
A P2P Grid Services-Based Protocol:
Design and Evaluation

Domenico Talia and Paolo Trunfio

DEIS, University of Calabria
Via P. Bucci 41c, 87036 Rende, Italy

{talia,trunfio}@deis.unical.it

Abstract. Several aspects of today’s Grids are based on centralized or
hierarchical services. However, as Grid sizes increase from tens to thousands of
hosts, functionalities should be decentralized to avoid bottlenecks and
guarantee scalability. A way to ensure Grid scalability is to adopt Peer-to-Peer
(P2P) models and techniques to implement nonhierarchical decentralized Grid
services and systems. Standard P2P protocols based on a pervasive exchange of
messages, such as Gnutella, appear to be inadequate for OGSA Grids, where
peers communicate among them through Grid Services mechanisms. This paper
proposes a modified Gnutella discovery protocol, named Gridnut, which makes
it suitable for OGSA Grids. In particular, Gridnut uses appropriate message
buffering and merging techniques to make Grid Services effective as a way to
exchange messages in a P2P fashion. We present the design of Gridnut, and
compare Gnutella and Gridnut performances under different network and load
conditions.

1 Introduction

Many aspects of today’s Grids are based on centralized or hierarchical services.
However, as Grids used for complex applications increase their size from tens to
thousands of nodes, we should decentralize their functionalities to avoid bottlenecks
and ensure scalability. As argued in [1] and [2], a way to provide Grid scalability is to
adopt Peer-to-Peer (P2P) models and techniques to implement nonhierarchical
decentralized Grid systems.

Recently, the Grid community has undertaken a development effort to align Grid
technologies with Web Services. The Open Grid Services Architecture (OGSA)
defines Grid Services as an extension of Web Services and lets developers integrate
services and resources across distributed, heterogeneous, dynamic environments and
communities [3]. OGSA adopts the Web Services Description Language (WSDL) to
define the concept of a Grid Service using principles and technologies from both the
Grid and Web Services communities. Web Services and the OGSA both seek to
enable interoperability between loosely coupled services, independent of
implementation, location, or platform. The OGSA model provides an opportunity to
integrate P2P models in Grid environments since it offers an open cooperation model
that allows Grid entities to be composed in a decentralized way.

In [4], Fox and colleagues explore the concept of a Peer-to-Peer Grid designed
around the integration of Peer-to-Peer and OGSA models. A Peer-to-Peer Grid is
built in a service model, where a service is a Web Service that accepts one or more
inputs and gives one or more results. These inputs and results are the messages that
characterize the system. All the entities in the Grid (i.e., users, computers, resources,
and instruments) are linked by messages, whose communication forms a distributed
system integrating the component parts. In a Peer-to-Peer Grid, access to services can
be mediated by “servers in the core”, or by direct Peer-to-Peer interactions between
machines “on the edge”. The server approach best scales within pre-existing
hierarchical organizations, but P2P approaches best support local dynamic
interactions. The Peer-to-Peer Grid architecture is a mix of structured (Grid-like) and
unstructured dynamic (P2P-like) services, with peer groups managed locally and
arranged into a global system supported by core servers. A key component of a Peer-
to-Peer Grid is the messaging subsystem, that manages the communication among
resources, Web Services and clients to achieve the highest possible system
performance and reliability.

Although Grid Services are appropriate for implementing loosely coupled P2P
applications, they appear to be inefficient to support an intensive exchange of
messages among tightly coupled peers. In fact Grid Services operations, as other
RPC-like mechanisms, are subject to an invocation overhead that can be significant
both in terms of activation time and memory/processing consumption [5]. The
number of Grid Service operations that a peer can efficiently manage in a given time
interval depends strongly on that overhead. For this reason, standard P2P protocols
based on a pervasive exchange of messages, such as Gnutella [6], are inappropriate
on large OGSA Grids where a high number of communications take place among
hosts.

To overcome this limitation, we propose a modified Gnutella protocol, named
Gridnut, which uses appropriate message buffering and merging techniques that make
Grid Services effective as a way for exchanging messages among Grid nodes in a P2P
fashion. Although the pure Gnutella protocol is not scalable (since the load on each
node grows linearly with the total number of queries), and several advancements have
been proposed to improve the performance of decentralized search (see for instance
[7]), we worked on it because it is a reference model for several more sophisticated
systems to which our approach can be also applied.

