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ABSTRACT

The volunteer computing paradigm, along with the tailored use of peer-to-peer communication, has
recently proven capable of solving a wide area of data-intensive problems in a distributed scenario. The
MINING@HOME framework is based on these paradigms and it has been implemented to run a wide range
of distributed data mining applications. The efficiency and scalability of the architecture can be fully
exploited when the overall task can be partitioned into distinct jobs that may be executed in parallel,
and input data can be reused, which naturally leads to the use of data cachers. This paper explores the
opportunities offered by MINING@HoME for coping with the discovery of classifiers through the use of
the bagging approach: multiple learners are used to compute models from the same input data, so as to
extract a final model with high statistical accuracy. Analysis focuses on the evaluation of experiments
performed in a real distributed environment, enriched with simulation assessment - to evaluate very
large environments - and with an analytical investigation based on the iso-efficiency methodology. An
extensive set of experiments allowed to analyze a number of heterogeneous scenarios, with different
problem sizes, which helps to improve the performance by appropriately tuning the number of workers

and the number of interconnected domains.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The global information society is a restless producer and ex-
changer of huge volumes of data and an increasing effort is needed
for the extraction of valuable information, useful for business
and scientific applications, from data. Fortunately, the notable ad-
vancements and the advent of new paradigms for distributed com-
puting, such as Grids, P2P systems, and Cloud Computing, help us
in many scenarios to cope with this data deluge. The efficiency of
distributed approaches to data analysis has improved for several
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reasons: (i) the wide availability of Cloud infrastructures, which al-
low even a small company to offload applications to remote data
centers or to integrate on-premises hosts with elastic resources
utilized in a pay-per-use fashion; (ii) data links have larger band-
widths than before, enabling the assignment of tasks and the trans-
mission of related input data in a distributed scenario; (iii) data
caching techniques can help to reuse data needed by different
tasks, (iv) Internet computing models such as the “public resource
computing” or “volunteer computing” paradigm facilitate the use
of spare CPU cycles of a large number of computers.

The algorithms, methodologies and architectural efforts aiming
to extract knowledge in a distributed scenario are collectively
known as “distributed data mining” [1,2]. Knowledge discovery is
speeded up by concurrently executing a number of data mining
tasks on different data subsets: specific attention must be given
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to the efficient combination of distributed analysis of data and
centralized collection of results.

This paper deeply investigates the performance of MINING@
HoMmE, a framework designed to solve distributed data mining
problems through the distribution of data and parallelization of
mining tasks. The approach used in the framework combines
solutions developed in two different fields, volunteer computing
and peer-to-peer data mining. Volunteer computing [3] has
become a success story for many scientific applications, as a means
for exploiting huge amount of low cost computational resources
with a few manpower getting involved. So far this field has
experienced little integration with the area of distributed and peer-
to-peer data mining. The main reason for this is the centralized
nature of popular volunteer computing platforms available today,
such as BOINC [4] and XtremWeb [5,6], which requires all data to
be served by a group of centrally maintained servers. However, the
centralized approach can generate bottlenecks and single points
of failure in the system. Moreover, a centralized solution is not
naturally suited for applications in which input data files are
initially stored in distributed locations.

These considerations inspired the design of the MINING@HOME
architecture, which exploits the methodologies of volunteer com-
puting and tailors them to properly match the characteristics
and benefits of peer-to-peer protocols and algorithms. The MIN-
ING@HOME architecture is data-oriented, and it exploits distributed
cache servers for the efficient dissemination and reutilization of
data files. This kind of solution can improve the performance of
public computing systems, in terms of efficiency, flexibility and
robustness, and it can also enlarge the use of the public comput-
ing paradigm, since any user is allowed to define its own data
mining application and specify the jobs that will be executed by
remote volunteers. The approach differs from the centralized ar-
chitectures, such as that one used in BOINC, in that MINING@HOME
integrates P2P networking directly into the system, as job descrip-
tions and input data are provided to a P2P network instead of being
directly delivered to the hosts that execute the tasks.

