Distributed Data Mining Services
Leveraging WSRF

Antonio Congiusta® Domenico Talia®P Paolo Trunfio®

aDFEIS, University of Calabria
Via P. Bucci 41C, 87036 Rende, Italy

b Ereura S.r.l.
Edificio Polifunzionale, 87036 Rende, Italy

{acongiusta, talia, trunfio}@deis.unical.it

Abstract

The continuous increase of data volumes available from many sources raises new
challenges for their effective understanding. Knowledge discovery in large data
repositories involves processes and activities that are computational intensive, col-
laborative, and distributed in nature. The Grid is a profitable infrastructure that
can be effectively exploited for handling distributed data mining and knowledge
discovery. To achieve this goal, advanced software tools and services are needed to
support the development of KDD applications. The Knowledge Grid is a high-level
framework providing Grid-based knowledge discovery tools and services. Such ser-
vices allow users to create and manage complex knowledge discovery applications
that integrate data sources and data mining tools provided as distributed services
on a Grid. All of these services are currently being re-designed and re-implemented
as WSRF-compliant Grid Services. This paper highlights design aspects and imple-
mentation choices involved in such a process.

Key words: Distributed Data Mining, Grid Computing, OGSA, WSRF

1 Introduction

Today we are are much more able to store data than to extract knowledge from
it. The Grid can be effectively exploited to analyze distributed data stores for
finding interesting and useful knowledge hidden in them. The advent of the
Grid has introduced substantial changes in the way data and computations
are conceived and developed within industrial and scientific applications. Size
limits, administrative boundaries, and data heterogeneity are no longer in-
tractable problems nowadays. As a consequence, ever more huge amounts of

Preprint submitted to Elsevier Science 27 February 2006

data are being produced, stored, and moved within Grid systems as a result of
data acquisitions from remote instruments, or scientific experiments, simula-
tions, and so forth. Handling and mining large volumes of semi-structured and
unstructured data is still the most critical issue currently affecting scientists
and companies attempting to make an intelligent and profitable use of their
data.

One of the recent challenges of the Grid is thus making the production and
ownership of such data competitive and useful by allowing effective and effi-
cient extraction of valuable knowledge from it. To this end, knowledge discov-
ery and data mining services are needed to help researchers and professionals
to analyze the very large amount of data that today is stored in digital formats
in file systems, data warehouses, and databases distributed over corporate or
worldwide Grids.

The Knowledge Grid [1-3] is a framework for implementing knowledge discov-
ery tasks in a wide range of high-performance distributed applications. The
Knowledge Grid offers to users high-level abstractions and a set of services
by which is possible to integrate Grid resources to support all the phases of
the knowledge discovery process, as well as basic, related tasks such as data
management, data mining, and knowledge representation. Therefore, it allows
end-users to concentrate on the knowledge discovery process they must de-
velop, without worrying about the Grid infrastructure and its low-level details.
The framework supports data mining on the Grid by providing mechanisms
and higher level services for

e searching resources,
e representing, creating, and managing knowledge discovery processes, and

e composing existing data services and data mining services as structured,
compound services,

to allow users to design, store, document, verify, share, and re-execute their
applications, as well as manage their output results.

Previous research activities on the Knowledge Grid have been focused on the
development of a system prototype by using early Grid middleware, as well
as the design and evaluation of distributed KDD applications. Currently, the
Knowledge Grid mechanisms are being designed and implemented following
the Service Oriented Architecture (SOA) model. In particular, the so-called
Open Grid Services Architecture (OGSA) paradigm and the emerging Web
Services Resource Framework (WSRFE') family of standards are being adopted
for re-implementing the Knowledge Grid services. These services will permit
the design and orchestration of distributed data mining applications running
on large-scale, OGSA-based Grids.

This paper describes the development of the Knowledge Grid services by us-

ing OGSA and WSRF, discusses design aspects, execution mechanisms, and
performance evaluations. The remainder of the paper is organized as follows.
Section 2 presents a background about the Knowledge Grid architecture and
its previous implementation. Section 3 discusses the SOA approach and its
relationships with Grid computing. Section 4 presents a WSRF-based imple-
mentation of the Knowledge Grid services. Section 5 discusses preliminary
considerations regarding system implementation and performance. Section 6
briefly compares system features and approach with related work. Section 7
concludes the paper.