Gnutella defines both a protocol to discover hosts on the network, based on the
Ping/Pong mechanism, and a protocol for searching the distributed network, based on
the Query/QueryHit mechanism. Here we discuss only the Gridnut discovery
protocol, even if we are also designing the Gridnut search protocol.

The remainder of the paper is organized as follows. Section 2 presents the design
of the Gridnut protocol focusing on message routing and buffering rules. Section 3
compares the performance of Gridnut and Gnutella protocols under different network
and load conditions. Finally, Section 4 concludes the paper.

2 Gridnut Design

The two basic principles of the Gridnut protocol that make it different from Gnutella
are
a) Message buffering: to reduce communication overhead, messages to be delivered

to the same peer are buffered and sent in a single packet at regular time intervals.
b) Collective Pong: when a peer B must respond to a Ping message received from A,

it waits to receive all the Pong messages from its neighbors, then merge them with
its Pong response and send back the Pong collection as a single message to A.
Since the Gridnut protocol is derived from the Gnutella discovery protocol, we

adopt here the Gnutella terminology. Each Grid node executes a Gridnut servent, i.e.,
an application that performs both client and server Gridnut tasks.

A Gridnut servent is composed of three logical components (see Figure 1):
• Peer Service: a Grid Service through which remote Gridnut servents can connect

and deliver messages to this servent.
• Client Interface: an interface through which local users and applications can issue

Grid nodes discovery requests and get results.
• Network Module: a component that interacts with remote Gridnut servents on the

basis of the Peer Service and Client Interface input.

Peer
Service

Network
Module

Gridnut
servent

Client
Interface

 Remote
Gridnut
servents

 Remote
Gridnut
servents

Fig. 1. Gridnut servent components

2.1 Peer Service

The Peer Service is a persistent Grid Service, activated at the Gridnut servent’s
startup and terminated when the servent leaves the network. Each Peer Service is
assigned a globally unique name, the Grid Service Handle (GSH), that distinguishes a
specific Grid Service instance from all other Grid Service instances. This handle is
used within a Gridnut network to uniquely identify both the Peer Service and the
associated Gridnut servent. For instance, a valid handle could be:

http://p1.deis.unical.it:8080/ogsa/services/p2p/PeerService
The Peer Service supports three main operations:

• connect: used by a remote servent to connect this servent. The operation receives
the handle of the requesting servent and returns a reject response if the connection
is not accepted (for instance, because the maximum number of connections has
been reached).

• disconnect: used by a remote servent to disconnect this servent. The operation
receives the handle of the requesting servent.

• deliver: used by a connected servent to deliver messages to this servent. The
operation receives the handle of the requesting servent and an array of messages to
be delivered to this servent.

2.2 Messages

A servent connects itself to the Gridnut network by establishing a connection with
one or more servents currently in the network (a discussion of the connection and
disconnection phases is outside the scope of this paper). Once a servent joined
successfully the Gridnut network, it communicates with other servents by sending
and receiving Ping and Pong messages:
• A Ping is used to discover available nodes on the Grid; a servent receiving a Ping

message is expected to respond with a Pong message.
• A Pong is a response to a Ping; it includes the URL of a set of reachable Gridnut

servents, each one representing an available Grid node.
The logical structure of Ping and Pong messages is shown in Figure 2.

Fig. 2. Structure of Gridnut messages

The meaning of fields in Figure 2 is the following:
• GUID (Global Unique Identifier): a string identifying the message on the network.
• TTL (Time To Live): the number of times the message will be forwarded by

servents before it is removed from the network.
• Hops: the number of times the message has been forwarded by servents.
• Handles: an array of zero, one or more reachable Gridnut servents’ URLs.
For the purposes of this paper, Pong messages do not include further information
because here we use the discovery protocol to locate all the active nodes on the Grid.
The search protocol we are designing (not discussed in the paper) will be used for
host characterization, discovery of needed services, etc.