In [7], MINING@HOME was assessed through an early simulator,
and it proved able to extract closed frequent itemsets from a
transactional database. After those early simulations, we worked
to provide a full implementation in Java of the framework, and
now it can efficiently support the execution of different data
mining applications in distributed scenarios. To the best of our
knowledge, MINING@HOME is the first implemented volunteer
computing framework that run data mining tasks in a distributed
environment. In [8] the basic implementation of the framework
was sketched together with a preliminary evaluation on ensemble
learning tasks. The ensemble learning approach combines multiple
mining models together instead of using a single model in
isolation [9]. In particular, the “bagging” strategy consists of
sampling an input dataset multiple times, to introduce variability
between the different models, and then extracting the combined
model with a voting technique or a statistical analysis.

This paper extends the work presented in [8] in many ways:
(i) the experimental testbed was extended from two to four
computing domains, and the size of input data was extended
from 2 million instances to 5 million instances of a reference
dataset; (ii) experimental evaluations were complemented with
a simulation tool that incorporates data coming from real
experiments (for example, job durations) enabling the assessment
of wider scenarios, with up to 128 workers distributed among
32 domains; (iii) mathematical analysis, based on iso-efficiency
methodologies, was used to investigate how the performances, in
particular in terms of execution time and speedup, are related to
the number of workers, the number of domains and the dataset
size. The results confirm the feasibility of the approach, the
scalability and efficiency of the framework, and also show that

it may be possible to optimize the performance by choosing the
appropriate system and network configuration, for example, by
tuning the number of workers and the number of domains on
which the workers are distributed.

The reminder of the paper is organized as follows: Section 2
presents the architecture of MINING@HOME and the peer-to-peer
protocol used for the assignment of tasks to workers. Section 3
discusses the ensemble learning strategy. Section 4 illustrates
the scenario of the experiments, presents the results obtained
in a real testbed and via simulation, and uses the iso-efficiency
model to separately evaluate the contributions of useful and
overhead computation. Finally, Section 5 discusses related work,
specifically in the fields of distributed data mining and public
resource computing, and Section 6 concludes the paper.

2. Architecture and implementation of Mining@home

As already mentioned, a simulator of the MINING@HOME frame-
work was introduced in [7] for solving the problem of finding
closed frequent itemsets in a transactional database, and simula-
tion results were reported. After that, the MINING@HOME system
was fully implemented and used for coping with a number of dif-
ferent data analysis scenarios involving the execution of different
data mining tasks in a distributed environment. The architecture
of the MINING@HoME framework distinguishes between nodes ac-
complishing the mining task and nodes supporting data dissemi-
nation. In the first group:

o the data source is the node that stores the dataset to be read
and mined.

e the job manager is the node in charge of decomposing the
overall data mining application in a set of independent tasks.
This node produces a job advert document for each task, which
describes its characteristics and specifies the portion of the
data needed to complete the task. The job manager is also
responsible for the collection of results.

e the miners are the nodes available for job execution. Assign-
ment of jobs follows the “pull” approach, as required by the vol-
unteer computing paradigm.

Data exchange and dissemination is done by exploiting the
presence of a network of super-peers for the assignment and
execution of jobs, and adopting caching strategies to improve the
efficiency of data delivery. Specifically:

e super peer nodes constitute the backbone of the network.
Miners connect directly to a super-peer, and super-peers are
connected with one another through a high level P2P network.

o data cachers nodes operate as data agents for miners. In fact,
data cachers retrieve input data from the data source or other
data cachers, forward data to miners and store data locally to
serve miners directly in the future.

The super-peer network allows the queries issued by miners to
rapidly explore the network. The super-peer approach is chosen
to let the system support several public computing applications
concurrently, without requiring that miners know in advance the
location of the job manager and/or of the data cachers and the data
source. Super-peers are used as rendezvous points that match job
queries issued by miners with job adverts generated by the job
manager.

The algorithm is illustrated with reference to Fig. 1. Firstly,
the job manager partitions the data mining application in a set of
tasks that can be executed in parallel. For each task, a “job advert”
specifies the characteristics of the task to be executed and the
related input data. An available miner issues a “job query” message
to retrieve one of these job adverts. If the miner knows the location
of the job manager, it delivers the query directly to it. If the location
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Fig. 1. Architecture of Mining@home.

of the job manager is unknown, the job query travels the network
through the super-peer interconnections (messages labeled with
number 1 in the figure). When a job advert is found that matches
the job query, the related job is assigned to the miner (message 2
in the figure). The miner is also informed, through the job advert,
about the data that it needs to execute the job. The required input
data can be the entire dataset stored in the data source, or a subset
of it.

