
A Visual Programming Environment for Developing
Complex Grid Applications

Antonio Congiusta1,2, Domenico Talia1,2, and Paolo Trunfio2

1 ICAR-CNR, Institute of the Italian National Research Council,
Via P. Bucci, 41c, 87036 Rende, Italy

congiusta@icar.cnr.it
2 DEIS - University of Calabria,

Via P. Bucci, 41c, 87036 Rende, Italy
{talia, trunfio}@deis.unical.it

1 Introduction

Grids are receiving even more attention by a significant number of scientific, indus-
trial, and economical bodies, thanks to their capability to enable collaborations, even
cross-organizational, based on large scale resource sharing and performance orienta-
tion.

In the latest years Grids researchers and professionals have been concerned with
the development of a series of experiments and demonstrations aimed at showing
basic Grid features and potentials. Large scale Grids were deployed to solve computa-
tional or data intensive problems as well as to perform complex simulations. Pres-
ently, Grids are widely recognized as the next generation computing architecture, the
natural evolution of the Web towards the delivery of computing power, information,
and knowledge.

Now, Grid community efforts are focused to make that technology robust, reliable,
and available to those interested in adopting it. The recent involvement of companies
like IBM, Sun, and Microsoft is a clear symptom of the relevance the matter is going
to assume in the near future. Belong this trend, providing high-level environments and
advanced instruments able to support end users and developers, is of main importance
to explore many of the Grid related benefits not yet fully exploited.

In the Grid era people have not to worry about the acquisition of powerful com-
puters or expensive instruments, but rather the key aspect is the capability of effec-
tively exploit shared resources through high level environments providing the needed
abstractions and facilities. Indeed, today this scenario is still not realistic due to re-
search and technological challenges that must be faced, but it should lead scientists
and professionals to provide more abstract techniques and tools for supporting Grid
computing.

Most problems addressed by Grids are not simply solved through the execution of a
specific ad hoc “program”, but often require several software modules, most likely
interacting each others, to run separately and/or concurrently over a given set of in-
puts. During a certain period of time Grid Portals have been the most advanced in-

strument for the solution of this kind of problems. But they represent still a limited
programming approach and are often tailored to specific application domains.

Till today not much work has been done to build high-level design facilities for
complex Grid applications in which many programs and data sets are involved. This
class of applications are quite common in several domains, such as knowledge man-
agement, computational science, and e-business; in addition they share common traits
with software component based applications.

Software component technology is now a standard part of many software design
practices. Microsoft COM and much of .NET [1] are based on component concepts,
as well as Enterprise Java Beans [2], that is another important technology for building
large scale e-commerce applications. A software component model is a system for
assembling applications from smaller units called components. The system defines a
set of rules that specify the precise execution environment provided to each compo-
nent, the rules of behavior, and special design features components may have. A com-
ponent is then nothing more than an object (or collection of objects) that obey the
rules of the component architecture. A component framework is the software envi-
ronment that provides the mechanisms to instantiate components, compose and use
them to build applications. The software component model can be effectively used in
Grid applications integrating legacy code and new software modules.

In this chapter we present a high-level Grid programming environment that shares
some common features with the software component paradigm. The system we discuss
here is VEGA - Visual Environment for Grid Applications. VEGA provides a unified
environment comprising services and functionalities ranging from information and
discovery services to visual design and execution facilities. VEGA was designed and
implemented to support users in the design of data-intensive Grid applications as part
of the Knowledge Grid [6], a software infrastructure for developing knowledge dis-
covery applications. However its high-level features make it useful in the development
of a large class of Grid applications.

The remainder of the chapter is organized as follows. Section 2 presents the design
aspects and the main features of VEGA. Section 3 introduces the visual language used
to design an application in VEGA. Section 4 illustrates the architecture of the envi-
ronment and Section 5 goes more deeply into some implementation aspects. Several
enhancements and additional features under development are presented in Section 6,
where “open issues” are discussed. Section 7 presents two case studies and Section 8
discusses some of the major related projects. Finally, Section 9 concludes the chapter.

2 Main Features and Requirements

The main goal of VEGA is to offer a set of visual functionalities that give the users the
possibility to design complex software, such as complex solving environments and
knowledge discovery applications, starting from a view of the present Grid status (i.e.,
available nodes and resources), and composing the different steps inside a structured
environment, without having to write submission scripts or resource description files.

The high-level features offered by VEGA are intended to provide the user with
easy access to Grid facilities with a high level of abstraction, in order to leave her/him
free to concentrate on the application design process. To fulfill this aim VEGA builds
a visual environment based on the component framework concept, by using and en-
hancing basic services offered by the Knowledge Grid and the underlying Grid mid-
dleware.

To date, a Grid user willing to perform a Grid application must know and handle a
number of detailed information about involved resources (computing nodes, software,
data, etc.), such as their names and locations, software invocation parameters, and
other details. Thus, in the absence of high level tools the planning and submission of
an application could result in a long and annoying work, exposed even to failures due
to user mistakes in writing allocation scripts with a given syntax, wrong memory about
resources details, etc.

As a first feature, VEGA overcomes these difficulties by interacting with the
Knowledge Directory Service (KDS) of the Knowledge Grid to know available nodes
in a Grid and retrieve additional information (metadata) about their published re-
sources. Published resources are those made available for utilization by a Grid node
owner by means of the insertion of specific entries in the Grid Information Service.
Therefore, when a Grid user starts to design its application, she/he needs first of all to
obtain from KDS metadata about available nodes and resources. After this step,
she/he can select and use all found resources during the application design process (as
described in the following). This first feature aims at making available useful informa-
tion about Grid resources, showing the user their basic characteristics and permitting
her/him to design an application.

The application design facility allows the user to build typical Grid applications in
an easy, guided, and controlled style, having always a global view of the Grid status
and the overall building application. VEGA offers the users a way to look at Grid
resources as a collection of typed resources and a set of defined "relationships" be-
tween them. This can be identified as the core functionality of VEGA. To support
structured applications, composed of multiple sequential stages, VEGA makes avail-
able the workspace concept, and the virtual resource abstraction. Thanks to these
entities it is possible to compose applications working on data processed in previous
phases even if the execution has not been performed yet (useful in many knowledge
discovery applications).

Once the application design has been completed, resulting job requests are to be
submitted to the proper Grid Resource Allocation Manager (GRAM). VEGA includes
in its environment the execution service, which gives the designers the possibility to
execute an application and to view its output.

