
Article Title

Infrastructures for High-Performance Computing: Cloud Computing Development Environments

Author and Co-author Contact Information

Fabrizio Marozzo (corresponding author)
c/o DIMES – University of Calabria
Via P. Bucci 42c
87036 Rende (CS)
Italy
Email: fmarozzo@dimes.unical.it
Telephone: +39 0984 494782

Paolo Trunfio
c/o DIMES – University of Calabria
Via P. Bucci 41c
87036 Rende (CS)
Italy
Email: trunfio@dimes.unical.it
Telephone: +39 0984 494788

Abstract

This article describes some of the most representative cloud computing development environments
classified into four types. Integrated development environments are used to code, debug, deploy and monitor
cloud applications that are executed on a cloud infrastructure. Parallel-processing development
environments are used to define parallel applications for processing large amount of data that are run on a
cluster of virtual machines provided by a cloud infrastructure. Workflow development environments are used
to define workflow-based applications that are executed on a cloud infrastructure. Data-analytics
development environments are used to define data analysis applications through machine learning and data
mining tools provided by a cloud infrastructure.

Keywords

Azure ML; BigML; Data-analytics development environments; DMCF; Eclipse; Hadoop; Integrated
development environments; IntelliJ; Parallel-processing development environments; Spark; Swift; Visual
Studio; Workflow development environments.

1. Introduction

Developing cloud applications may be a complex task, with specific issues that go beyond those of stand-
alone application programming. For instance, cloud programming must deal with deployment, scalability and
monitoring aspects that are not easy to handle without the use of ad-hoc environments (Talia, Trunfio and
Marozzo 2015). In fact, to simplify the development of cloud applications, cloud computing development
environments are often used. This article describes some of the most representative cloud computing
development environments currently in use. The environment presented in this paper are classified into four
types:

 Integrated development environments, which are used to code, debug, deploy and monitor cloud
applications that are executed on a cloud infrastructure. The environments discussed in this article
are Eclipse, Visual Studio and IntelliJ.

mailto:fmarozzo@dimes.unical.it
mailto:trunfio@dimes.unical.it

 Parallel-processing development environments, which are used to define parallel applications for
processing large amount of data that are run on a cluster of virtual machines provided by a cloud
infrastructure. The environments presented here are Hadoop and Spark.

 Workflow development environments, which are used to define workflow-based applications that
are executed on a cloud infrastructure. The examples discussed here are Swift and DMCF.

 Data-analytics development environments, which are used to define data analysis applications
through machine learning and data mining tools provided by a cloud infrastructure. The examples
presented in this article are Azure ML and BigML.

2. Integrated Development Environments

Eclipse

Eclipse1 is one of the most popular integrated development environments (IDEs) for software programmers

that can be used to define applications in C++, Java, JavaScript, PHP, Python, R and so on, which can be run

and deployed on multiple operating systems and computing platforms, including the most popular cloud

computing infrastructures.

The Eclipse platform can be extended by installing plug-ins, such as development toolkits for novel

programming languages and/or systems. Plug-ins can be programmed using Eclipse APIs and can be run on

any of the supported operating systems. At the core of Eclipse is an architecture for discovering, loading, and

running plug-ins. In addition to providing a development environment for programming languages, Eclipse

supports development for most popular application servers (e.g., Tomcat, GlassFish) and is often capable of

installing the required server directly from the IDE. It supports remote debugging that allows programmers

to debug the code of applications running on servers.

Eclipse provides three types of products:

 Desktop IDE, for defining and running Java applications, C/C++ software, PHP web pages and so on

in a desktop PC;

 Cloud IDEs, a Cloud IDE to develop software using a browser;

 IDE Platforms, a set of frameworks and common services to support the use of Eclipse as a

component model.

Eclipse allows to program cloud applications for the main public and private cloud infrastructures. For

example, AWS Toolkit for Eclipse is an open source plug-in that allows developers to define, debug, and

deploy Java applications on Amazon Web Services. IBM Eclipse Tools for Bluemix enables the deployment

and integration of many services from Bluemix into applications. Finally, Google Plugin for Eclipse simplifies

the development of web applications that utilize Google cloud technology.