The miner does not download data directly from the data
source, but issues a query to discover a data cacher (message 3).
This query can find several data cachers, each of which sends
an ack to the miner (message 4). After a short time interval, the
miner selects the most convenient data cacher according to a
given strategy (message 5), and delegates to it the responsibility
of retrieving the required data. The data cacher issues a “data
request” (message 6) to discover the data source or another data
cacher that has already downloaded the needed data. The data
cacher receives a number of acks from available data cachers
(message 7), downloads the data from one of those (message 8),
stores the data, and forwards it to the miner (message 9). Now the
miner executes the task and, at its completion, sends the results to
the job manager (message 10).

The algorithm can be used in the general case in which the
location of job manager, data source and data cachers is unknown
to miners and other data cachers. For example, an applicative
scenario, examined in [10], is represented by an environmental
sensor network where big quantities of complex data (humidity,
temperature, soil moisture, leaf wetness, solar radiation, etc.) are
available and constitute a valuable source of information to be
exploited for a better understanding of natural phenomena. Such
kind of networks are highly dynamic, because some sensor nodes
can be switched on/off (for energy or environmental reasons),
others can kept some storage or computational functionalities,
etc. In this context, the location of data sources, data cachers
and miners is unknown a-priori and they can be dynamically
connected/disconnected to the network over the time. The super-
peer communication approach described here can be chosen to run
several public computing applications concurrently, even in such
a dynamic environment. In more static scenarios the algorithm
can be simplified. Specifically, if the location of data source and

data cachers are known, a job query (message 1) can be delivered
directly to the job manager, instead of traveling the network, and
messages 3-4 and 6-7 become unnecessary. Such simplifications
are adopted for the experimental evaluation discussed in Section 4.

The MINING@HOME prototype has been implemented in Java,
JDK 1.7. As depicted in Fig. 1, the framework is built upon five types
of nodes: job manager, data source, data cacher, super-peer and
miner. Each node is multi-threaded, so that all tasks (send/receive
messages, retrieve data, computation) are executed concurrently.
Each miner exploits a Mining Algorithm Library, which contains the
algorithms corresponding to the mining tasks.

3. Ensemble learning and bagging

Ensemble learning is a machine learning paradigm where
multiple learners are trained to solve the same problem. In contrast
to ordinary machine learning approaches, which learn a single
model from training data, ensemble methods build a set of models
and combine them to obtain the final model. In a classification
scenario, an ensemble method constructs a set of base classifiers
from training data and performs classification by taking a vote on
the predictions made by each classifier. As proved by mathematical
analysis, ensemble classifiers tend to perform better (in terms of
error rate) than any single classifier [ 11]. The basic idea is to build
multiple classifiers from the original data and then aggregate their
predictions when classifying unknown examples.

Bagging, also known as “bootstrap aggregating”, is a popular
ensemble learning technique [12]. Multiple training sets, or
bootstrap samples, are sampled from the original dataset. The
samples are used to train N different classifiers, and a test instance
is labeled by the class that receives the highest number of votes
by the classifiers. A logical view of the bagging method is shown
in Fig. 2. Each bootstrap sample has the same size as the original
dataset. Since sampling is done with replacement, some instances
may appear several times in the same bootstrap sample, while
others may not be present at all. On average, a bootstrap sample D;
contains approximatively 63% of the original training data. In fact,
if the original dataset contains n instances, the probability that a
specific instance is sampled at least once is: 1 — (1 — 1/n)" —
1—1/e ~ 0.631, where the approximation is valid for large values
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Fig. 2. Alogical view of the bagging technique.

of n. This implies that two different samples share, on average,
about 0.631 - 0.631 ~ 40% of the n instances.

An application implementing the bagging technique can nat-
urally exploit the MINING@HOME system. The described scenario
matches the two main conditions that must hold in order to prof-
itably exploit the features of MINING@HOME:

1. Base classifiers are independent. Each base classifier can be
mined independently from each other. Thus, it is possible to have
a list of mining tasks to be executed, each one described by a
distinct job descriptor. This fits the MINING@HOME architecture:
each available miner takes the task of building one base classifier
from a bootstrap sample of data, and at the end of execution
transmits the discovered classification model to the job manager.
Then, the miner may give its availability for a new job.