Another important feature is the monitoring of the jobs execution, needed to allow
the user to get information about the different jobs running on different machines as
originated by the application execution.

 A Grid-based application is often more complex with respect to a similar one
based on classical computing systems. Issues like distribution of software, data, and
computers themselves have to be addressed. The availability of computing nodes able
to host a given computation is related to strict constraints about performance and

platform requirements, as well as specific policies about access to resources, as de-
fined by the related virtual organization [4].

In addition, a Grid application seeks out to take advantage of all benefits coming
from the distributed and potentially parallel environment. For that reason some other
problems may arise. In complex applications, large simulations and expecially knowl-
edge discovery applications, collaborations and interchanges between several concur-
rent or sequential stages of the overall computation are very common and able to
boost up their capabilities and performance.

To conclude about the design properties and choices that guided us in the design of
VEGA, here we list a set of properties that we identified to draw up the general re-
quirements for a high level Grid programming environment:

§ the environment has to provide a set of useful abstractions about Grid re-
sources and basic and enhanced actions supported by them;

§ an abstract model for defining relationships among Grid resources and con-
structs for composing an applications must be provided;

§ an advanced use of information about resources availability and status is fun-
damental to allow for a dynamic adaptation of applications to the changing
conditions of the Grid;

§ the system architecture must be as much as possible independent from low
level mechanisms used to gather information about resources, allocate jobs,
etc.; but at the same time,

§ more specialized and high level services must be compatible with low level ba-
sic Grid services, so as to facilitate the implementation and take advantage of
the underlying middleware;

§ when the planning of an application implies choices that may affect its per-
formance, the system needs to implement the right combination between a user
driven and a system driven policy in taking decisions.

3 A Visual Language to Specify Applications

A structured way to model and express the variety of constraints and implications of
complex Grid applications is needed. We believe that a way to address discontinuities
(in systems characteristics as well as domain policies) and problems related to the
scattered nature of resources is to look at a Grid application as a collection of re-
sources and a set of well defined relationships among them.

VEGA, rather than devise a set of customized syntactical rules, makes available a
visual language to express “relationships” among “resources”, and to describe with a
graphical representation the overall computation.

VEGA provides developers with a set of graphical objects representing different
kinds of resources they can select and use to compose an application. In particular,
there are three types of graphical objects:

§ hosts,
§ software, and
§ data.

Each of these objects represents a physical resource in the Grid. The user can insert
several instances of the same resource into a workspace of the current project if
needed. A workspace is thus a working area of the VEGA environment, in which
objects representing resources are hosted to form a particular stage of the application.
When a resource is inserted in a workspace, a label containing the name of the related
physical resource is added to the corresponding graphical object.

Several relationships, indicating interactions between resources, can be defined.
Relationships are represented in VEGA as graphical links between the resources
which they refer to. Through relationships it is possible to specify one or more desired
actions on resources included in a workspace. In other words, it is possible to describe
one or more jobs (see Fig. 1).

Fig. 1. Objects and links in VEGA

A common definition of “Grid job” states that it is the execution of a given soft-
ware on a specific Grid node, with its input and output parameters/files specified as
well. Relationships available to describe jobs are:
§ execution of a given software on a given host,
§ file transfer, of a certain software or dataset on a specified host
§ input, (a given dataset as input for a software) and
§ output (a given file as collector of a software output).

The file transfer relationship is a special kind of job, since it can be viewed as the
execution of a file transfer program which parameters are the file to be moved, the
destination host, etc. Thus, in VEGA a job is a software execution or a file transfer.

While introducing relationships between resources, some rules must be followed, in
order to make the composition have sense. For instance, an execution relationship
(link) cannot be inserted between a data object and a host object. Moreover, no link
can be inserted between objects of the same type.

The set of admissible links is listed in Table 1, with enclosed the meaning each one
takes in the specific context. Objects refer to specific resources offered by Grid nodes
included in the deploying project; they can be linked with resources owned by the
same node as well as with resources of a different node. In the latter case a staging
operation is implicitly defined. If, for instance, a software component SW owned by
the host H1 is linked with an execute link with a host H2, then the executable associ-

ated to SW will be first transferred to H2, and will be deleted from there after the exe-
cution.

Table 1. Admissible links between resources

A computation is generally composed by a number of different sequential or paral-
lel steps. In VEGA it is possible to distinguish sequential and parallel execution of
jobs through the workspace concept. All jobs that can be executed concurrently are to
be placed inside the same workspace, whereas different workspaces can be used to
specify a priority relationship. It is worth to note that when different sets of jobs are
placed into different workspaces often they share common data, on which they make
different computations.

As an example, let us consider a typical execution of the data mining tool DM-tool
on the specific Grid node Host_X, taking as input the pre-processed.dat file, and
producing as result the file classes.dat. This job (say simple submission) is de-
scribed in the VEGA visual language by linking the objects representing the resources
as showed in Fig. 2-A. A multiple submission, that is the parallel execution of the
same software component on more than a Grid node, is quite similar to a simple exe-
cution, the only exception is that the same software object is linked with more hosts
(see Fig. 2-B). Similarly, different submissions, i.e. two different software to be exe-
cuted on different hosts, may share the same dataset, like in Fig. 2-C.

The design of an application is obtained through the composition of a graphical
model representing it. This is accomplished by using some graphical objects on which
several actions (like insertion in a workspace, linking with other objects, specification
of attributes and properties, etc.) can be invoked, given that they assure consistency
and logic sense to the computation. All this happens giving always freedom to the user
in choosing how to build its application and the ordering of the actions applied to
graphical objects.

A fundamental characteristic is the possibility to model the designing application
through a visual language offering a set of abstractions as flexible as possible and able
to describe a significant part of the typical Grid scenarios and applications. In this
approach lies the novelty and the power of an environment like VEGA, because till
now the community was lacking of such a reference model and structured operational
way on which to model a Grid application.

resource1 resource2 link Meaning

DDaattaa

DDaattaa

DDaattaa

SSooffttwwaarree

SSooffttwwaarree

 Software

Software

Host

Host

Host

Input

Output

File Transfer

File Transfer

Execute

indicates the software input

indicates the software output

data transfer to the host

software transfer to the host

software execution on the host

Moreover, it should be noted that although a set of predefined links are employed,
there are several specific attributes and parameters that contribute to increase the ex-
pressiveness and the flexibility of the visual language.

