
Using Clouds for Scalable Knowledge Discovery
Applications

Fabrizio Marozzo1, Domenico Talia1,2, Paolo Trunfio1

1 DIMES, University of Calabria
2 ICAR-CNR

Via P. Bucci, Cubo 41c
87036 Rende(CS), Italy

{fmarozzo,talia,trunfio}@deis.unical.it

Abstract. Cloud platforms provide scalable processing and data stor-
age and access services that can be exploited for implementing high-
performance knowledge discovery systems and applications. This pa-
per discusses the use of Clouds for the development of scalable dis-
tributed knowledge discovery applications. Service-oriented knowledge
discovery concepts are introduced, and a framework for supporting high-
performance data mining applications on Clouds is presented. The sys-
tem architecture, its implementation, and current work aimed at sup-
porting the design and execution of knowledge discovery applications
modeled as workflows are described.

1 Introduction

Cloud platforms, HPC systems, and large-scale distributed computing systems
can be used to solve big and complex problems in several scientific and busi-
ness domains. In particular, the huge amount of data available today in digital
repositories requires smart data analysis techniques and scalable algorithms,
techniques, and systems to help people to deal with it.

Cloud computing is a paradigm and a technology that provide location-
independent storing, processing and use of data on remote computers accessed
over the Internet. Users can exploit almost unlimited computing power on de-
mand, thus they do not need to buy hardware and software to fulfill their needs
[1].

Users can employ Cloud systems to store any kind of information and to
use software as a service (e.g., office automation tools, music players, games).
Organizations, in science, business and public services, can use Cloud services
to run data centers and implement different kinds of IT activities. People and
enterprises can leverage Clouds to scale up their activities without investing in
large physical infrastructures.

Data mining techniques are widely used in several application areas for an-
alyzing and extracting useful knowledge from large datasets. In most cases, the
core of data analysis applications is represented by compute-intensive data min-
ing algorithms, thus leading to very long execution times when a single computer



is used to analyze a large dataset. Cloud systems can be effectively used to han-
dle data mining processes since they provide scalable processing and storage
services, together with software platforms for developing knowledge discovery
systems on top of such services.

For instance, scalable computing systems give a fundamental support to life
science discoveries in several aspects:

– Distributed/parallel data management and processing,
– Scalable data integration and interoperability,
– Distributed/parallel data mining,
– Collaborative data exploration and visualization.

Considering this scenario, we worked to design a framework for supporting
the scalable execution of knowledge discovery applications on top of Cloud plat-
forms. The framework has been designed to be implemented on different Cloud
systems; however, an implementation of this framework has been carried out
using Windows Azure3 and has been evaluated through a set of data analysis
applications executed on a Microsoft Cloud data center.

The framework has been designed to support three classes of knowledge dis-
covery applications: single-task applications, in which a single data mining task
such as classification, clustering, or association rules discovery is performed on
a given dataset; parameter-sweeping applications, in which a dataset is analyzed
by multiple instances of the same data mining algorithm with different parame-
ters; workflow-based applications, in which knowledge discovery applications are
specified as graphs linking together data sources, data mining tools, and data
mining models.

The remainder of this paper is structured as follows. Section 2 discusses the
system architecture, execution mechanisms, and an early version of the user
interface designed to support single-task and parameter-sweeping applications.
Section 3 describes current work aimed at providing a Web-based interface and
associated execution mechanisms for designing and running knowledge discovery
applications as workflows. Finally, Section 4 concludes the paper.

2 System architecture and implementation

The architecture of the designed framework, shown in Figure 1, includes the
following components:

– A set of binary and text data containers used to store data to be mined
(input datasets) and the results of data mining tasks (data mining models).

– A Task Queue that contains the data mining tasks to be executed.
– A Task Status Table that keeps information about the status of all tasks.
– A pool of k Workers, where k is the number of virtual servers available, in

charge of executing the data mining tasks resulting from the data mining
applications submitted by the users.

3 http://www.microsoft.com/windowsazure



– A Website that allows users to submit, monitor the execution, and access
the results of their knowledge discovery applications.

�������

�

�

	

�������

����	 ��
�����


�����

�������
���


�����

����� ����
����

����������

���������������

�

�

����
��

�
����
������

����������
������

����

����
���������

Fig. 1. System architecture and application execution steps.