2. Data can be re-used. As mentioned before, in general different
jobs need overlapping portions of input data, which is the rationale
for the presence of distributed cache servers. After being assigned a
job, the miner asks the input data to the closest data cacher, which
may have already downloaded some of this data to serve previous
requests. The data cacher retrieves only the missing data from the
data source, and then sends the complete bootstrap sample to the
miner. Of course, this leads to save network traffic and to a quicker
response from the data cacher.

4. Experimental evaluation

The performance of the MINING@HOME framework has been
evaluated on a classification problem tackled with the bagging
technique. We deployed the framework in a real network
composed of four computing domains connected through a Wide
Area Network, as depicted in Fig. 3. Eight miners per domain
are available, each hosted by a different node. Moreover, at each
domain a further node is used to host both the super-peer and the
data cacher. The node hosting the data source belongs to one of the
domains, but an artificial delay has been introduced to simulate the
scenario in which the data source is external to the domains.

Each node runs an Intel Pentium 4 processor with CPU
frequency 1.36 GHz and 2 GB RAM. The inter-domain transfer rate
between the data source and each of the domains (more precisely,
the super-peers) is about 4 MB/s, while the intra-domain transfer

rate ranges between 8.2 MB/s and 8.7 MB/s. The experiments were
performed in a scenario where the job manager builds 128 base
classifiers, by exploiting the bagging technique, on a transactional
dataset D. The application proceeds as follows. The job manager
builds ajob list, containing the descriptions of the jobs that must be
assigned to available miners. Each job is a request of building a J48
base classifier from a specific bootstrap sample. When all the jobs
are executed, the job manager collects the extracted base classifiers
and combines them to produce the final ensemble classifier.

The input dataset D is a subset of the kddcup99 dataset.! The
dataset, used for the KDD’99 Competition, contains a wide amount
of data produced during seven weeks of monitoring in a mili-
tary network environment subject to simulated intrusions. More
in detail, it is composed of 5 million transactions, for a total
size of 709 MB. Originally, it was constructed from a simulation
performed by the Defense Advanced Research Projects Agency
(DARPA) and was released for a classifier learning contest. The
dataset is very compute-demanding due to both its size and a great
inner variability among features. For such a reason, it is considered
a valuable benchmark data to test the scalability of high perfor-
mance pattern recognition tasks, and it has been exploited to val-
idate the efficiency and effectiveness of several machine learning
algorithms as well as distributed architectures (as in [13-16]).

Our evaluation followed two parallel avenues: we obtained
experimental data for scenarios with 2-4 domains and 2 to 32
miners. Fig. 4 reports the turnaround time (from the time the
application is started to the completion time of the last job) vs.
the number of miners, ranging from 1 to 32, for different values of
the dataset size |D|. The miners are equally distributed among the
number of domains, except when only one or two miners are used.
The results confirm the notable advantage deriving from the use of
multiple miners. For example, with |D| corresponding to 5 million
transactions, the turnaround time decreases from 84 h (3.5 days),
by using only one miner, to about 3 h when 32 miners are used.
Fig. 5 reports the speedup measured in the same experiments.
The scalability of the framework is confirmed both by the very

1 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.
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good values of speedup - optimum/linear speedup is reported as
a reference - and by the fact that the speedup increases with the
size of the problem, here represented by the dataset size.

For wider scenarios, we performed simulation tests using an
ad hoc event-based simulator written in Java. An event queue
is used to exchange messages and data among Java objects
associated with the system components, i.e., super-peers, miners,

8 Miners - 4 Domains (sim) ---O--
8 Miners - 4 Domains (tests) —&—
32 Miners - 4 Domains (sim) ---3--
10 32 Miners - 4 Domains (tests) —&—

Time (hours)

Dataset size (millions of instances)

Fig. 6. Turnaround time vs. the size of the dataset, using 8, 32 miners evenly dis-
tributed among four domains. Experimental and simulation results are compared .

data source and data cachers. To validate the simulator we first
assessed simulation results by comparing them with experimental
ones. Moreover, the simulator uses some data obtained in real
experiments, specifically, the sequential execution time of jobs for
any dataset size, the intra-domain and inter-domain transfer rates
and the time needed to extract the final model. This data are used
as parameters of the simulator to obtain the behavior of the system
on a larger scale. Fig. 6 reports the turnaround time vs. the dataset
size |D|, with 8 and 32 miners evenly distributed among the four
domains. The figure shows that the simulator results are very close
to those obtained from using the fully implemented system. This
result validates the simulator and allowed us to use it to analyze
larger scenarios, with the number of domains Np ranging from
2 to 32, and the number of miners Ny ranging from 2 to 128.
Accordingly, the results reported in the following were obtained
through simulation unless otherwise stated.