2 Background

The Knowledge Grid architecture uses basic Grid mechanisms to build spe-
cific knowledge discovery services. These services can be implemented in dif-
ferent ways using available Grid environments such as the Globus Toolkit,
UNICORE, and Legion. This layered approach benefits from “standard” Grid
services that are more and more utilized and offers an open distributed knowl-
edge discovery architecture that can be configured on top of Grid middleware
in a simple way.

The Knowledge Grid services are organized in two hierarchical levels: the Core
K-Grid layer and the High-level K-Grid layer. The High-level K-Grid layer
includes services to compose, validate, and execute a distributed knowledge
discovery computation. The main services of the High-level K-Grid layer are:

e The Data Access Service (DAS), responsible for the publication and search
of data to be mined (data sources), as well as the search of inferred models
(mining results).

e The Tools and Algorithms Access Service (TAAS), responsible for pub-
lishing and searching extraction tools, data mining tools, and visualization
tools.

e The Ezecution Plan Management Service (EPMS). An execution plan is
represented by a graph describing interactions and data flows between data
sources, extraction tools, data mining tools, and visualization tools. The
EPMS allows for defining the structure of an application by building the
corresponding execution graph and adding a set of constraints about re-
sources. The execution plan generated by this service is referred to as ab-
stract execution plan, because it may include both well identified resources
and abstract resources, i.e., resources that are defined through constraints
about their features, but are not known a priori.

e The Results Presentation Service (RPS), offers facilities for presenting and
visualizing the extracted knowledge models (e.g., association rules, cluster-
ing models, classifications).

The Core K-Grid layer offers basic services for the management of metadata
describing features of hosts, data sources, data mining tools, and visualization
tools. This layer also coordinates the application execution by attempting to
fulfill the application requirements with respect to available Grid resources.
The Core K-Grid layer comprises two main services:

e The Knowledge Directory Service (KDS), responsible for handling meta-
data describing Knowledge Grid resources. Such resources include hosts,
data repositories, tools and algorithms used to extract, analyze, and manip-
ulate data, distributed knowledge discovery execution plans, and knowledge
models obtained as result of mining processes. The metadata information is
represented by XML documents stored in a Knowledge Metadata Repository
(KMR).

e The Resource Allocation and Execution Management Service (RAEMS),
used to find a suitable mapping between an abstract execution plan and
available resources, with the goal of satisfying the constraints (e.g., CPU,
storage, memory, database, and network bandwidth requirements) imposed
by the execution plan. The output of this process is an instantiated exe-
cution plan, which defines the resource requests for each data mining pro-
cess. Generated execution plans are stored in the Knowledge Fxecution Plan
Repository (KEPR). After the execution plan activation, this service man-
ages the application execution and the storing of results in the Knowledge
Base Repository(KBR).

2.1 Previous work

The main components of the Knowledge Grid environment have been imple-
mented and are available through a software toolkit named VEGA (Visual
Environment for Grid Applications), which embodies services and function-
alities ranging from information and discovery services to visual design and
execution facilities [4]. VEGA offers the users a simple way to design and
execute complex Grid applications by exploiting the advantages coming from
a Grid environment. In particular, it offers a set of visual facilities to design
applications starting from a view of the present Grid status (i.e., available
nodes and resources), and composing the different steps in a structured and
comprehensive environment (see Figure 1). By using the abstractions offered
by VEGA, a user does not need to directly perform the task of coupling the
application structure with the underlying Grid infrastructure.

VEGA integrates functionalities of the EPMS and other Knowledge Grid ser-
vices; in particular it provides for the following main features: i) task compo-
sition, i7) consistency checking, and 7ii) execution plan generation.