1 Eclipse, https://eclipse.org/

Visual Studio

Microsoft Visual Studio2 is a Microsoft IDE that allows users to develop, test, and deploy applications for the

web, desktop, cloud, mobile, and game consoles. It is fully integrated with Microsoft technologies such as

Windows API, Microsoft Office, Microsoft Azure and Windows Store.

Visual Studio includes a code editor for supporting code completion and refactoring. An integrated debugger

helps to observe the run-time behaviour of programs and find problems. The functionality of the IDE can be

enhanced through plug-ins, such as visual tools aiding in the development of GUI of web, desktop and mobile

applications.

Visual Studio supports the most popular programming languages. For example, C++ for performance across

a wide range of devices; Python for cross-platform scripting; R, for data processing; Node.js for scalable

applications in JavaScript; C# as a multi-paradigm programming language for a variety of platforms, including

the cloud.

Visual Studio allows to program cloud applications for Microsoft Azure and other cloud infrastructures. For

example, Visual Studio Tools for Azure allows building, managing, and deploying cloud applications on Azure,

whilst the AWS Toolkit for Visual Studio is a plugin that permits to develop, debug, and deploy .NET

applications that use Amazon Web Services.

IntelliJ

IntelliJ3 is an IDE for web, mobile, cloud and enterprise development that supports languages like Java,

JavaScript, Groovy and Scala. It is developed by the JetBrains company and is available in an Apache Licensed

community edition, and in a commercial edition. The community edition allows Java and Android

development. The commercial edition extends the community edition with support for web and enterprise

development. Both community and commercial editions support cloud development with sponsorship of the

main cloud providers.

One important feature of IntelliJ is code completion made by analyzing the source code of a user. Specifically,

IntelliJ indexes user source code, for providing relevant code suggestions and on-the-fly code analysis. As the

previous two systems discussed above, IntelliJ supports plugins for adding additional functionality to the IDE,

such as version control systems (e.g., GIT), databases (e.g., Microsoft SQL Server) and automatic task runners

(e.g., Grunt).

IntelliJ IDEA supports the most popular Java application servers, such as Tomcat, JBoss and Glassfish. A

developer can deploy, debug and monitor an application onto an application server. Moreover, IntelliJ IDEA

provides dedicated plug-ins that allows programmers to manage Docker virtual machines.

IntelliJ allows developers to create and interact with cloud applications using the API of the most popular

cloud infrastructures. For example, through AWS Manager Plugin it provides integration with AWS services

like EC2, RDS and S3, whilst Cloud Tools for IntelliJ is a Google-sponsored plugin that allows IntelliJ developers

to interact with Google Cloud Platform services.

2 Microsoft Visual Studio, https://www.visualstudio.com/

3 IntelliJ, https://www.jetbrains.com/idea/

3. Parallel-processing development environments

Hadoop

Apache Hadoop4 is commonly used to develop parallel applications that analyse big amounts of data. It can
be adopted for developing parallel applications using many programming languages (e.g., Java, Ruby, Python,
C++) based on the MapReduce programming model (Dean and Ghemawat, 2004) on a cluster or on a cloud
platform. Hadoop relieves developers from having to deal with classical distributed computing issues, such
as load balancing, fault tolerance, data locality, and network bandwidth saving. The Hadoop project is not
only about the MapReduce programming model (Hadoop MapReduce module), as it includes other modules
such as:

 Hadoop Distributed File System (HDFS): a distributed file system providing fault tolerance with
automatic recovery, portability across heterogeneous commodity hardware and operating systems,
high-throughput access and data reliability.

 Hadoop YARN: a framework for cluster resource management and job scheduling.

 Hadoop Common: common utilities that support the other Hadoop modules.