Fig. 2. Some jobs in the VEGA visual language

4 Architecture

This section outlines how the VEGA environment works on top of the Knowledge
Grid and the underlying Grid middleware, basic relationships and interchanges among
these entities are also explained.

The Knowledge Grid is a software infrastructure for distributed data mining and ex-
traction of knowledge in Grid environments. The Knowledge Grid accomplishes its
objectives through the implementation of a set of basic services and high level tools
designed to support geographically distributed high-performance knowledge discovery
applications [6].

The set of services and functionalities offered by VEGA is composed basically by
two categories: design facilities and execution handling. The first ones are concerned
with functions for designing and planning a Grid application, whereas the others make
possible to execute the application. Fig. 3 shows hierarchies and some basic interac-

tions between them and the Knowledge Grid and Grid services. In particular, the de-
sign facilities make use of the knowledge directory service, implemented by the
Knowledge Grid, to discover resources and their properties, whereas basic Grid ser-
vices are used during the authentication and the execution phases.

Fig. 3. VEGA overall architecture

There are at least four steps a user must follow to execute one or more jobs em-
ploying Grid resources:
§ definition of involved resources and specifications of the relationships among

them;
§ checking of the planned actions consistency;
§ generation of the job set to be submitted to one or more Grid resource alloca-

tion managers;
§ execution of the jobs and monitoring of their life cycle.

The job submission procedure in VEGA can be divided in the previous four steps.
Fig. 4 shows the VEGA software modules implementing them together with the
needed data exchanges.

Fig. 4. VEGA software modules

The visual composition phase is useful to the user during the application design. It
is accomplished by the Graphic Composer software module and its sub-modules. To
design her/his application a user may compose graphical objects representing re-
sources (datasets, software components, computing nodes). These objects are com-
posed through visual facilities, aimed to specify existing relationships among them, to

form a graphical representation of each job of the entire computation, accordingly
with the rules discussed in the previous section.

Namely, this task is accomplished by the following sub-modules: Workspace Man-
ager, Object Manager and Resource Manager.

The Resource Manager (RM) is concerned with the browsing of a local cache
called Task Metadata Repository (TMR), where metadata about retrieved resources
are stored, in order to allow the selection of resources to include in the designing
computation. The Resource Manager is divided into two sections, directly showed to
the user: the first one contains the list of the chosen computing nodes (hosts); the
second one contains the resources belonging to the currently selected host, divided
into two categories, data and software, on the basis of the content of associated meta-
data (see Fig. 5). Such a structure gives an overall view of the available hosts and
related resources, permitting, at the same time, to include them inside a workspace of
the current project.

Additional information about these resources are retrieved through the Knowledge
Directory Service, a system able to include customized metadata into the Grid Infor-
mation Service, and to delivery them to each user of the Grid when requested. Meta-
data used in the Knowledge Grid are constituted by XML encoded information de-
scribing software and data resources. The analysis of the Knowledge Grid information
system functioning is out the purposes of this chapter (details can be found in [6] and
[7]). For what concerned with the operations of the RM, it is enough to know that
XML documents specify some resources attributes among which: owner host, file
name and related path.

The TMR is located on the file system of each node of the Knowledge Grid running
VEGA and is organized as a set of directories, one for each host. Each of these direc-
tories contains XML documents about resources published by related hosts by using
KDS services. A host can publish basically two types of resources, software and data.

The Workspace Manager (WM) is given the task of creating and managing work-
spaces. It maintains an internal representation of the entire computation designed by
the user (internal model) and a priority relationship between workspaces, as they con-
stitute a whole computation, in which the workspace sequence represents the planned
sequence of tasks to be executed. In addition, it may be possible that some jobs in a
given workspace need to operate on resources generated in a previous one; in this case
the WM, since these resources aren’t physically available at design time, generates the
so called virtual resources, and make them available to subsequent workspaces
through the Resource Manager.

The Object Manager (OM) copes with the management of the graphical objects
associated with the resources chosen by the user to compose an application. Each
object is associated with information regarding the resource which it refers to. This
information is used during the creation of the internal model of the computation and to
the end of generating the execution plan (see below). Objects, as already mentioned in
the previous section, are data, software, and hosts.

During the composition phase, several operations can be applied to the objects such
as: insertion in a given workspace, movement inside the owning workspace, selection,
un-selection, linking with other objects and deletion from a workspace. All these op-
erations are handled and supervised by the Object Manager. Moreover, it takes care of

the links labeling and the setting of their properties and/or attributes, like: file transfer
destination path, parameters to be used in the software invocation, etc.

The Consistency Checking phase is needed to obtain a correct and consistent
model of the computation. This process is accomplished not only as a checking of a
set of requirements after the design phase is completed, but mainly through several
interactions with the user while the design is in progress. Regarding the type of consis-
tency checking and the time which it is performed on, two stages can be distinguished:
pre-processing and post-processing. The pre-processing takes place simultaneously to
the composition of the graphical representation made by the user. It operates in a
context sensitive way, detecting situations that may lead to errors and undertaking
actions to guide the user towards the right choices. The checking is completed with the
post-processing, nonetheless needed to catch those error situations that are impossible
to discover during the pre-processing phase.

When the consistency checking is carried out, it is time to parse the model of the
computation to generate the execution plan and the specific script needed for the allo-
cation. The generation of the execution plan is performed by the Execution Plan
Generator (EPG) module. It parses the internal model of the computation and, on the
basis of the properties of links and resources, produces an XML document describing
the planned tasks, the so called execution plan. The execution plan describes the com-
putation at a high level, without physical information about resources (identified by
metadata references), and about the status and current availability of such resources.
Specific information about the involved resources will be included during the transla-
tion into the script to be passed to the underlying middleware.

This script is constituted by a set of job requests expressed into a particular Re-
source Specification Language; it is produced by the Script Generator as a result of a
subsequent elaboration on the execution plan.

The Execution Manager (EM) permits to start the execution of the application and
handles communications between activated jobs and the user. The execution phase
makes a direct use of specific GRAM services.

The EM includes as a sub-module the Job Monitor, whose purpose is to provide in-
formation about the executing jobs. In particular it shows to the user changes in the
jobs status (pending, active, and so on) and whether they fail, giving her/him also the
possibility to clean-up jobs from the queues where they are waiting in or to kill them
while executing.