K i

File Edit Tools Help

D[=[E] [x] [W&] [S[D]~ (7]

Work Space 1 | Work Space 2 | : | Hosts

7 Modes

| [kl ceis.unical.it
[k2. deis.unical it
D k3. deis.unical it
[aLisi.cs.cnr it
D gz.isi.cs.cnrit

| »

Unidb

IMiner out . Resources
= =
9 O software

: D K-Means
: Bcso
% CJoata

: Y Unidh

Ready

Fig. 1. The VEGA visual interface.

The task composition consists in the definition of the entities involved in the
computation, and the specification of relationships holding among them. Key
concepts in the VEGA approach to the design of a Grid application are the
visual language, used to describe in a component-like manner the jobs consti-
tuting an application, and the possibility to group these jobs to form specific
interdependent stages. In the execution plan generation phase the computa-
tion model is translated into an execution plan represented through an XML
formalism.

VEGA has been used to implement several distributed data mining applica-
tions within the Knowledge Grid framework. Two application areas in which
significant results have been achieved are intrusion detection [3] and bioin-
formatics [6]. The applications developed in such contexts have been useful
for evaluating the overall system under different aspects, including its perfor-
mance.

Main characteristics and problems that have been addressed include the use
of massive datasets and the distribution of the computation load among dif-
ferent nodes. In the intrusion detection application a master-worker approach
has been enforced, obtaining good results in terms of computation-time speed-
up, as detailed in [3]. A similar approach has been applied to the clustering
of human protein sequences, the main difference being the presence of differ-
ent phases to be assigned to several nodes and the more complex execution
coordination. Application details and performance results are presented in [6].

Another application developed using VEGA has been concerned with the in-
tegration of a query-based data mining system within a Grid environment [5].
The overall aim, in this case, has been enabling the execution of complex min-

ing tasks expressed as high-level queries. To this purpose an existing system
(able to combine KDD operators to classical database queries such as selec-
tion, join, etc.), has been transformed into a distributed Grid application by
slightly modifying its structure and defining a proper allocation policy for the
sub-queries generated by the system.

3 SOA and the Grid

The Service Oriented Architecture (SOA) is a programming model for build-
ing flexible, modular, and interoperable software applications. Concepts be-
hind SOA are derived from component-based software, the object-oriented
programming, and some other models. SOA enables the assembly of appli-
cations through parts regardless of their implementation details, deployment
location, and initial objective of their development.

A service is a software building block capable of fulfilling a given task or
business function. It does so by adhering to a well defined interface, defining
required parameters and the nature of the result. Once defined and deployed,
services operates independently of the state of any other service defined within
the system, that is they are like “black boxes.” External components are not
aware of how they perform their function, they care merely that they return
the expected result. Nonetheless, services independence does not prohibit to
have services cooperating each other to achieve a common goal. In fact, the
final objective of SOA is to provide for an application architecture within which
all functions are defined as independent services with well-defined interfaces,
which can be called in defined sequences to form business processes [7].

The most important implementation of SOA is represented by Web Seruvices.
The popularity of Web Services is mainly due to the adoption of universally
accepted technologies such as XML, SOAP, and HTTP. The Web is not the
only area that has been attracted by the SOA paradigm. Also the Grid can
provide a framework whereby a great number of services can be dynamically
located, balanced, and managed, so that applications are always guaranteed
to be securely executed, according to the principles of on-demand computing.
The trend of the latest years proved that not only the Grid is a fruitful envi-
ronment for developing SOA-based applications, but also that the challenges
and requirement posed by the Grid environment can contribute to further
developments and improvements of the SOA model.

The Grid community has adopted the Open Grid Services Architecture
(OGSA) as an implementation of the SOA model within the Grid context.
In OGSA every resource is represented as a Web Service that conforms to a
set of conventions and supports standard interfaces. OGSA provides a well-

defined set of Web Service interfaces for the development of interoperable Grid
systems and applications [8]. Recently the WS-Resource Framework (WSRF)
has been adopted as an evolution of early OGSA implementations [9]. WSRF
defines a family of technical specifications for accessing and managing stateful
resources using Web Services. The composition of a Web Service and a stateful
resource is termed as WS-Resource.