With the introduction of YARN in 2013, Hadoop turns from a batch processing solution into a platform for
running a large variety of data applications, such as streaming, in-memory, and graphs analysis. As a result,
Hadoop became a reference for several other frameworks, such as: Giraph5 for graph analysis; Storm6 for
streaming data analysis; Hive7, which is a data warehouse software for querying and managing large datasets;
Pig8, which is as a dataflow language for exploring large datasets; Tez9 for executing complex directed-acyclic
graph of data processing tasks; Oozie10, which is a workflow scheduler system for managing Hadoop jobs.

Hadoop is available in most cloud infrastructures. For example, the HDInsight service by Microsoft Azure, the
Amazon Elastic MapReduce (EMR) service by AWS, and Google Cloud Dataproc service by Google Cloud.

Spark

Apache Spark11 is an open-source framework for in-memory data analysis and machine learning developed
at UC Berkeley in 2009. It can process distributed data from several sources, such as HDFS, HBase, Cassandra,
and Hive. It has been designed to efficiently perform both batch processing applications (similar to
MapReduce) and dynamic applications like streaming, interactive queries, and graph analysis. Spark is
compatible with Hadoop data and it can run in Hadoop clusters through the YARN module. However, in
contrast to Hadoop's two-stage MapReduce paradigm in which intermediate data are always stored in
distributed file systems, Spark stores data in a cluster’s memory and queries it repeatedly so as to obtain
better performance for several classes of applications (e.g., interactive jobs, real-time queries, and stream
data) (Xin et al., 2013). The Spark project has different components:

4 http://hadoop.apache.org/

5 http://giraph.apache.org/

6 http://storm.apache.org

7 http://hive.apache.org

8 http://pig.apache.org

9 http://tez.apache.org/

10 http://oozie.apache.org/

11 http://spark.apache.org

 Spark Core contains the basic functionalities of the library such as for manipulating collections of
data, memory management, interaction with distributed file systems, task scheduling, and fault
recovery.

 Spark SQL provides API to query and manipulate structured data using standard SQL or Apache Hive
variant of SQL.

 Spark Streaming provides an API for manipulating streams of data.

 GraphX is a library for manipulating and analyzing big graphs.

 MLlib is a scalable machine learning library on top of Spark that implements many common machine
learning and statistical algorithms.

Several big companies and organizations use Spark for big data analysis purpose: for example, Ebay uses
Spark for log transaction aggregation and analytics, Kelkoo for product recommendations, SK Telecom
analyses mobile usage patterns of customers.

Similarly to Hadoop, most cloud infrastructures provide Spark as a service, like IBM Analytics for Apache
Spark, Azure HDInsight and Google Cloud Dataproc.

4. Workflow development environments

Swift

Swift (Wilde et al., 2011) is a implicitly parallel scripting language that runs workflows across several
distributed systems, like supercomputers, clusters, grids and clouds. The Swift language has been designed
at the University of Chicago and at the Argonne National Lab to provide users with a workflow-based
language for cloud computing.

Swift separates the application workflow logic from runtime configuration. This approach allows a flexible
development model. The Swift language allows invocation and running of external application code and
allows binding with application execution environments without extra coding from the user. Swift/K is the
previous version of the Swift language that runs on the Karajan grid workflow engine across wide area
resources. Swift/T is a new implementation of the Swift language for high-performance computing. In this
implementation, a Swift program is translated into an MPI program that uses the Turbine and ADLB runtime
libraries for scalable dataflow processing over MPI. The Swift-Turbine Compiler (STC) is an optimizing
compiler for Swift/T and the Swift Turbine runtime is a distributed engine that maps the load of Swift
workflow tasks across multiple computing nodes. Users can also use Galaxy (Giardine et al., 2005) to provide
a visual interface for Swift.

The Swift language provides a functional programming paradigm where workflows are designed as a set of
code invocations with their associated command-line arguments and input and output files. Swift is based
on a C-like syntax and uses an implicit data-driven task parallelism (Wozniak, Wilde, and Foster, 2014). In fact,
it looks like a sequential language, but being a dataflow language, all variables are futures, thus execution is
based on data availability. When input data is ready, functions are executed in parallel. Moreover, parallelism
can be exploited through the use of the for each statement. The Turbine runtime comprises a set of services
that implement the parallel execution of Swift scripts exploiting the maximal concurrency permitted by data
dependencies within a script and by external resource availability. Swift has been used for developing several
scientific data analysis applications, such as prediction of protein structures, modeling the molecular
structure of new materials, and decision making in climate and energy policy.