To start the execution, a valid proxy of the user authentication on the Grid must
have been created. The Utilities section contains the Authentication Manager (see Fig.
4), which offers a visual facility to create and set up the proxy for accessing Grid
resources.

Finally, the Utilities section comprises a functionality designed to serialize and re-
store the graphical model of the application. During the restoring, if the saved project
contained virtual resources and the virtual resources were not materialized (because
the saving was performed before the execution), these are restored as well.

5 Implementation

VEGA was implemented in Java, to guarantee the portability upon different platforms.
Namely, the user interface components are all Swing based, whereas the access to
specific Grid services is accomplished by using APIs of the Grid middleware.

The Resource Manager offers the so called resource pane, as showed in Fig. 5. It is
divided into two subsections, one containing hosts and the other one the resources
each host owns. Showed hosts are those chosen by the user, among ones available in
the TMR, to be part of the current application. When a host is selected in the host sub-
pane, the RM accesses the corresponding entry in the TMR, scans all metadata and
shows the resources owned by this Grid node in the resource pane, each in the related
category (software or data). To deal with XML documents, the RM makes use of the
Xerces Java Parser [8], an open source implementation from Apache Software Foun-
dation of the DOM (the W3C Document Object Model) [9]. Through the RM it is also
possible to retrieve information about the status of the resources involved in the cur-
rent project. For example, the user may query current CPU load and available mem-
ory, as well as static information like operating system name, etc.

Fig. 5. VEGA user interface

To import a resource in a workspace the user can drag & drop it. When the RM de-
tects the drag-started event, it provides the Object Manager with all the information
found in the resource metadata document, so that the graphical object for that resource
can be created.

Host pane

Resource pane

Workspace Manager

The Workspace Manager performs a preliminary analysis of the composing compu-
tation, to discover conditions that may originate virtual resources: like the presence of
a file transfer operation or the presence of an output resource generated by a job in the
computation. When such a condition holds, the WM generates appropriate metadata
and put them in the TMR, marking them as temporary entries (waiting for the real
execution of the application). Metadata about virtual resources are homogeneous to
ones about “real” resources and can be thus managed by the RM. Temporary entries,
created during the design phase, will become permanent only when the execution is
performed and it terminates successfully. Otherwise, if the user exits the working
session without executing the application, they will be removed from the TMR. The
user interface of the WM is basically constituted by a tabbed pane that allows for
selecting the workspace on which to operate (see Fig. 5). The WM accomplishes also
the task of building the internal model of the computation on the basis of the graphical
composition made by the user and constituted by the workspaces sequence. The con-
struction of the internal model takes place together with its graphical definition by the
user.

The Object Manager can be thought as a “service module”, in fact it hasn’t a spe-
cific corresponding element in the user interface and most part of the code implement-
ing it is distributed in several listeners. Java implements the events driven program-
ming paradigm, in which listeners are classes notified of the occurrence of particular
events (e.g. mouse and keyboard activities); these classes contain methods to handle
such events.

The internal model consistency checking ensures that the model to be passed to the
Model Analyzer is correct and without inconsistencies, that is, able to represent co-
herently a Grid application. The Model pre-processor operates during the application
composition. Its main objective is to prevent the planning of jobs in a wrong or in-
complete fashion. To this end, it supervises the links insertion, checking for the right
association (see Table 1) between resource types and links.

When no type of link is admitted for a given couple of resources, each attempt to
insert any link will fail. Whereas when one or more links are admitted, a generic link
with a “no type” label is first traced, afterwards the user will specify the actual type by
choosing among those available in a popup menu.

At the end of the design session, the user may have defined one or more work-
spaces. Although the workspaces composition has been guided by the Model pre-
processor, there are some ambiguous situations that can be only recognized when the
designing phase is over. Main constraints verified by the Model post-processor are:
§ at least one host must be present in each workspace;
§ all inserted links must have a specified type;
§ each software component must be linked with at least one host;
§ every resource must be linked with at least another one.

As previously mentioned, the execution plan is coded in XML and represents the
application at a high level of abstraction; it is generated to make aware the Knowledge
Grid Execution Plan Management Service (EPMS) of the computation structure (the
formalism is well described in [10]). To generate the execution plan, the EPG ana-
lyzes the internal model of the computation to individuate all the jobs planned by the
user.

Execution and file transfer jobs are described in the execution plan, accordingly
with a set of well defined rules. In particular, they originate a set of Computation
and DataTransfer elements, comprising attributes of the jobs and references to
metadata of involved resources. To specify priority relationships among these jobs
some TaskLink elements are used.

The script generation takes place on the basis of the execution plan and the infor-
mation provided by metadata referred in it. All jobs in the execution plan are trans-
lated into requests expressed into the specific scripting language. For example, in the
RSL script generator this is accomplished by assigning proper values to specific
Globus RSL attributes. Details about Globus RSL tags can be found in [11]. Main
attributes used by the VEGA RSL script generator are:
§ resourceManagerContact, the node to which the request is to be submitted;
§ executable, path and name of the program to run;
§ arguments, a set of arguments to be passed to the program through the com-

mand line.
§ stdout, the file to redirect standard output of the program to (if required by

the user).
Computation elements in the execution plan are translated into job requests speci-

fying the execution of a given executable with some inputs and outputs; as already
mentioned, all details on executable inputs and outputs are retrieved in the referred
XML files. DataTransfer elements are processed using as an executable the file
transfer program provided by the Grid middleware, with source and destination pa-
rameters as indicated in the execution plan. If the middleware used is Globus all file
transfer operations may be carried out using the GridFTP protocol [12] implemented
by the file transfer program globus-url-copy. To reflect the workspace sequence
in the jobs execution, job requests present in different workspaces are placed in sepa-
rated script files and will be submitted to execution in strict sequence by the Execution
Manager.

After the script files are generated, they will be executed through the proper sub-
mission command (i.e. globusrun in Globus). It is invoked by the VEGA Execution
Manager taking into consideration each script file and allocating a new process for it
on the machine which the user is working on. In addition, to provide the user with a
feedback about the computation execution, standard output and error streams of that
process are redirected to the EM and showed as well.