The possibility to define a “state” associated to a service is the most important
difference between WSRF-compliant Web Services, and pre-WSRF ones. This
is a key feature in designing Grid applications, since WS-Resources provide a
way to represent, advertise, and access properties related to both computa-
tional resources and applications. Besides, the WS-Notification specification
defines a publish-subscribe notification model for Web Services, which is ex-
ploited to notify interested clients and/or services about changes that occur
to the status of a WS-Resource. The combination of stateful resources and the
notification pattern can be exploited to build distributed, long-lived Grid ap-
plications in which the status of the computation is managed across multiple
nodes, and services cooperate in a highly-decentralized way.

4 Knowledge Grid WSRF services

This section describes the design and implementation of the Knowledge Grid

in terms of the OGSA and WSRF models.

Figure 2 proposes a view of the Knowledge Grid architecture in which each
Knowledge Grid service (K-Grid service) is exposed as a Web Service that
exports one or more operations, by using the WSRF conventions and mecha-
nisms.

The operations exported by High-level K-Grid services (DAS, TAAS, EPMS,
and RPS) are designed to be invoked by user-level applications, whereas op-
erations provided by Core K-Grid services (KDS and RAEMS) are thought to
be invoked both by High-level and Core K-Grid services.

As shown in Figure 2, users can access the Knowledge Grid functionalities
by using a client interface located on their machine. The client interface can
be an integrated visual environment that allows for performing basic tasks
(e.g., searching of data and software, data transfers, simple job executions), as
well as defining distributed data mining applications described by arbitrarily
complex execution plans (see Section 4.3). The client interface performs its
tasks by invoking the appropriate operations provided by the different High-
level K-Grid services. Those services may be generally executed on a different
Grid node; therefore the interactions between the client interface and High-

— Local interaction Client
---=-» Possibly remote interaction interface
e » by DTN
bAs | B2 tans | B oy RPS
High-level K-Grid Services
l, .
/ \\
S/ \‘\
; .
¥ “n —
~—
publishR KBR
KMR KDS RAEMS
—
, . KEPR
Core-level K-Grid Services
[Basic Grid Services]

Fig. 2. Interactions between a client and the Knowledge Grid environment.

level K-Grid services are possibly remote.

All K-Grid services export three mandatory operations - createResource,
subscribe and destroy - and one or more service-specific operations. The
createResource operation is used to create a stateful resource, which is then
used to maintain the state (e.g., results) of the computations performed by
the service-specific operations. The subscribe operation is used to subscribe
for notifications about computation results. The destroy operation removes
a resource.

The implementation of a K-Grid service follows the WS-Resource factory pat-
tern (see Figure 3). In this pattern, a factory service is in charge of creating
the resources and an instance service is used to operate on them. Thus the
createResource mandatory operation introduced above is provided by the
factory service, while the other operations are exported by the instance ser-
vice. To create a resource the client contacts the factory service, which creates
a new resource and assigns to it a unique key. The factory service will return
an endpoint reference that includes the resource id and is used to directly
access the resource through the instance service.

Table 1 lists and describes the main operations associated to K-Grid services.
In the following subsections a more detailed presentation of the main services
and operations features is provided. Moreover, considerations about the client
interface are reported.

— Local interaction

—————— » Possibly remote interaction

Resource R
N esources
reaton |+ % | Factory
request X /
q Service Resource | |
.creation | Resource |
ID: 1

K .
Client S
interface |
Operation [oPs | Instance (R I # Resource |
request Service Operatiol |

jon | ID: 2 |
executon ./

K-Grid Service

Fig. 3. K-Grid service design

Table 1
Description of main K-Grid service operations.

Service Operation Description

This operation is invoked by a client for publishing a

publishData newly available dataset. The publishing requires a set
of information that will be stored as metadata in the
local KMR.

Data to be used in a KDD computation is located dur-
ing the application design by invoking this operation.
The searching is performed on the basis of appropriate
parameters.

DAS

searchData

This operation is used to publish metadata about a
data mining tool in the local KMR. As a result of the
publishing, a new DM service is made available for
TAAS utilization in KDD computations.

publishTools

It is similar to the searchData operation except that

searchTools it is targeted to data mining tools.