Data Mining Cloud Framework

The Data Mining Cloud Framework (DMCF) is a software system developed at the University of Calabria for
designing and executing data analysis workflows on clouds (Belcastro, Marozzo, Talia, and Trunfio, 2015). A

Web-based user interface allows users to compose their applications and submit them for execution over
cloud resources, according to a Software-as-a-Service (SaaS) approach.

The DMCF architecture has been designed to be deployed on different cloud settings. Currently, there are
two different deployments of DMCF: i) on top of a Platform-as-a-Service (PaaS) cloud, i.e., using storage,
compute, and network APIs that hide the underlying infrastructure layer; ii) on top of an Infrastructure-as-a-
Service (IaaS) cloud, i.e., using virtual machine images (VMs) that are deployed on the infrastructure layer.

The DMCF software modules can be grouped into web components and compute components DMCF allows
users to compose, check, and run data analysis workflows through a HTML5 web editor. The workflows can
be defined using two languages: VL4Cloud (Visual Language for Cloud) (Marozzo, Talia and Trunfio 2016) and
JS4Cloud (JavaScript for Cloud) (Marozzo, Talia and Trunfio 2015). Both languages use three key abstractions:

 Data elements, representing input files (e.g., a dataset to be analyzed) or output files (e.g., a data
mining model).

 Tool elements, representing software tools used to perform operations on data elements
(partitioning, filtering, mining, etc.).

 Tasks, which represent the execution of Tool elements on given input Data elements to produce
some output Data elements.

The DMCF editor generates a JSON descriptor of the workflow, specifying what are the tasks to be executed
and the dependency relationships among them. The JSON workflow descriptor is managed by the DMCF
workflow engine that is in charge of executing workflow tasks on a set of workers (virtual processing nodes)
provided by the cloud infrastructure. The workflow engine implements a data-drive task parallelism that
assigns workflow tasks to idle workers as soon as they are ready to execute.

5. Data-analytics development environments

Microsoft Azure Machine Learning

Microsoft Azure Machine Learning12 (Azure ML) is a SaaS that provides a Web-based machine learning
environment for the creation and automation of machine learning workflows. Through its user-friendly
interface, data scientists and developers can perform several common data analysis/mining tasks on their
data and automate their workflows.

Using its drag-and-drop interface, users can import their data in the environment or use special readers to
retrieve data form several sources, such as Web URL (HTTP), OData Web service, Azure Blob Storage, Azure
SQL Database, Azure Table. After that, users can compose their data analysis workflows where each data
processing task is represented as a block that can be connected with each other through direct edges,
establishing specific dependency relationships among them. Azure ML includes a rich catalog of processing
tool that can be easily included in a workflow to prepare/transform data or to mine data through supervised
learning (regression e classification) or unsupervised learning (clustering) algorithms. Optionally, users can
include their own custom scripts (e.g., in R or Python) to extend the tools catalog. When workflows are
correctly defined, users can evaluate them using some testing dataset. Users can easily visualize the results
of the tests and find very useful information about models accuracy, precision and recall. Finally, in order to
use their models to predict new data or perform real time predictions, users can expose them as Web
services. Always through a Web-based interface, users can monitor the Web services load and use by time.

Azure Machine Learning is a fully managed service provided by Microsoft on it Azure platform; users do not
need to buy any hardware/software nor manage virtual machine manually. One of the main advantage of

12 https://azure.microsoft.com/en-us/services/machine-learning/

working with Azure Machine Learning is its auto-scaling feature: models are deployed as elastic Web services
so as users do not have to worry about scaling them if the models usage increased.