2.1 Applications execution

The following steps are performed to develop and execute a knowledge discovery
application through the system (see Figure 1):

1. A user accesses the Website and develop her/his application (either single-
task, parameter-sweeping, or workflow-based) through a Web-based inter-
face. After completing the application, she/he can submit it for execution
on Azure.

2. After the application submission, a set of tasks are created and inserted into
the Task Queue on the basis of the application submitted by the user.

3. Each idle Worker picks a task from the Task Queue, and starts its execution
on a virtual server.

4. Each Worker gets the input dataset from the location specified by the ap-
plication. To this end, a file transfer is performed from the container where



the dataset is located, to the local storage of the virtual server the Worker
is running on.

5. After task completion, each Worker puts the result on a data storage element.

6. The Website notifies the user as soon as her/his task(s) have completed, and
allows her/him to access the results.

The set of tasks created on the second step depends on the type of application
submitted by the user. In the case of a single-task application, just one data
mining task is inserted into the Task Queue. If the user submits a parameter-
sweeping application, one task for each combination of the input parameters
values is executed. In the case of a workflow-based application, the set of tasks
created depends on how many data mining tools are invoked within the workflow.
The Task Status Table is dynamically updated whenever the status of a task
changes. The Website periodically reads and shows the content of such table,
thus allowing users to monitor the status of their tasks.

Input data are temporarily staged on a server for local processing. To reduce
the impact of data transfer on the overall execution time, it is important that
input data are physically close to the virtual servers where the workers run
on. For example, in the Azure implementaion of our framework, this had been
done by exploiting the Azure’s Affinity Group feature, which allows storage and
servers to be located near to each other in the same data center for optimal
performance.

Currently, the framework includes a wide range of data mining algorithms
from Weka [2], and supports the arff format for the input datasets. Since the
Weka algorithms are written in Java, each Worker includes a Java Virtual Ma-
chine to run the corresponding data mining tasks.

2.2 User interface

The user interface of the system is composed of two main parts: one pane for
composing and running both single-task and parameter-sweeping applications
and another pane for composition and execution of workflow-based knowledge
discovery applications.

The first part of the user interface (the Website), presented in [3], was imple-
mented to support single-task and parameter-sweeping applications. It includes
three main sections: i) Task submission that allows users to submit their applica-
tions; ii) Task status that is used to monitor the status of tasks and to visualize
results; iii) Data management that allows users to manage input data and past
results.

Figure 2 shows a screenshot of the Task submission section, taken during the
execution of a parameter-sweeping application. An application can be config-
ured by selecting the algorithm to be executed, the dataset to be analyzed, and
the relevant parameters for the algorithm. The system submits to the Cloud a
number of independent tasks that are executed concurrently on a set of virtual
servers.



Fig. 2. Screenshot of the Task submission section.

The user can monitor the status of each single task through the Task status
section, as shown in Figure 3. For each task, the current status (submitted,
running, done or failed) and status update time are shown. Moreover, for each
task that has completed its execution, two links are enabled: the first one (Stat)
gives access to a file containing some statistics about the amount of resources
consumed by the task; the second one (Result) visualizes the task result.

3 Cloud knowledge discovery workflows

We prototyped the programming interface and its services to support the compo-
sition and execution of workflow-based knowledge discovery applications in our
Cloud framework. Workflows support research and scientific processes by pro-
viding a paradigm that may encompass all the steps of discovery based on the
execution of complex algorithms and the access and analysis of scientific data.
In data-driven discovery processes, knowledge discovery workflows can produce
results that can confirm real experiments or provide insights that cannot be
achieved in laboratories.

Following the approach proposed in [5] and [6], we model a knowledge discov-
ery workflow as a graph whose nodes represent resources (datasets, data mining
tools, data mining models), implemented as Cloud services, and whose edges
represent dependencies between resources.

To support the workflow composition, we implemented the Website part that,
by using native HTML 5 features, allows users to design service-oriented knowl-
edge discovery workflows with a simple drag-and-drop approach. Figure 4 shows
a screenshot of the Website taken during the composition of a knowledge dis-
covery workflow.



Fig. 3. Screenshot of the Task status section.