2.3 Data Structures

Each Gridnut servent uses a set of data structures to perform its functions.
A connection list (CL) is used to maintain a reference to all directly connected

servents (i.e., references to the connected servents’ Peer Services). Entries into the
CL are updated by the connect and disconnect operations.

A routing table (RT) is used to properly route messages through the network. The
RT contains a set of records having a structure [GUID, Handle], used to route
messages with a given GUID to a servent with a given Handle.

The results of the discovery tasks are stored into a result set (RS), that users and
applications can access for their purposes.

Finally, each Gridnut servent uses a set of internal transmission buffers, in which
messages are stored and processed before to deliver them to the proper servent. In

Ping: Pong:Hops TTL GUID GUID TTL Hops Handles

particular, a servent S0 uses two separated transmission buffers for each of its
neighbors:
• A pong buffer (Bp), in which Pong messages with an equal GUID are merged

before the delivery. The notation Bp(Sk) indicates the pong buffer in which S0
inserts Pong messages directed to a servent Sk.

• A fast buffer (Bf_), used for Ping and Pong messages that are to be fast delivered to
a given servent. We use the notation Bf_(Sk) to indicate the fast buffer in which S0
inserts messages directed to a servent Sk.
A thread Tk is associated to each couple of buffers Bp(Sk) and Bf_(Sk). Tk

periodically delivers the buffered messages to Sk, on the basis of the rules described
below.

2.4 Routing Rules

In Gridnut, like in Gnutella, Ping messages are forwarded to all directly connected
servents, whereas Pong messages are sent along the same path that carried the
incoming Ping message.

However, there are two main differences between Gnutella and Gridnut message
routing and transmission modalities:
1) In Gnutella implementations, messages are sent as a byte stream over TCP sockets,

whereas Gridnut messages are sent through a Grid Service invocation (by means of
the deliver operation).

2) In standard Gnutella implementations, each message is forwarded whenever it is
received, whereas Gridnut messages, as mentioned before, are buffered and
merged to reduce the number of Grid Service invocations and routing operations
executed by each servent.
Let consider a servent S0 having a set of neighbors S1...Sn. When a neighbor

delivers an array of messages to S0, each message is processed separately by S0 as
specified below.

Let us suppose that S0 received from Sk the message Ping[GUID=g, TTL=t,
Hops=h] (this notation means that g, t, and h are the actual values of GUID, TTL and
Hops of this Ping); S0 performs the following operations:
t = t - 1; h = h + 1;
if (RT contains a record with GUID=g)

insert a Pong [GUID=g, TTL=h, Hops=0, Handles=Ø] into Bf (Sk);
else if (t == 0)

insert a Pong [GUID=g, TTL=h, Hops=0, Handles={S0}] into Bf (Sk);
else {

insert a record [GUID=g, Handle=Sk] into RT;
insert a Pong [GUID=g, TTL=h, Hops=0, Handles={S0}] into Bp(Sk);
for (i:1..n; i ≠ k)

insert a Ping [GUID=g, TTL=t, Hops=h] into Bf (Si);
}

In the following we use the term “dummy Pong” to refer to a Pong having
Handles=Ø.

Let us suppose that S0 received from Sk the message Pong[GUID=g, TTL=t,
Hops=h, Handles=H] (where H is a set of servents’ handles); the following operations
are performed by S0:

t = t - 1; h = h + 1;
if (t == 0)

insert H into RS;
else if (RT contains a record R with GUID=g) {

Sr = value of the Handle field of R;
insert a Pong [GUID=g, TTL=t, Hops=h, Handles=H] into Bp(Sr);

}

Finally, to start a new discovery task, S0 must perform the following operations:
clear RS;
g = globally unique string; t = initial TTL;
insert the record [GUID=g, Handle=S0] into RT;
for (i:1..n)

insert a Ping [GUID=g, TTL=t, Hops=0] into Bf (Si);

The discovery task is completed when the RS contains the handles of all the
reachable servents in the network.