Results shown in Figs. 7 and 8 prove the ability of the framework
to scale with the system size. The experiments were performed
varying the number of available miners and for different numbers
of domains, from 1 to 32, while the dataset size |D| is set to
4 millions instances. In multiple domain scenarios the miners
are equally partitioned among the domains. The values of the
turnaround time are reported in Fig. 7, using a log scale due to
the wide range of obtained values. The turnaround time needed
to process 4 million instances decreases from about 66 h (about
4000 min) with one miner to about 40 min with 128 miners. This
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shows that using a large number of miners is highly efficient when
the problem is big. This is an index of good scalability properties,
since scalable systems can be defined as those for which the
number of workers that optimizes the performance increases with
the problem size [17].

Fig. 8 reports the values of speedup—defined as the ratio of the
turnaround time obtained with a single node to the turnaround
time computed with n nodes. Up to 32 nodes, the trend is very
close to the optimal one (i.e., linear, shown for reference). When
the number of nodes is larger (64 or 128), the slope of the
curve begins to decrease since the overhead time, mostly related
to communications among the miners, becomes relevant with
respect to the processing time. When using 64 or 128 miners, we
also notice a non-negligible impact of the number of domains on
which the miners are distributed. However, speedup obtained on
128 nodes is about 100, corresponding to an efficiency value equal
to 0.8. The influence of the number of domains is discussed with
more details in the following section.

4.1. Efficiency evaluation

To gain a deeper understanding of the system performance, we
used the “iso-efficiency” [ 17] methodology commonly adopted for
the analysis of parallel and distributed algorithms. Let T; be the
sequential execution time, i.e., the time needed by a single miner to
execute all the mining jobs sequentially, and T, the total overhead
time (mostly due to data transfers) experienced when the jobs are
distributed among multiple miners. The total time spent by all the
processors to complete the application can be expressed as:

nT, =T+ T, (1)

6 T T T T T T

To, 8 miners (sim) —>X—
S5t To, 8 miners (model) --X--
To, 32 miners (sim) —&—
To, 32 miners (model) --{=--
4t To, 128 miners (sim) —&—
To, 128 miners (model) ---O--

Time (hours)

0.1 05 1 2 3 4 5

Dataset size (millions of instances)

Fig. 9. Overhead time T, vs. the size of the dataset, using 8, 32 and 128 miners,
evenly distributed among four domains. Simulation results are compared to the
theoretical prediction.

in which n is the number of miners and T, is the parallel execution

time when n miners are used in parallel. The speedup S - defined as
. . _ T ___nT,

the r.atlo between.TS and T, - is tben S = Grtyjm = i1, and the

efficiency E - defined as the ratio between the speedup and the

number of miners - can be expressed as E = ﬁ Therefore,
s

the efficiency of the parallel computation is a function of the ratio
between T, and T;: the lower this ratio, the higher the efficiency.

Let us start examining T,. The total overhead time comprises the
time needed to transfer data from the data source to data cachers
and from these to miners. Both types of download are composed
of a start up time (needed to open the connection and start the
data transfer) and a time that is proportional to the amount of
transferred data. Start up times are negligible with respect to
the actual transfer time, therefore an approximation for T,, in a
scenario with Np domains, is:

_Ip| & (eIl
To—&'ND‘i‘Z(?'Nl) (2)

i=1 1

where |D| is the input dataset size, Rps is the average rate at which
data is downloaded from the data source to a data cacher, R; is
the download rate from a data cacher to the local miners within
the i-th domain, and N; is the number of jobs assigned to the i-th
domain. The expression of the first term derives from the necessity
of delivering the whole dataset, in successive data transfers, to all
the data cachers. For any of the N; jobs that are executed under
domain i, a fraction f (with f >~ 0.63) of the dataset is downloaded
by the miner from the local data cacher, which explains the second
term.