During this phase the Job Monitor gathers information about the activated jobs.
The Job Monitor operates in strict relation with the middleware component in charge
of the resource allocation, the GRAM. It periodically queries each node involved in
the application about the status of the activated jobs, and update a set of information
about the total execution time, the execution time of each job, its current status, the
history of the statuses of each job, with enclosed the amount of time elapsed before a
status change. This information is shown to the user in a table; moreover the user can
clean up or kill each single job if needed, and eventually she/he can choose to save all
this information into a report file.

6 Open Issues

In the current VEGA implementation workspaces can be connected in a pipelined
fashion. This may represent a limitation of representing some computation patterns,
even if complex patterns can be designed inside a single workspace. To make more
flexible the way of composing workspaces, the sequential workspace composition is
going to be replaced by an acyclic graph model.

In a varying and discontinuous environment such as a Grid, users’ requests cannot
be always deterministic in all details. It would be unacceptable, and flexibility loss
leading, to pretend the user to specify all the details about the resources involved in a
computation. Therefore, when the user doesn’t worry about which will be the target
machine for a given job, provided that it is able to satisfy a set of expressed require-
ments, it should be up to the system to find a suitable host and to assign it the job
execution.

This could be also a powerful mechanism that can give the user the opportunity to
design applications independent from the particular Grid on which they will be exe-
cuted, hence, reusable upon different Grid systems and over time.

To this purpose the concept of “abstract resources” has been designed to be intro-
duced in VEGA, This concept allows for specifying resources by means of constraints
(i.e., required main memory, disk space, CPU speed, operating system version, etc.).
In addition, a meta-scheduler will also be included to instantiate abstract resources.
After the appropriate matching of abstract resources with physical ones and an optimi-
zation phase, the system can submit for execution all the jobs defined in the applica-
tion design on the basis of the application structured layout.

VEGA defines in a particular way “file transfer” jobs, permitting also to specify
and configure a particular protocol to be used in the transferring, this because the file
transfer has been historically a fundamental mechanism of communications between
team of scientists and the most used one in Grid applications. The existence of spe-
cific services and features such as those provided by the so called “Data Grids” con-
firms the particular importance of this matter.

Nevertheless, there are a lot of applications that need to operate on streams of data
coming from a sensor or more generally from a network connection. Moreover, some
other applications might achieve best performances, even if file-based, if it was pos-
sible for them to start their computations while the stream of data is reaching the Grid
node to be stored on the file system (see Section 7.2 for an example).

7 Case Studies

This section presents two case studies through which the main features and potentials
of VEGA will be better explored. At the same time a practical use of VEGA will be
shown and some issues that may arise in this kind of applications will be analyzed.
The first one consists of a Grid-enabled version of a knowledge discovery application,
the second one is an example of a general purpose data intensive application.

7.1 Distributed Bank Scoring

This example takes into consideration the evaluation process done by banks when
approving a loan. Loan officers must be able to identify potential credit risks and
decide whether grant the money, and, in that case, the amount of the loan. Usually this
is accomplished by evaluating information about people to whom the institution pre-
viously loaned money (such as debt level, income level, marital status, etc.).

Fig. 6. Distributed bank scoring application

Let us consider the case of three banks whose purpose is to join their efforts and
extract a loan-scoring prediction model, based on the information each of them own
about their clients. Since preserving client’s privacy is a must for credit institutes, the
treatment of this information by third parts is often prohibited or subject to restric-
tions. To overcome this problem the banks decide to make the computations locally, at
each of the three sites, and to transfer on a centralized location only the obtained mod-
els.

In this way, no sensitive information has to be accessed by unauthorized organiza-
tions, but only the data models have to be shared. Privacy commitments are thus as-
sured, because the data models are constituted by coded information about aggregated
data.

When a decision is based on several factors, a decision tree can help to identify
which factors to consider and how each factor has historically been associated with
different outcomes of the decision. A decision tree creates a model as either a graphi-
cal tree or a set of text rules that can predict (classify) each applicant as a good or bad
credit risk. The training process that creates the decision tree is usually called induc-
tion. One important characteristic of the tree splitting algorithm is that it is greedy.
Greedy algorithms make decisions locally rather than globally. When deciding on a
split at a particular node, a greedy algorithm does not look forward in the tree to see if
another decision would produce a better overall result. This allows for creating partial
models from subsets of the data that can be then joined into a global model.

Fig. 7. Distributed bank scoring: workspace 1

Prior to integrating any decision tree into a business process as a predictor, a test
and a validation of the model using an independent dataset is generally performed.
Once accuracy has been measured on an independent dataset and is determined to be
acceptable, the tree (or a set of production rules) is ready to be used as a predictor.
The testing phase in this example is done after the combination of the three models.

To summarize, the entire application is composed of two main phases (see Fig. 6
for a graphical schema): the induction of the decision trees, performed locally at each
of the three banks, and the models combination and validation operated at one of the
three sites after the others models have been produced and moved there.

Fig. 8. Distributed bank scoring: workspace 2

Let the Grid nodes made available by the banks be: k1.cs.icar.cnr.it,
k2.cs.icar.cnr.it, and k3.cs.icar.cnr.it. The application design and sub-
mission will be performed on the Knowledge Grid node k1 that will be also the node
on which the final model will be obtained from the partial ones. All nodes contain a
dataset about the clients of the bank and a parameters file with a description of the
structure of the dataset, this file is used by the inductor also to determine which the
dependent variable is and which columns have to be considered as independent vari-
ables. The datasets are named respectively dataset1.data, dataset2.data, and
dataset3.data; while the associated parameters files are parameters1.par, pa-
rameters2.par, and parameters3.par. On k1 the software components DT-
inductor and DT-combiner are also present.

The design of the application using VEGA produces four workspaces. First of all,
it is necessary to transfer a copy of the software used for the induction to nodes k2 and
k3 (where it is not available); this step is planned in workspace1 (see Fig. 7). After-
wards, the trees induction can take place at each of the three hosts by executing DT-
inductor with the dataset and parameters file as inputs, see workspace 2 in Fig. 8.
As a result of the computations in workspace 2, three files (tree1, tree2, tree3)
containing the resulting partial trees will be obtained on each host. The subsequent
stage performs the transferring of tree2 and tree3 to k1, so as to have all the trees

on the same node (see Fig. 9). The combination of the partial trees into a global one
will next happen on k1 by means of the DT-combiner tool, as can be seen in Fig. 10

From workspaces 3 and 4, it is possible to note that as a direct consequence of the
transfer of tree1 and tree2 to k1 in workspace 3, they are shown in workspace 4 as
data resources of k1, even if the execution of the application has not been performed
yet. This outcome is due to the intervention of the Workspace Manager that creates
the needed virtual resources so as to allow for the use of this data in subsequent
computations.