2.5 Buffering Rules

Let consider again a servent S0 connected to a set of N servents S1...Sn.
Within a pong buffer Bp(Sk), a set of counters are used. A counter Cg counts the

number of Pong messages with GUID=g till now inserted in Bp(Sk).
When a Pong P1 having GUID=g and containing a set H1 of Handles is inserted

into Bp(Sk), the following operations are performed:
Cg = Cg + 1;
if (Bp(Sk) contains a Pong P0 with GUID=g) {

add H1 to the current Handles set of P0;
if (Cg >= N)

mark P0 as ready;
}
else {

insert P1 into Bp(Sk);
if (Cg >= N)

mark P1 as ready;
}

Whenever a Pong message is marked as ready, it can be delivered to the servent Sk.
To avoid blocking situations due to missed Pong messages, a Pong could be marked
as ready also if a timeout has been reached. In the following we do not consider
failure situations, therefore no timeouts are used.

Differently from a pong buffer, messages inserted into a fast buffer Bf_(Sk) are
immediately marked as ready to be delivered to Sk.

As we have mentioned before, a thread Tk is used to periodically deliver the
buffered messages to Sk. In particular, the following operations are performed by Tk
every time it is activated:
get the set of ready messages M from Bp(Sk) and Bf (Sk);
deliver M to Sk through a single deliver operation;

The time interval Ia between two consecutive activations of Tk is a system parameter.
In the worst case, exactly a deliver operation can be invoked by S0 for each of its N
neighbors. Therefore, the maximum number of deliver operation invoked by S0

during an interval of time I is equal to (I / Ia) × N. Obviously, increasing the value of
Ia the number of deliver operations can be reduced, but this could produce a delay
in the delivery of messages. In our prototype we use Ia=5 msec.

3 Performance Evaluation

In this section we compare some experimental performance results of Gridnut and
Gnutella protocols. To perform our experiments we developed a Java prototype of a
Gridnut servent, which can also work as a standard Gnutella servent for comparison
purposes. In our prototype the Peer Service is an object accessed through Remote
Method Invocation (RMI). The goal of our tests is to verify how significantly Gridnut
reduces the workload - number of Grid Service operations - of each peer. In doing
this, we compared Gridnut and Gnutella by evaluating two parameters:
1) ND, the average number of deliver operations processed by a servent to

complete a discovery task. In particular, ND = P / (N × T_), where: P is the total
number of deliver operations processed in the network, N is the number of
servents in the network, and T is the overall number of discovery tasks completed.

2) ND(d_), the average number of deliver operations processed by servents that are
at distance d from the servent S0 that started the discovery task. For instance:
ND(0_) represents the number of deliver operations processed by S0; ND(1_)
represents the number of deliver operations processed by a servent distant one
hop from S0.
Both ND and ND(d_) have been evaluated considering seven different network

topologies. We distinguished the network topologies using a couple of numbers
{N,C}, where N is the number of servents in the network, and C is the number of
servents directly connected to each servent (i.e., each servent has exactly C
neighbors). The network topologies we experimented are characterized by {N,C}
respectively equal to {10,2}, {10,4}, {30,3}, {30,4}, {50,4}, {70,4} and {90,4}.
Notwithstanding the limited number of used servents, the number of exchanged
messages among servents was extremely high and performance trends are evident.

Resulting networks were completely connected, i.e., each servent can reach any
other servent in the network in a number of steps lower or equal than TTL.

3.1 Number of Deliver Operations

For each network topology, we measured ND under four load conditions. We use R to
indicate the number of discovery tasks that are initiated in the network at each given
time interval. The following values for R have been used: 1, 3, 5 and 10. In particular,
• R=1 indicates that, at each time interval, only one discovery task is initiated,

therefore only messages with a given GUID are simultaneously present in the
network;

• R=10 indicates that, at each time interval, ten discovery tasks are initiated,
therefore messages with up to ten different GUID are simultaneously present in the
network.

Table 1a and Table 1b report the ND measured in Gnutella and Gridnut networks,
respectively. ND values are measured for network topologies ranging from {10,2} to
{90,4}, under load conditions ranging from R=1 to R=10.