BigML

BigML13 is provided as a Software-as-a-Service (SaaS) for discovering predictive models from data sources
and using data classification and regression algorithms. The distinctive feature of BigML is that predictive
models are presented to users as interactive decision trees. The decision trees can be dynamically visualized
and explored within the BigML interface, downloaded for local usage and/or integration with applications,
services, and other data analysis tools. Extracting and using predictive models in BigML consists in multiple
steps, as detailed in the following:

 Data source setting and dataset creation. A data source is the raw data from which a user wants to
extract a predictive model. Each data source instance is described by a set of columns, each one
representing an instance feature, or field. One of the fields is considered as the feature to be predicted.
A dataset is created as a structured version of a data source in which each field has been processed and
serialized according to its type (numeric, categorical, etc.).

 Model extraction and visualization. Given a dataset, the system generates the number of predictive
models specified by the user, who can also choose the level of parallelism level for the task. The interface
provides a visual tree representation of each predictive model, allowing users to adjust the support and
confidence values and to observe in real time how these values influence the model.

 Prediction making. A model can be used individually, or in a group (the so-called ensemble, composed
of multiple models extracted from different parts of a dataset), to make predictions on new data. The
system provides interactive forms to submit a predictive query for a new data using the input fields from
a model or ensemble. The system provides APIs to automate the generation of predictions, which is
particularly useful when the number of input fields is high.

 Models evaluation. BigML provides functionalities to evaluate the goodness of the predictive models
extracted. This is done by generating performance measures that can be applied to the kind of extracted
model (classification or regression).

6. Closing Remarks

This article described four categories of cloud computing development environments. Integrated
development environments are used to code, debug, deploy and monitor cloud applications that are executed
on a cloud infrastructure. Parallel-processing development environments are used to define parallel
applications for processing large amount of data that are run on a cluster of virtual machines provided by a
cloud infrastructure. Workflow development environments are used to define workflow-based applications
that are executed on a cloud infrastructure. Data-analytics development environments are used to define
data analysis applications through machine learning and data mining tools provided by a cloud infrastructure.
For each category, the article described some of the most representative cloud computing development
environments currently in use, including their main features, provided services and available
implementations.

Cross References

Infrastructures for High-Performance Computing: Cloud Computing

Infrastructures for High-Performance Computing: Cloud Infrastructures

References

13 https://bigml.com

Belcastro, L., Marozzo, F., Talia, D. and Trunfio, P. (2015) Programming visual and script-based big data
analytics workflows on clouds. Advances in Parallel Computing, 26, pp. 18-31.

Dean, J., Ghemawat, S. (2004) MapReduce: Simplified data processing on large clusters, in: 6th USENIX
Symposium on Operating Systems Design and Implementation (OSDI’04), San Francisco, USA.

Giardine, B. et al., “Galaxy: A platform for interactive large-scale genome analysis,” Genome Res, 15:1451–
1455, 2005.

Justin, M., Wozniak, J. M., Foster, I. (2014), “Language features for scalable distributed-memory dataflow
computing,” Proc. Data-flow Execution Models for Extreme-scale Computing at PACT.

Marozzo, F., Talia, D., and Trunfio, P. (2016) "A Workflow Management System for Scalable Data Mining on
Clouds". IEEE Transactions On Services Computing (IEEE TSC).

Marozzo, F., Talia, D., and Trunfio, P. (2015) "JS4Cloud: Script-based Workflow Programming for Scalable
Data Analysis on Cloud Platforms". Concurrency and Computation: Practice and Experience, vol. 27, n. 17,
pp. 5214--5237, Wiley InterScience.

Talia, D., Trunfio P. and Marozzo, F. (2015). Data analysis in the Cloud. Elsevier, The Netherlands.

Wilde, M., Hategan, M., Wozniak, J. M., Clifford, B., Katz, D. S., and Foster I. (2011) “Swift: A language for
distributed parallel scripting”, Parallel Computing, 37(9):633–652.

Xin, R. S., Rosen, J., Zaharia, M., Franklin, M. J., Shenker, S. and Stoica, I. (2013). Shark: SQL and rich
analytics at scale. In Proceedings of the 2013 ACM SIGMOD International Conference on Management of
Data (SIGMOD '13). New York, USA.