Fig. 9. Distributed bank scoring: workspace 3

VEGA generates four Globus RSL script files (bank_scoring0.rsl,
bank_scoring1.rsl, bank_scoring2.rsl, bank_scoring3.rsl), one for each
workspace, containing the formal description of the jobs to be executed. When re-
quested by the user, the execution will be launched by the environment submitting the
generated RSL files in sequence to the Globus GRAM.

Fig. 10. Distributed bank scoring: workspace 3

The following figures present the content of the Globus RSL files. From a quick
look is easy to understand the difference between the VEGA programming model and
the low-level programming model offered by the Globus RSL. The high-level proper-
ties of the visual approach bring several benefits to developers both in terms of struc-
tured approach, easy programming, and code reuse.

Fig. 11. file bank_scoring0.rsl

+
(&(resourceManagerContact=k2.cs.icar.cnr.it)
 (label=subjob1)
 (executable=$(GLOBUS_LOCATION)/bin/globus-url-copy)
 (arguments=-vb -notpt gsiftp://k1.cs.icar.cnr.it/tools/bin/DT-inductor
 gsiftp://k2.cs.icar.cnr.it/tools/bin/DT-inductor
)
)
(&(resourceManagerContact=k3.cs.icar.cnr.it)
 (label=subjob2)
 (executable=$(GLOBUS_LOCATION)/bin/globus-url-copy)
 (arguments=-vb -notpt gsiftp://k1.cs.icar.cnr.it/tools/bin/DT-inductor
 gsiftp://k3.cs.icar.cnr.it/tools/bin/DT-inductor
)
)

Fig. 12. file bank_scoring1.rsl

Fig. 13. file bank_scoring2.rsl

7.2 A Video Conversion Application

This example has been taken from a demo developed at IBM laboratories [17], and is
aimed at showing main advantages coming from the use of a visual environment such
as VEGA in respect of the classical approach, as well as the ability of VEGA to deal
with general purpose Grid applications.

+
(&(resourceManagerContact=k1.cs.icar.cnr.it)
 (label=subjob1)
 (executable=/tools/bin/DT-inductor)
 (arguments= -d /data/dataset1.data
 -p /data/params1.par
 -o /data/tree1
)
)
(&(resourceManagerContact=k2.cs.icar.cnr.it)
 (label=subjob2)
 (executable=/tools/bin/DT-inductor)
 (arguments= -d /data/dataset2.data
 -p /data/params2.par
 -o /data/tree2
)
)
(&(resourceManagerContact=k3.cs.icar.cnr.it)
 (label=subjob3)
 (executable=/tools/bin/DT-inductor)
 (arguments= -d /data/dataset3.data
 -p /data/params3.par
 -o /data/tree3
)
)

+
(&(resourceManagerContact=k1.cs.icar.cnr.it)
 (label=subjob1)
 (executable=$(GLOBUS_LOCATION)/bin/globus-url-copy)
 (arguments=-vb -notpt gsiftp://k2.cs.icar.cnr.it/home/data/tree2
 gsiftp://k1.cs.icar.cnr.it/home/data/tree2
)
)
(&(resourceManagerContact=k1.cs.icar.cnr.it)
 (label=subjob2)
 (executable=$(GLOBUS_LOCATION)/bin/globus-url-copy)
 (arguments=-vb -notpt gsiftp://k3.cs.icar.cnr.it/home/data/tree3
 gsiftp://k1.cs.icar.cnr.it/home/data/tree3
)
)

The application starts from a home video tape and converts it to a Video-CD that
can be played on DVD players supporting this format. Depending on the quality level,
a typical one hour tape can create over 10 GB of video data, which needs to be com-
pressed to approximately 650 MB to fit on a Video-CD. The compression stage is
CPU intensive, since it creates an MPEG data stream by encoding the frames after a
matching process performed on all parts of adjacent video frames containing similar
sub-pictures. The audio is compressed as well.

The compression process can take even more than one day, depending on the qual-
ity level and the speed of the system being used. For commercial DVD quality, con-
versions are typically done by a service company that has developed higher quality
conversion algorithms. Such conversions may take weeks. Hence, Grid technology is
ideal for improving the process of video conversion.

Sending many gigabytes of data from one computer to another takes a considerable
amount of time, even with a 100 Mb Ethernet connection. Thus, for Grid applications
processing large amounts of data, it is crucial to understand the network topology and
to keep the data near the processing node that needs to use it.

Fig. 14. The video conversion application

Let us assume that all packages and libraries required for performing the acquisi-
tion, the compression and the CD burning have been already installed and properly
configured on related machines. Since, each phase of the application makes use of
several calculations carried out by different software, to simplify the comprehension,

instead of executing them directly, some shell scripts invoking these tools will be used
(namely, videocapture.sh, videoconversion.sh and
videocd.sh).

Fig. 15. Shell script for the video conversion application

#!/bin/sh
#First, capture video from DVcamera
./videocapture.sh
#set environment variables
target_dir=/home/globususer
curdir=`pwd`
#stage code and video to remote machines
ndx=1
List machines to be used here and below (one conversion per machine):
for target_host in minos.cs.icar.cnr.it icarus.cs.icar.cnr.it

telesio.cs.icar.cnr.it
do
echo Setting up demo on host $target_host
globus-url-copy file:${curdir}/videoconversion.sh