Table 1a. ND in Gnutella networks Table 1b. ND in Gridnut networks

{N,C} {10,2} {10,4} {30,3} {30,4} {50,4} {70,4} {90,4} {N,C} {10,2} {10,4} {30,3} {30,4} {50,4} {70,4} {90,4}
R=1 3.60 4.53 4.91 5.49 6.00 6.27 6.52 R=1 2.12 5.91 3.86 5.74 5.75 5.72 5.73
R=3 3.61 4.54 4.95 5.48 6.01 6.32 6.53 R=3 1.96 4.54 3.48 4.81 4.76 4.70 4.89
R=5 3.61 4.55 4.96 5.47 6.01 6.35 6.54 R=5 1.85 3.98 3.11 4.28 4.22 4.16 4.03
R=10 3.60 4.54 4.99 5.49 6.02 6.35 6.53 R=10 1.70 2.93 2.52 3.19 3.22 3.10 2.91

In Gnutella (see Table 1a), ND is not influenced by the R factor, apart from little

variations due to measurements errors. This is because in Gnutella no buffering
strategies are adopted, and one deliver operation is executed to move exactly one
message in the network. Obviously, the value of ND increases with the size of the
network, ranging from an average value of 3.61 in a {10,2} network, to an average
value of 6.53 in a {90,4} network.

In Gridnut (see Table 1b), ND depends from both network topology and load
condition. For a given value of R, ND mainly depends from the value of C (number of
connections per servent), whereas it varies a little with the value of N (number of
servents). For instance, if we consider the value of ND for R=1, we see that it varies
in a small range (from 5.72 to 5.91) for all the networks with C=4.

If we consider networks with the same value of N, we see that ND decreases when
the value of C is lower. For instance, the ND for a network {10,2} is lower than the
ND for a network {10,4}, with any value of R. Moreover, because a single deliver
operation is performed to deliver more buffered messages, for a given topology the
value of ND decreases when R increases.

Fig. 3. Comparison between ND in Gridnut networks and ND in Gnutella

networks

Figure 3 compares the values of ND in Gridnut and Gnutella in five network
topologies: {10,2}, {30,3}, {50,4}, {70,4} and {90,4}. For Gridnut networks the

1

2

3

4

5

6

7

{10,2} {30,3} {50,4} {70,4} {90,4}

Gnutella R=*
Gridnut R=1
Gridnut R=3
Gridnut R=5
Gridnut R=10

Network topology

N
um

be
r o

f d
el

iv
er

 o
pe

ra
tio

ns

values of ND when R=1, 3, 5, and 10 are represented, whereas for Gnutella networks
the average of the ND values measured when R=1, 3, 5, and 10 is represented.

We can see that the number of deliver operations is lower with Gridnut in all the
considered configurations. In particular, when the number of discovery tasks
increases, the Gridnut strategy maintains the values of ND significantly low in
comparison with Gnutella.

3.2 Distribution of Deliver Operations

Table 2a and Table 2b report the value of ND(d_) measured in Gnutella and Gridnut
networks, respectively. Notice that in the {10,4} network the maximum distance
between any couple of servents is 2, therefore no values have been measured for d >
2. For analogous reasons, there are no values for d > 4 in {30,3}, {30,4} and {50,4}
networks.

Table 2a. ND(d) in Gnutella networks Table 2b. ND(d) in Gridnut networks

{N,C} {10,2} {10,4} {30,3} {30,4} {50,4} {70,4} {90,4} {N,C} {10,2} {10,4} {30,3} {30,4} {50,4} {70,4} {90,4}
d=0 9.00 9.00 29.00 29.00 49.00 69.00 89.00 d=0 2.00 4.00 3.00 4.00 4.00 4.00 4.00
d=1 4.50 4.08 9.67 7.82 12.44 17.28 22.50 d=1 2.00 5.35 3.00 4.51 4.07 4.04 4.22
d=2 3.50 4.00 4.39 4.32 5.53 6.72 8.20 d=2 2.00 6.76 3.07 5.40 5.20 4.89 4.52
d=3 2.50 – 3.04 4.00 4.11 4.41 4.46 d=3 2.01 – 4.05 6.40 5.84 5.61 5.50
d=4 2.00 – 3.00 4.00 4.00 4.01 4.02 d=4 2.34 – 4.80 6.82 6.65 6.32 6.26
d=5 2.00 – – – – 4.00 4.00 d=5 2.82 – – – – 6.78 6.67

In Gnutella (see Table 2a) the value of ND(0_) is always equal to N-1. This is

because S0 receives, through its neighbors, a Pong message from each of other
servents in the network, and each of those messages are delivered to S0 by means of a
separated deliver operation. ND(1_) is always greater or equal than ND(0_) divided
by C. The equality is obtained only for networks in which C is sufficiently little
compared to N, as in {10,2} and {30,3} networks. In general, the value of ND(d_)
decreases when d increases, and it reaches the minimum value, equal to C, on the
servents more distant from S0.