This operation receives a conceptual model of the ap-

EPMS submitKApplication plication to be executed. The EPMS generates a cor-
responding abstract execution plan and submits it to
the RAEMS for its execution.

Retrieves results of a performed KDD computation

etResults
RPS & and presents them to the user.
This is the basic, core-level operation for publishing
publishResource data or tools. It is thus invoked by the DAS or TAAS
KDS services for performing their own specific operations.
searchResource The core-level operation for searching data or tools.

This operation receives an abstract execution plan of
RAEMS manageKExecution the application. The RAEMS generates an instanti-
ated execution plan and manages its execution.

4.1 Ezecution management

Figure 4 describes the interactions that occur when an invocation of the EPMS
service is performed. In particular, the figure outlines the sequence of invoca-
tions to others services, and the interchanges with them when a KDD appli-
cation is submitted for allocation and execution. To this purpose, the EPMS
exposes the submitKApplication operation, through which it receives a con-
ceptual model of the application to be executed (step 1). The conceptual model

is a high-level description of the KDD application more targeted to distributed
knowledge discovery aspects rather than to Grid-related issues.

— Local interaction

Client
interface

--------P{subKApp

EPMS

» Possibly remote interaction

o] py
.8 - Services
t:’
o4 ops] Basic
Grid Services
..-:EEE: searchR
KDSs

Fig. 4. EPMS interactions.

The basic role of the EPMS is to transform the conceptual model into an
abstract execution plan for subsequent processing by the RAEMS. It is worth
recalling here that an abstract execution plan is a more formal representation
of the structure of the application. Generally, it does not contain information
on the physical Grid resources to be used, but rather constraints and other
criteria about them.

The RAEMS exports the manageKExecution operation, which is invoked by
the EPMS and receives the abstract execution plan (step 2). First of all, the
RAEMS queries the local KDS (through the searchResource operation) to
obtain information about the resources needed to instantiate the abstract exe-
cution plan (step 3). Note that the KDS performs the searching both accessing
the local KMR and querying remote KDSs (step 4).

After the instantiated execution plan is obtained, the RAEMS coordinates
the actual execution of the overall computation. To this purpose, the RAEMS
invokes the appropriate data mining services (DM Services) and basic Grid
services (e.g., file transfer services), as specified by the instantiated execution
plan (step 5). The results of the computation are stored by the RAEMS into
the KBR (step 6), while the execution plan is stored into the KEPR (step
7). To make available the results stored in the KBR, it is necessary to pub-
lish results metadata into the KMR. To this end, the RAEMS invokes the
publishResource operation of the local KDS (steps 7 and 8).

10

4.2 Data and tools access

DAS and TAAS services are concerned with the publishing and searching
of datasets and tools to be used in a KDD application. They possess the
same basic structure and perform their main tasks by interacting with a local
instance of the KDS that in turn may invoke one or more other remote KDS
instances.

Figure 5 describes the interactions that occur when the DAS service is in-
voked; similar interactions apply also to TAAS invocations. The publishData
operation is invoked to publish information about a dataset (step 1). The
DAS passes the corresponding metadata to the local KDS, by invoking the
publishResource operation (step 2). The KDS, in turn, stores that metadata
into the local KMR (step 3).

— Local interaction

------ » Possibly remote interaction

Client re--{1f--
interface ""-- DAS

-.--E@EEz_jsearchR

KDSs

Fig. 5. DAS interactions.

The searchData operation is invoked by a client interface that needs to locate
a dataset on the basis of a given set of criteria (step 4). The DAS submits
its request to the local KDS, by invoking the corresponding searchResource
operation (step 5). As mentioned before, the KDS performs the searching
both accessing the local KMR, and querying remote KDSs (step 6). This is a
general rule enforced in all the interactions between a high-level service and
the KDS when a searching is requested. The local KDS is thus responsible for
dispatching the query to remote KDSs and for generating the final answer.

The search for a dataset is performed through the searchData operation start-
ing from a search string passed by the client. It contains the searching crite-
ria expressed as attribute-value pairs regarding key properties through which
datasets are categorized within the system by using metadata. The outcome
of the searching is a set of URLs (stored as an array of strings) pointing to
the metadata of the datasets corresponding to that searching criteria. These

11

kinds of URLs are specifically targeted at the KDS service: it implements, in
fact, a custom protocol for locating metadata descriptions of Grid resources.