In the following, the impact of the dataset size, the number
of domains and the number of miners on the values of T, are
discussed. The overhead time increases linearly with the dataset
size |D|. This is clearly visible in Fig. 9, which reports the values
of T, versus the dataset size, obtained with 8, 32 and 128 miners.
The figure compares the simulation values to those obtained with
expression (2) and shows that the gap between analytical and
simulation results is small for any value of |D|.

The number of domains Np influences the two terms of expres-
sion (2) in different ways. The first term is explicitly proportional to
Np. Conversely, the second term is inversely proportional to Np in
an implicit fashion: when a given number of miners are distributed
on alarger number of domains, each data cacher must serve alower
number of local miners. As a consequence, the intra-domain trans-
fer rate R; is higher - and the value of the second term is lower -
when the number of domains increases. Finally, let us examine the
impact of the number of miners on T,. When more miners request
data from the local data cacher at the same time, the intra-domain
transfer rate R; tends to decrease, because the uplink bandwidth of
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Fig. 11. Sequential time Ty vs. the size of the dataset.

the data cacher is shared among multiple data connections. Since
the frequency of concurrent downloads increases when more min-
ers are active in the same domain, the overall value of T, increases
with the number of miners.

Fig. 10 shows how the overhead time depends on the number of
miners and on the number of domains, when 4 millions instances
are processed. The considerations made above are confirmed.
In particular: (i) the overhead time increases with the number
of miners, but the increase rate is lower when the miners are
distributed on a larger number of domains; (ii) due to the opposite
relationships of the two terms of expression (2) with respect to | D|,
itis possible to optimize the number of domains: for example, with
128 miners, the overhead time is reduced when distributing the
miners to a number of domains comprised between 4 and 16.

As opposed to T,, the sequential time T; does not depend neither
on the number of domains or on the number of miners, as it is
simply the sum of job computation times. Of course, T; does depend
on |D|, because the length of each job increases with the size of
input data. Fig. 11 reports the value of the sequential time vs. the
dataset size, computed experimentally and averaged over 20 runs.

To help analyze the efficiency, the values of T; and T,, measured
in a scenario with four domains have been plot together in Fig. 12,
using a log scale due to the wide range of reported values. The three
curves for T, are obtained in the cases that 8, 32 and 128 miners
are used to execute the 128 jobs. As the figure scale is logarithmic,
the ratio T,/T; - which determines the value of efficiency - can
be evaluated as the distance, on the logarithmic plot, between
the curves corresponding to T, and T;. In Fig. 12 it is interesting
to notice that the ratio T,/Ts notably decreases in the first part
the curve (i.e., the distance between the corresponding curves
increases), which is a sign that the efficiency of the architecture
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Fig. 12. Sequential time T; and overhead time T, vs. the size of the dataset, using
8, 32 and 128 miners, evenly distributed among four domains.

improves with the problem size. However, when the number of
instances is higher than two millions instances, the gap between
Ts and T,, as well as the efficiency, becomes more stable.

Figs. 13 and 14 report the relative weighs of T; and T, when
using, respectively, 32 and 128 miners. Each figure shows the
results obtained with different values of the dataset size |D| (from
0.1to 5 millions instances) and different numbers of domains (from
1 to 32). The main conclusions that can be derived from these plots
are:

e the weight of the overhead time is always relatively low -
therefore, the efficiency is high - except a few circumstances
(e.g., when processing a dataset size of 100,000 instances and
128 miners are concentrated in only one domain). This is
essential to justify the adoption of a distributed solution: if the
overhead time were predominant, the benefit derived from the
parallelization of work would not compensate the extra time
needed to transfer data to remote data cachers and miners.

e the efficiency is lower when using more miners, due to the
impact of concurrent downloads of multiple miners from the
same data cachers. In fact, the relative weight of T, is higher in
Fig. 14 with respect to Fig. 13. However, using more miners is
still very useful because it allows the value of turnaround time
to be significantly reduced, as shown in Figs. 7 and 8;

e the efficiency depends on the number of domains on which the
miners are distributed. Using from 4 to 8 domains is a good
choice in all the considered scenarios.

The last consideration is better highlighted in Figs. 15 and 16,
which report the turnaround time and the efficiency versus the
number of domains, when using 128 miners. Specifically, Fig. 15
shows that the optimal distribution of miners among the domains
is particularly relevant when the problem is bigger. In Fig. 16 it
is appreciated that the efficiency is always higher than 0.68 and
reaches values up to 0.85 when correctly combining the number of
miners and the number of domains.