In Gridnut (see Table 2b) the value of ND(0_) is always equal to C, because S0 must
process exactly a deliver operation for each servent directly connected to it. The
value of ND(d_) increases slightly with d, reaching its maximum on the servents more
distant from S0. ND(d_) increases with d because the number of “dummy Pong”
messages increase moving away from S0. Anyway, the value of ND(d_) remains
always of the order of C, even for d equal to TTL.

Comparing the results in Tables 2a and 2b, we can see that Gridnut implies a much
better distribution of deliver operations among servents in comparison with
Gnutella. In Gnutella, the servent that started the discovery task and its closest
neighbors must process a number of Grid Service operations that becomes
unsustainable when the size of the network increases to thousands of nodes. In
Gridnut, conversely, the number of Grid Service operations processed by each
servent remains always in the order of the number of connections per peer. This
Gridnut behaviour results in significantly lower discovery times since communication

and computation overhead due to Grid Services invocations are considerably reduced
as shown in Tables 2a and 2b. For example, considering a {90,4} network with R
ranging from 1 to 10, Gnutella discovery experimental times vary from 2431 to
26785 msec, whereas Gridnut times vary from 2129 to 8286 msec.

4 Conclusions

The Gridnut protocol modifies the Gnutella discovery protocol to make it suitable for
OGSA Grids. It uses message buffering and merging techniques to make Grid
Services effective as a way for exchanging messages among Grid nodes in a P2P
mode. We compared Gridnut and Gnutella performance considering different
network topologies and load conditions. Experimental results show that appropriate
message buffering and merging strategies produce significant performance
improvements, both in terms of number and distribution of Grid Service operations
processed.

We are extending Gridnut to support also distributed search by modifying the
original Query/QueryHit Gnutella mechanism. In doing this, the buffering mechanism
is maintained, whereas the collection mechanism is modified since the number of
responding nodes will be limited by the query constraints.

The Gridnut protocol can be an effective way to discover active nodes in a OGSA
Grids. Currently we are designing a Presence Management Service (PMS_) that uses
Gridnut as mechanism to discover active Grid nodes in a P2P fashion. Presence
management is a key aspect in large-scale Grids, in which hosts join and leave the
network dynamically over the time, as in typical P2P environments. The PMS allows
users and schedulers to efficiently locate active nodes and support execution of large-
scale distributed applications in dynamic Grid environments.

References

1. Foster, I., Iamnitchi, A.: On Death, Taxes, and the Convergence of Peer-to-Peer and Grid
Computing. 2nd International Workshop on Peer-to-Peer Systems, Berkeley (2003)

2. Talia, D., Trunfio, P.: Toward a Synergy between P2P and Grids. IEEE Internet Computing,
vol. 7 n. 4 (2003) 94-96

3. Foster, I., Kesselman, C., Nick, J. M., Tuecke, S.: The Physiology of the Grid: An Open
Grid Services Architecture for Distributed Systems Integration. http://www.globus.org/
research/papers/ogsa.pdf

4. Fox, G., Gannon, D., Ko, S., Lee, S., Pallickara, S., Pierce, M., Qiu, X., Rao, X., Uyar, A.,
Wang, M., Wu, W.: Peer-to-Peer Grids. http://grids.ucs.indiana.edu/ptliupages/publications/
p2pGridbook.pdf

5. The Globus Alliance: Globus Toolkit 3.0 - Performance Tuning Guide. http://www-
unix.globus.org/toolkit/3.0/ogsa/docs/performance_guide.html

6. Clip2: The Gnutella Protocol Specification v.0.4. http://www9.limewire.com/developer/
gnutella_protocol_0.4.pdf

7. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and Replication in Unstructured
Peer-to-Peer Networks. 16th ACM Int. Conference on Supercomputing, New York (2002)