4.3 Client interface

As mentioned before, the client interface is a component through which a
user can publish and search resources and services, design and submit KDD
applications, and visualize results.

An application can be a single data mining task (e.g., data clustering or clas-
sification), as well as a distributed data mining application described by a
given formalism, such as the visual language used in VEGA (see Section 2.1).
In other words, the client interface provides the user with an environment to
design data mining applications and submit requests to the EPMS service.
During the execution, the client interface will receive notifications from the
EPMS about the execution progress, including failure notices.

Our experience demonstrated that providing a set of abstractions, a program-
ming model, and high-level facilities results in an improved and simplified
way of building KDD applications able to exploit the Grid environment. An
archetype of a client interface for the Knowledge Grid interacts with the user
as to guide her/him in the process of building distributed KDD applications
using high-level services and features provided by the Knowledge Grid envi-
ronment (e.g., access services), to better achieve the design goals. The process
of designing a data mining application through a client interface adhering to
this approach should thus comprise the search for resources and services to be
included in the computation, and the specification in a given high-level for-
malism of the structure of the application. This must reflect how the selected
services interact each other and must be coordinated. In addition, the client
interface should allow the definition of specific requirements on the execution
and results visualization.

5 Discussion and evaluation

Designing the WSRF-based version of the Knowledge Grid benefitted of the
service-oriented approach used in the original design of the system [1]. That
design approach conceived the Knowledge Grid architecture and functionality
as a set of basic and high-level services that did not pose any constraints on
the implementation strategy. This choice facilitated re-designing the system
and implementing the new WSRF-version by maintaining the same architec-
ture and exposing the same functionalities as Web Services. In terms of service

12

composition and integration, the WSRF standards simplify and homogenize
the service-to-service interaction. In the pre-WS version of the Knowledge
Grid each service adopted a specific protocol. This resulted in a more complex
implementation and in a limited interoperability with external services and
components. On the contrary, the WSRF standard allows for a better inte-
gration of the Knowledge Grid services and their interaction with third-party
Web and Grid services.

Given the design and implementation benefits discussed above, another key
aspect in evaluating the appropriateness of using WSRF is related to its per-
formance in supporting data mining service execution. To evaluate the per-
formance of the WSRF mechanisms to implement distributed data mining
services as discussed throughout the previous sections, we performed some
experiments to measure execution times of the different steps for invoking a
WSRF-compliant K-Grid service. The K-Grid service used in our tests exports
two service-specific operations clustering and classification, as well as
the mandatory operations createResource, subscribe and destroy.

The clustering operation implements the Ezpectation Mazimization (EM)
clustering algorithm, while the classification operation implements the J48
classification algorithm. The K-Grid service and the client program have been
developed by using the WSRF Java library provided by Globus Toolkit 4 [10].
Client and service have been deployed on Grid nodes connected through a

wide area network, with an average bandwidth of 213 Kbps and an average
RTT of 19 ms.

In the clustering experiments we used the census dataset available at the UCI
repository [11]. Through random sampling we extracted from it ten datasets,
containing a number of instances ranging from 1700 to 17000, with a size
ranging from 0.5 to 5 MB.

Table 2 reports the times needed to complete the different clustering op-
eration phases, defined as follows. Resource creation: the client invokes the
createResource operation and receives a reference to the created resource.
Notification subscription: the client invokes the subscribe operation. Task
submisston: the client submits the execution of the clustering task by in-
voking the clustering operation. File transfer: the dataset to be mined is
transferred to the node hosting the service. Data mining: the clustering anal-
ysis is performed by the service. Results notification: the clustering model is
delivered to the client through a notification message. Resource destruction:
the client invokes the destroy operation for destroying the resource.

Values reported in the table refer to the execution times obtained for different
dataset sizes. The table shows that the data mining phase takes from 84.6%
to 88.3% of the total execution time, while the file transfer phase fluctuate

13

Table 2
Execution times (in ms) of the invocation phases of a single K-Grid Service.

