demonstrate how VEGA 
can handle a typical Grid application and to illustrate the main benefits in comparison 
with the still predominant low-level approach. 

The open issues section discussed some improvements (part of which are already 
under development) that could be added to the system. In particular the acyclic graph 
hypothesis for the workspaces and the abstract resources concept are key features to 
open the way towards larger and more complex classes of applications. 
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