5. Related work

The approach we used in the implementation of the distributed
data mining framework we are discussing inherits methodologies
from two specific fields, peer-to-peer (P2P) computing and public
resource computing. The following describes some state-of-the art
about current contributions of these two fields to data mining
analysis.

P2P data mining is emerging as a new distributed computing
paradigm for many novel applications, where storage of data and
mining analysis are performed by exploiting a large number of
peers with little or no centralized coordination. Even though it
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is a recent research area, some interesting contributions have
been published in the last years. An important challenge is that
standard centralized algorithms can be communication-expensive
and impractical because of synchronization requirements. In [1],
a scalable and robust distributed algorithm for decision tree
induction in large P2P environments is presented. In order
to achieve good scalability in a distributed environment, the
proposed technique works in a completely asynchronous manner
and offers low communication overhead. In [18] an approach
for mining association rules is proposed for a scenario where
databases are partitioned in a P2P computer network. The
algorithm combines sequential association rule mining, executed
locally at each node, with a majority voting protocol that discover
the association rules valid for the combined database. In particular,
each node in the system can discover a subset of rules by using
information gathered from its neighborhood. This locality property
ensures good scalability in very large networks.

In [19], the problem of keeping a mining model up-to-date in
P2P networks is analyzed. This is an important issue in systems,
like sensor networks, which generate and process huge amounts
of data every day, and therefore are highly time varying. As an al-
ternative to the simple but inefficient solution of periodically re-
computing the model, the authors propose a reactive approach.
Specifically, a highly efficient local algorithm detects when the L2
norm of the data exceeds a given threshold and uses it as a feed-
back loop for monitoring complex predicates on the data. As soon
as the L2 algorithm detects that the current model no longer repre-
sents the data, the model is rebuilt. Experiments with the k-means
algorithm are claimed to achieve good accuracy with costs that, on
stationary periods, are negligible.

The issue of analyzing multivariate regression in large P2P en-
vironments is tackled in [20]. In particular, the authors propose
an efficient distributed algorithm that monitors the quality of the
current regression model, and rebuilds the model if it appears to
be outdated. The algorithm, despite its distributed nature, exploits
only local information, which guarantees low monitoring cost,
as pointed out by experimental results. The algorithm has been
designed for distributed inferencing, data compaction, data model-
ing and classification tasks for many distributed domains, like bio-
informatics, astronomy, social networking, sensor networks and
web mining.

In [21] the authors propose a sampling-based technique for
approximate answering of ad-hoc aggregation queries in P2P
databases. In particular, they deal with the problem of computing
a high-quality random sample of a P2P database, an issue compli-
cated by three main factors: (i) data is distributed and unfairly par-
titioned among a large number of peers; (ii) within each peer the
data is often highly correlated, and may not be representative of
the whole distributed database and, (iii) even collecting a random
sample from the peers is a difficult task. To counter these problems,
an adaptive two-phase sampling approach, based on random walks
over the P2P network and on block-level sampling techniques, has
been proposed and extensively experimented in different scenar-
ios. In [22], the authors describe a technique for the execution of
top-k retrieval tasks in P2P information infrastructures. To this
purpose, an algorithm based on the collection of query statistics is
proposed. In particular, in order to minimize communication cost,
the algorithm exploits local indexing to optimize the necessary
query routing and process intermediate results in inner network
nodes. Experimental evaluation shows that the technique scales
well to large numbers of peers, and efficiently adapts to dynamic
additions/deletions of peers.

The authors of [23] cope with the problem of learning from
multiple information sources, both labeled and unlabeled, which
cannot be integrated into a single information source. They
introduce two propagation methods to label a set of training

objects in unlabeled sources, in accordance with the class label
information extracted from labeled sources and with the internal
structure information of unlabeled sources. Then they use the
ensemble learning model, as in our case, to predict the labels of
test objects. In [24] a sentiment analysis on Twitter is performed
using an ensemble learning approach. In particular, first the
ensemble classifiers are trained using supervised and semi-
supervised learning; second, sentiment lexicons and bag-of-words
are combined for the comparison and, finally, lexicons and bag-of-
words are used in supervised and semi-supervised data contexts.