Dataset Resource Notification Task File Data Results Resource
size creation subscription submission transfer mining notification destruction

0.5 MB 1960 345 293 14638 110415 2578 258
2.0 MB 1999 300 333 54582 425238 2991 204
3.5 MB 1929 321 272 93596 749369 2823 239
5.0 MB 1904 287 242 132463 1044533 3057 237

around 11.2%. The overhead due to the specific WSRF mechanisms - resource
creation, notification subscription, task submission, results notification, and
resource destruction - is very low with respect to the overall execution time,
decreasing from 4.2% to 0.5% with the growing of the dataset size.

In the classification experiments the ad dataset from the UCI repository has
been employed. The sizes of the extracted datasets were ranging from 5 to
10 MB. The phases involved in the classification operation are the same
described in the clustering experiments (and listed in Table 2). As expected,
the execution times of the WSRF mechanisms resulted substantially equal to
those measured in the clustering experiments, while the file transfer and data
mining execution times changed because of the different dataset sizes and
algorithm complexity. In particular, the file transfer execution time ranged
from 132655 ms for the dataset of 5 MB to 256021 ms for the dataset of 10
MB, while the data mining execution time ranged from 257116 ms for 5 MB
to 1271721 ms for 10 MB. In terms of percentages, the file transfer took from
33.6% to 16.7%, while the data mining phase required from 65.2% to 83.0%
of the total execution time. The overall WSRF overhead ranged from 1.2% to
0.3% of the total execution time.

In general, it can be observed that the overhead introduced by the WSRF
mechanisms is not critical with respect to the duration of the service-specific
operations. This is particularly true in typical knowledge discovery applica-
tions, in which the data mining algorithms working on large datasets are
expected to take a long processing time. On the basis of our preliminary ex-
perimental results, we conclude that WSRF mechanisms can be effectively
exploited to develop high-level services for distributed KDD applications on
Grids.

6 Related work

Since computational Grids proved effective as platforms for data-intensive
computing, some Grid-based data mining systems have been proposed (see [3]
for a quick survey). Among those, two systems that exploit a service-oriented
approach for providing Grid-based KDD services are Discovery Net [12] and

14

Grid Miner [13].

Discovery Net allows users to integrate data analysis software and data sources
made available by third parties. The building blocks are the so-called Knowl-
edge Discovery Services, distinguished in Computation Services and Data Ser-
vices. Discovery Net provides services, mechanisms and tools for specifying
knowledge discovery processes.

The functionalities of Discovery Net can be accessed through an interface ex-
posed as an OGSA-compliant Grid service. However, Discovery Net currently
uses an early implementation of OGSA - namely, the Open Grid Services
Infrastructure (OGSI) - which has been replaced by WSRF for lack of com-
patibility with standard Web Services technologies.

GridMiner aims at covering the main aspects of knowledge discovery on Grids.
Key components in GridMiner are Mediation Service, Information Service,
Resource Broker, and OLAP Cube Management. These are the so called Grid-
Miner Base services, because they provide basic services to GridMiner Core
services. GridMiner Core services include services for data integration, process
management, data mining, and OLAP. The services themselves do not com-
municate with each other. No service is aware of any other existing service.
Hence each of them is able to run completely independently. To support the
individual steps of KDD processes, the output of each service can be used as
input for the subsequent service. Like Discovery Net, also Grid Miner has been
implemented on OGSI.

As a matter of fact, the Discovery Net approach is similar in many aspects to
the approach we followed in the Knowledge Grid in providing a service-based
middleware for data mining on Grids. On the contrary, the Grid Miner system
provides single services implementing the main steps of a KDD process and a
service composition engine to execute a multi-step data mining application.

To the best of our knowledge, none of the existing systems makes use of WSRF
as basic technology. Therefore, the Knowledge Grid is the first system leverag-
ing WSRF for building a comprehensive high-level framework for distributed
knowledge discovery in Grid environments, supporting also the integration of
data mining algorithms exposed through a Web Service interface.