On the top-left of the window, three icons allow a user to insert a new dataset,
tool, or model node into the workflow. Once placed into the workflow, a node can
be linked to others to establish the desired dependencies. Relevant information
for each node (e.g., the location for a dataset, algorithm name and associated
parameters for a tool) can be specified through a configuration panel available
on the right of the window.

As an example, the workflow shown in Figure 4 implements a knowledge
discovery process known as bagging. The workflow begins, on the left, with the
input dataset (CoverType) connected to a Splitter tool that extracts four samples
from it. The first three samples are used as training sets by three instances of
the J48 classification tool (an open source implementation of C4.5 [4]), which
generate three independent classification models from them. Then, a Voter tool
receives the three models and the fourth sample as test set, and produces the
final classification model through a voting procedure.

The five tools invoked in the workflow (the Spitter, three J48 instances, and
the Voter) are translated into an equal number of tasks, indicated as T1...T5

in Figure 4. Differently from parameter-sweeping applications whose tasks are
independent each other and therefore can be executed in parallel, the execution
order of workflow tasks depends on the dependencies specified by the workflow
edges. To ensure the correct execution order, each workflow task is associated
with a list of tasks that must be completed before starting its execution. For
instance, Figure 5 shows the content of the Task Queue after having submitted
the workflow shown in Figure 4. For each task, the list of tasks to be completed
before its execution is reported. According with the tasks dependencies specified
by the workflow, after completion of T1, the execution of T2, T3 and T4 can
proceed concurrently. Moreover, T5 can be executed only after completion of T2,
T3 and T4.



CoverType 

Sample1 

Sample3 

Sample2 

J48 

J48 

J48 

Sample4 

Model1 

Model2 

Model3 Splitter Voter Model 

train 

train 

train 

T
2 

T
3 

T
4 

T
5 

T
1 

TTTTT
5

TTTTT
4

TTT
3

TT
2

TTTTTTTTTTTTT
1

Fig. 4. Workflow composition interface.

T1 
[] 

T2 
[T1] 

T3 
[T1] 

T4 
[T1] 

T5 
[T2,T3,T4] 

Fig. 5. Content of the Task Queue after submission of the workflow in Figure 4.

4 Conclusions

We need new distributed infrastructures and smart scalable analysis techniques
to solve more challenging problems in science. Cloud computing systems can be
effectively used as scalable infrastructures for service-oriented knowledge discov-
ery applications. Based on this vision, we designed a Cloud-based framework for
large-scale data analysis.

We evaluated the performance of the system through the execution of a set
of long-running parameter-sweeping knowledge discovery applications on a pool
of virtual servers hosted by a Microsoft Cloud data center. The experimental
results, presented in [3], demonstrated the effectiveness of the framework, as
well as the scalability that can be achieved through the execution of parameter-
sweeping applications on a pool of virtual servers. For example, the classification
of a large dataset (290,000 records) on a single virtual server required more than
41 hours, whereas it was completed in less than 3 hours on 16 virtual servers.
This corresponds to an execution speedup equal to 14.

Currently, we are working on the workflow composition interface with the
aim of extending the supported design patterns (e.g. conditional branches and
iterations) and to experimentally evaluate its functionality and performance on
Windows Azure during the design and execution of complex knowledge discovery
workflows on large data on the Cloud.



References

1. The European Commission. Unleashing the Potential of Cloud Computing in Eu-
rope. Brussels, 2012.

2. H. Witten, E. Frank. Data Mining: Practical machine learning tools with Java
implementations. Morgan Kaufmann Publishers, 2000.

3. F. Marozzo, D. Talia, P. Trunfio. A Cloud Framework for Parameter Sweeping
Data Mining Applications. Proc. of the 3rd International Conference on Cloud
Computing Technology and Science (CloudCom 2011), Athens, Greece, pp. 367-
374, 2011.

4. J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-
ers, 1993.

5. E. Cesario, M. Lackovic, D. Talia, P. Trunfio. A Visual Environment for Designing
and Running Data MiningWorkflows in the Knowledge Grid. In: D. Holmes, L. Jain
(Eds.), Data Mining: Foundations and Intelligent Paradigms, pp. 57-75, Springer,
2012.

6. D. Talia, P. Trunfio. Service-Oriented Distributed Knowledge Discovery. Chapman
and Hall/CRC Press, 2012.