So far, the research ares of Distributed Data Mining and vol-
unteer computing have experienced little integration. Volunteer
computing is a form of network based distributed computing,
which allows public participants to share their idle computing re-
sources, and helps run computationally expensive projects. The
volunteer computing [3] paradigm has been exploited in several
scientific applications (i.e., Seti@home, Folding@home, Einstein@
home), but its adoption for mining applications is more challeng-
ing. The two most popular volunteer computing platforms avail-
able today, BOINC [4] and XtremWeb [5,6], are especially well suited
for CPU-intensive applications but are somewhat inappropriate for
data-intensive tasks, for two main reasons. First, the centralized
nature of such systems requires all data to be served by a group of
centrally maintained servers. Consequently, any server in charge
of job assignment and data distribution is a clear bottleneck and
a single point of failure for the system. For example, the BOINC
task server, described and analyzed in [25], partitions the work into
multiple tasks, dispatches them to clients, and processes the re-
turned results. Second, the client/server data distribution scheme
does not offer valuable solutions for applications in which input
data files can be initially stored in distributed locations or may be
reused by different workers. A recent survey paper on volunteer
computing [26] confirms that data management is among the main
open problems of volunteer computing and solicits future research
work to design and implement frameworks that can efficiently in-
tegrate data coming from heterogeneous sources and handle par-
tial data results.

Some approaches to overcome such limitations have been re-
cently proposed. In [27] the authors analyze, through a simulation
framework, a volunteer computing approach that exploits decen-
tralized P2P data sharing practices. The application scenario dis-
cussed in [27] concerns the analysis of gravitational waveforms for
the discovery of user specified patterns that may correspond to
orbiting neutron stars. In [7], an approach inspired by the volun-
teer paradigm was devised to cope with the problem of identifying
closed frequent itemsets in a transactional dataset. The function-
ality and performance of the framework were evaluated through
a simulation study, tailored to that specific application domain.
After that the framework, named MINING@HOME, was fully im-
plemented and made capable of coping with a number of differ-
ent data analysis scenarios involving the execution of data mining
tasks in a distributed environment. To the best of our knowledge,
MINING@HOME is the first fully implemented public resource com-
puting framework that executes data mining tasks over distributed
data. In particular, its data-oriented architecture as well as its pro-
tocols and algorithms are general and can be easily adapted to a
wide set of distributed data mining problems.

The authors of [28] analyze the possible future integrations of
the volunteer computing and crowdsourcing paradigms. Indeed,
volunteer computing can be considered as a form of crowdsourc-
ing, in which solving various classes of problems, for example de-
cision making problems, requires contributions to a large group of
people, and each contributor adds a small portion to the overall
result.

More in general, several distributed data mining algorithms
and systems have been proposed. In [1], a scalable and robust
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distributed algorithm for decision tree induction in distributed
environments is presented. In order to achieve good scalability
in a distributed environment, the proposed technique works in a
completely asynchronous manner and offers low communication
overhead. A distributed meta-learning technique is proposed
in [29], where knowledge probing is used to extract descriptive
knowledge from a black box model, such as a neural network. In
particular, probing data is generated using various methods such
as uniform voting, trained predictor, likelihood combination, etc.
Differently from the classical meta-learning, the final classifier is
learned from the probing data.

6. Conclusion

This paper discussed how MINING@HOME, a tool that exploits
the public resource paradigm to implement large-scale data
mining applications in a peer-to-peer infrastructure, can be used
to run complex data analysis applications based on ensemble
learning, a machine learning paradigm where multiple models
are trained to solve the same problem and achieve better
statistical accuracy. MINING@HOME has been executed on a
real deployment in which a classifier model is extracted from
transactional datasets. Performance results have been obtained
in a distributed scenario where up to 32 miners have been run
on four interconnected domains. Simulation experiments have
been performed to extend the evaluation to much larger scenarios
and networks. Furthermore, a model based on the iso-efficiency
methodology has been used to investigate speedup and efficiency
metrics and give a mathematical foundation to experimental
results. The results confirmed the applicability of the framework
as well as its efficiency and scalability. Moreover, the flexibility
of MINING@HOME offers the user the possibility of optimizing the
performance by choosing the appropriate system and network
configuration, for example, by tuning the number of workers and
the number of domains on which the workers are distributed.
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