gsiftp://${target_host}:2811${target_dir}/videoconversion.sh
echo sending video ${curdir}/videocap00${ndx}.avi
globus-url-copy file:${curdir}/videocap00${ndx}.avi \
gsiftp://${target_host}:2811${target_dir}/videocap00${ndx}.avi
globus-job-run ${target_host} /bin/chmod 755 videoconversion.sh
echo Building RSL for $target_host
echo +>demo_rsl${ndx}
echo "(&(resourceManagerContact="${target_host}")" >>demo_rsl${ndx}
echo " (subjobStartType=strict-barrier)" >> demo_rsl${ndx}
echo " (label="videocap00${ndx}")" >> demo_rsl${ndx}
echo " (executable= ${target_dir}/videoconversion.sh)" >> demo_rsl${ndx}
echo " (arguments = videocap00${ndx}.avi)" >> demo_rsl${ndx}
echo ' (stdout= $(GLOBUSRUN_GASS_URL) \
"'$curdir/videocap00${ndx}.out'")' \>> demo_rsl${ndx}
echo ' (stderr= $(GLOBUSRUN_GASS_URL) \
"'$curdir/videocap00${ndx}.err'")' >> demo_rsl${ndx}
echo ")" >> demo_rsl${ndx}
Jobs submission
echo submiting job to $target_host
globusrun -w -f demo_rsl${ndx} &
ndx=`expr $ndx + 1`
done
echo waiting for all conversions to complete
wait
echo getting result files now
rm -f videocap.mpg
Getting compressed files
ndx=1
for target_host in minos.cs.icar.cnr.it icarus.cs.icar.cnr.it

 telesio.cs.icar.cnr.it
do
globus-url-copy
gsiftp://${target_host}:2811${target_dir}/videocap00${ndx}.avi.mpg \
file:${curdir}/videocap00${ndx}.avi.mpg
cat videocap00${ndx}.avi.mpg >> videocap.mpg
rm -f videocap00${ndx}.*
rm -f demo_rsl${ndx}
ndx=`expr $ndx + 1`
done
Now create the video cd (VCD)
./videocd.sh

In this example the acquisition node is the grid node griso.deis.unical.it,
whereas the nodes used to execute the compression of the split video files are mi-
nos.cs.icar.cnr.it, icarus.cs.icar.cnr.it and tele-
sio.cs.icar.cnr.it.

After the capture phase, the video file is then split into a number of smaller files.
These files are sent via Globus to Linux based grid systems for compression. The
compressed segments are then reassembled and a CD is written in the VCD format.
Fig. 14 gives a conceptual schema of the entire process.

Following a classical approach to grid problems, a set of operations have to be exe-
cuted to prepare and start the execution of the processing jobs on the grid nodes.
These operations are shown in the shell script of Fig. 15, in which the different phases
are marked in bold (video files creation, transfer of the video files and the conversion
software, compression, retrieving of the compressed files, CD burning).

When the same application is designed using VEGA, it originates the workspace
sequence reported by Fig. 16 and the following ones. Workspaces 1 and 2 are used to
record the video files and to move them and the videoconversion.sh script to
the hosts on which the conversion will take place. Workspace 3 executes concurrently
the compression on the nodes minos, icarus and telesio; workspace 4 moves
the resulting files to griso, the origin node. Finally, workspaces 5 and 6 create a
unique file and write it on a recordable CD.

Fig. 16. Video conversion: workspace1

Making a comparison of the two approaches, it is possible to notice that while the
logical phases that form the application are, obviously, the same, there is a fundamen-
tal difference in how the application will be executed. The shell script is replaced in

the VEGA version of the application by pure RSL scripts, since all the operations
required to configure and run the video conversion application are performed using
Globus services.

This means that such an application is really architecture independent, because
based on Globus services. Hence it is reusable on different Grids and over time. In
addition, thanks to this representation it would be simple, by using VEGA, to recon-
figure the application to fit with a different Grid context or simply to change some
parameters.

There are some changes that can be made to improve the performance of the video
conversion application. One of these changes is to begin the video file transfer during
the capture phase. Once the first video file is obtained, it can be staged to the remote
machine and the conversion can begin. Furthermore, using MDS, it may be possible to
locate on the Grid the machine with a low CPU load and send the video file to it. To
this end, the considerations made in the open issues section are of primary importance
and could provide support for application able to better exploit the Grid infrastructure.

Fig. 17. Video conversion: workspace 2

Fig. 18. Video conversion: workspace 3

Fig. 19. Video conversion: workspace 4

Fig. 20. Video conversion: workspace 5

Fig. 21. Video conversion: workspace 6

8 Related Work

This section briefly describes some related projects and tools, giving also a short
comparison of the common and distinctive features between them and the environment
we presented here.

A Grid-based knowledge discovery environment that shares some goals with the
Knowledge Grid is Discovery Net (D-Net) [13]. The D-Net main goal is to design,
develop, and deploy an infrastructure to support real time processing, integration,
visualization, and mining of massive amount of time critical data generated by high
throughput devices. The building blocks in Discovery Net are the so-called Knowl-
edge Discovery Services (KDS), distinguished in Computation Services and Data
Services. The former typically comprise algorithms, e.g. data preparation and data
mining, while the latter define relational tables (as queries) and other data sources.
Both kinds of services are described (and registered) by means of adapters, providing
information such as input and output types, parameters, location and/or plat-
form/operating system constraints, factories (objects allowing to retrieve references to
services and to download them), keywords and a description. KDS are used to com-
pose moderately complex data-pipelined processes. The composition may be carried
out by means of a GUI which provides access to a library of services. The XML-based
language used to describe processes is called Discovery Process Markup Language.
D-Net is based on an open architecture using common protocols and infrastructures
such as the Globus Toolkit.

The Parallel Application WorkSpace (PAWS) [14] is a software infrastructure for
connecting separate parallel applications within a component-like model. PAWS pro-
vides also for dynamically coupling of applications and supports efficient communica-
tion of distributed data structures. The PAWS Controller coordinates the coupling of
applications, manages resources, and handles user authentication. Heterogeneity issues
in PAWS are handled by the underlying Nexus library. Currently, PAWS is a C++
library (C and Fortran interfaces are under development). Applications written in any
language that may incorporate such libraries can be interconnected with PAWS and
may communicate exploiting the common PAWS layer. PAWS is designed to coordi-
nate a parallel execution of multiple, interconnected programs, to this end multiple
communication channels are exploited. For employing optimized communication
schedules, PAWS requires information on the layout, the location, and the storage
type of the data, all of which has to be provided by the user through appropriate
PawsData objects.

Recently, a few general purpose grid programming tools have been developed or
are going to be developed. Graph Enabled Console COmponent (GECCO) is a
graphical tool developed at Argonne National Laboratory [15][16]. GECCO is based
on the Globus CoG Kit [5] and provides facilities to specify and monitor the execution
of sets of tasks with dependencies between them. Specifically it allows to specify the
jobs dependencies graphically, or with the help of an XML-based configuration file,
and execute the resulting application. Each job is represented as a node in a graph. A
job is executed as soon as its predecessors are reported as having successfully com-
pleted. It is possible to set up the specification of the job while clicking on the node: a
specification window pops up allowing the user to edit the RSL, the label, and other

parameters. Editing can also be performed at runtime (job execution), hence providing
for simple computational steering.