7 Conclusions

Data-mining Grid services are key elements for practitioners who need to de-
velop knowledge discovery applications that use large and remotely dispersed
datasets and /or high-performance computers to get results in reasonable times

15

and improve their competitiveness. In this paper we addressed the definition
and composition of Grid services for implementing distributed knowledge dis-
covery processed and applications on WSRF-based Grids. We presented Grid
services for searching Grid resources, composing software and data elements,
and managing the execution of data mining applications on Grids.

The paper discussed the definition of data mining Grid services in the context
of the Knowledge Grid architecture. The services and operations presented
in this paper allow for data and tools publishing and searching, execution
submission and resource management, and retrieving of the produced results.
We observed that the original design of the Knowledge Grid system as a
service oriented architecture simplified the porting process towards the OGSA-
compliant implementation.

The availability of basic services for knowledge discovery in Grid and Web
environments will allow users to implement:

e single data mining tasks that run on remote machines

e distributed data mining models such as collective mining, meta-learning and
peer-to-peer mining, and

e complex long-lived distributed knowledge discovery applications involving
a large number of world-wide Grid nodes providing datasets and/or mining
algorithms.

Acknowledgements

This research work is carried out under the FP6 Network of Excellence Core-
GRID funded by the European Commission (Contract IST-2002-004265). This
work has been also supported by the Italian MIUR FIRB Grid.it project
RBNEO1KNFP on High Performance Grid Platforms and Tools.

References

[1] M. Cannataro, D. Talia and P. Trunfio. Distributed data mining on the grid.
Future Generation Computer Systems, 18(8):1101-1112, 2002.

[2] M. Cannataro and D. Talia. The Knowledge Grid. Communitations of the ACM.
46(1):89-93, 2003.

[3] M. Cannataro, A. Congiusta, A. Pugliese, D. Talia and P. Trunfio. Distributed
Data Mining on Grids: Services, Tools, and Applications. IEEE Transactions
on Systems, Man, and Cybernetics, Part B. 34(6):2451-2465, 2004.

16

[4]

[9]

M. Cannataro, A. Congiusta, D. Talia and P. Trunfio. A Data Mining Toolset
for Distributed High-Performance Platforms. Int. Conference Data Mining 2002,
WIT Press, pp. 41-50, 2002.

G. Bueti, A. Congiusta and D. Talia. Developing Distributed Data Mining
Applications in the KNOWLEDGE GRID Framework. Int. Meeting on High
Performance Computing for Computational Science (VECPAR’04), LNCS 3402,
pp. 156-169, 2005.

M. Cannataro, C. Comito, A. Congiusta and P. Veltri. PROTEUS: a
Bioinformatics Problem Solving Environment on Grids. Parallel Processing
Letters. 14(2):217-237, 2004.

K. Channabasavaiah, K. Holley and E. M. Tuggle. Migrating to a
service-oriented architecture. 2003. http://www-106.ibm.com/developerworks/
library /ws-migratesoa.

I. Foster, C. Kesselman, J. Nick and S. Tuecke. The Physiology of the Grid.
In: F. Berman, G. Fox and A. Hey (eds.), Grid Computing: Making the Global
Infrastructure a Reality, Wiley, pp. 217-249, 2003.

K. Czajkowski et al. The WS-Resource Framework Version 1.0. 2004.
http://www-106.ibm.com/developerworks/library/ws-resource/ws-wsrf.pdf.

[10] I. Foster. Globus Toolkit Version 4: Software for Service-Oriented Systems.

Proc. Conference on Network and Parallel Computing (NPC 2005), LNCS 3779,
pp. 2-13, 2005.

[11] The UCI Machine Learning Repository. http://www.ics.uci.edu/~mlearn/

MLRepository.html.

[12] S. Al Sairafi et al. The Design of Discovery Net: Towards Open Grid

Services for Knowledge Discovery. Int. Journal of High Performance Computing
Applications. 17(3):297-315, 2003.

[13] P. Brezany, J. Hofer, A. M. Tjoa and A. Woehrer. GridMiner: An Infrastructure

for Data Mining on Computational Grids. APAC Conference and Exhibition on
Advanced Computing, Grid Applications and eResearch (APAC’03), 2003.

17