These systems show how problems and issues of Grid-based generic, parallel and
knowledge discovery applications are addressed and solved in various contexts. It can
be noted that some approaches are similar to that defined into the Knowledge Grid
architecture and used by VEGA, like the composition of tasks and the employment of
a XML based formalism to represent the structure of the application. On the other
hand, several differences are also present, above all the role and structure of the exe-
cution plan and the use in VEGA of a metadata based information system (KDS) from
which extracting information about grid nodes and datasets characteristics.

VEGA, as part of the Knowledge Grid, provides access to a set of services for ge-
neric and knowledge discovery applications. An application running into the VEGA
environment does not contain any limitation about the processing strategy to employ
(i.e. move data, move model, etc.), neither about the number and the location of the
grid nodes that will perform a mining process. The integration and use of new data
access methods or processing algorithms, as well as entire commercial suite or soft-
ware components coming from pre-existent sequential or parallel systems, is simple
and does not require any customization. It is obtained by their publication in the KDS,
which will provide the system with all needed information to use that component in-
side an application (i.e. invocation syntax, component requirements, etc.). The XML-
based approach used in the Knowledge Grid and VEGA to define metadata is going to
be the most used in several Grid-based environments and also the new version of the
Globus Toolkit (GT3) exploits XML-based metadata for handling resource manage-
ment.

9 Conclusion

A condition to bring Grid computing to a mature phase is the availability of high-level
supporting tools and development environments that allows users and developers to
effectively exploit Grid features in designing advanced applications. Here we pre-
sented VEGA, a high-level Visual Environment for Grid Application designed to
support the design and execution of complex applications upon Grid environments.

VEGA offers the users a programming model that represents Grid resources as a
collection of typed resources and a set of defined "relationships" between them. As
part of the implementation of the Knowledge Grid, VEGA interacts with some of its
services. In particular, the knowledge directory service is widely used to retrieve basic
information about Grid resources. The key concepts in the VEGA approach to the
design of a Grid application are the visual language used to describe the jobs consti-
tuting an application, and the methodology to group these jobs in workspaces to form
a specific stage. These are also the features that make the environment provided by
VEGA adhere to the software component framework, that is, a system for composing
application from smaller software modules.

The software modules composing the VEGA architecture implement a set of func-
tionalities able to simplify the planning and submission of complex applications, pro-

viding an easy access to Grid facilities with a high level of abstraction. These func-
tionalities range from design facilities to consistency checking, execution manage-
ment, credentials management, and projects management.

All these features have been developed specifically to support the design of data
analysis and knowledge discovery applications, but are suitable to satisfy the require-
ments of most general purpose applications. The case studies presented in Section 7
are intended to show a practical use of VEGA, as well as to demonstrate how VEGA
can handle a typical Grid application and to illustrate the main benefits in comparison
with the still predominant low-level approach.

The open issues section discussed some improvements (part of which are already
under development) that could be added to the system. In particular the acyclic graph
hypothesis for the workspaces and the abstract resources concept are key features to
open the way towards larger and more complex classes of applications.

References

1. Microsoft Corporation, “.NET”, see http://www.microsoft.com.
2. A. Thomas, “Enterprise JavaBeans Technology: Server Component Model for the Java

Platform”, http://java.sun.com/products/ejb/white_paper.html, 1998.
3. I. Foster & C. Kesselman, “Globus: a metacomputing infrastructure toolkit”, Int. Journal of

Supercomputing Applications, 1997, vol. 11, pp. 115-128.
4. I. Foster, C. Kesselman, “The Anatomy of the Grid: Enabling Scalable Virtual Organiza-

tions”, Int. Journal of Supercomputer Applications, 2001, vol. 15, n. 3.
5. The Globus Project, “Java Commodity Grid Kit”, see http://www.globus.org/cog/java.
6. M. Cannataro, D. Talia, “KNOWLEDGE GRID: An Architecture for Distributed Knowl-

edge Discovery”, Communications of the ACM, January 2003.
7. C. Mastroianni, D. Talia, P. Trunfio, “Managing Heterogeneous Resources in Data Mining

Applications on Grids Using XML-Based Metadata”, Proc. IPDPS 12th Heterogeneous
Computing Workshop, Nice, France, April 2003.

8. The Apache Software Foundation, “Xerces Java Parser 2.0.0”, available at
http://xml.apache.org.

9. World Wide Web Consortium, “Document Object Model (DOM) Level 3 XPath Specifica-
tion”, see http://www.w3.org/TR/DOM-Level-3-XPath.

10.M. Cannataro, A. Congiusta, D. Talia, P. Trunfio, "A Data Mining Toolset for Distributed
High-Performance Platforms", Proc. 3rd Int. Conference Data Mining 2002, WIT Press,
Bologna, Italy, September 2002, pp. 41-50.

11.The Globus Project, “The Globus Resource Specification Language RSL v1.0”, see
http://www.globus.org/ gram/rsl_spec1.html.

12.W.Allcock, “GridFTP Update January 2002”, available at
http://www.globus.org/datagrid/deliverables/GridFTP-Overview-200201.pdf.

13.V. Curcin, M. Ghanem, Y. Guo, M. Kohler, A. Rowe, J. Syed, P.Wendel, “Discovery Net:
Towards a Grid of Knowledge Discovery”, Proc. Eighth ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining, Edmonton, Canada, 2002.

14.P. Beckman, P. Fasel, W. Humphrey, and S. Mniszewski, “Efficient Coupling of Parallel
Applications Using PAWS”, Proceedings HPDC, Chicago, IL, July 1998.

15.G. von Laszewski, “A Loosely Coupled Metacomputer: Cooperating Job Submissions
across Multiple Supercomputing Sites”, Concurrency, Experience, and Practice, Mar. 2000.

16.G. von Laszewski and I. Foster, “Grid Infrastructure to Support Science Portals for Large
Scale Instruments”, Distributed Computing on the Web Workshop (DCW), University of
Rostock, Germany, June 1999.

17.IBM Grid computing, see http://www.ibm.com/grid/.

