
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. (2014)
!

!

A two-layer model for improving the energy efficiency of file
sharing peer-to-peer networks

Paolo Trunfio*,†

DIMES, University of Calabria, Rende, Cosenza, Italy

SUMMARY

As peer-to-peer networks gather and share large sets of computing resources, their aggregate energy con-
sumption is an important problem to be addressed, given the economic and environmental impact of energy
production and use. This is particularly true for file sharing peer-to-peer networks, considered the vast num-
ber of nodes participating to these systems. To address such problem, this paper proposes a peer-to-peer
file sharing model organized in two logical layers. The lower layer is composed of a set of peers provid-
ing the files to be shared. The upper layer includes a set of super peers organized to form a distributed
hash table, whose purpose is indexing files and peers, including their availability status. Following a sleep-
and-wake approach, energy saving is achieved by letting peers cyclically switch between normal and sleep
modes, where the time passed in normal mode by a peer depends on the number of files it provides. An
energy-saving algorithm and an associated file search and retrieval strategy are proposed within this model.
Simulation results show that more than 50% of energy can be saved using the proposed model and that more
than 80% of file downloads start with no additional delay compared with a network in which all peers are
always powered on. Copyright © 2014 John Wiley & Sons, Ltd.

KEY WORDS: peer-to-peer; file sharing; energy efficiency; performance analysis

1. INTRODUCTION

After years of intensive development and research, peer-to-peer is widely employed today as an

effective computing paradigm to implement decentralized, self-organizing, and self-coordinating

large-scale distributed systems. As peer-to-peer networks gather and share large sets of computing

resources, their aggregate energy consumption is an important problem to be addressed, given the

economic and environmental impact of energy production and use. This is particularly true for file

sharing peer-to-peer networks, considered the vast number of users and nodes participating to these

systems. The latter is also witnessed by the impact of peer-to-peer file sharing on the overall Internet

traffic, which some studies have quantified between 40% and 70% [1, 2].

The importance of the problem has stimulated several researches aimed at improving the energy

efficiency of peer-to-peer networks. Common approaches toward this goal include the use of proxies,

optimizing task allocation, message reduction, location-based mechanisms, overlay structure opti-

mization, and the ‘sleep-and-wake’ strategy [3]. The latter is one of the most popular approaches,

based on the principle that the overall energy consumption of a peer-to-peer system can be sig-

nificantly reduced if peers periodically switch from normal mode (high-power) to sleep mode

(low-power) and vice versa. Sleep-and-wake is based on the observation that a main cause of wasted

energy in peer-to-peer networks is represented by hosts which are kept powered on even when they

*Correspondence to: Paolo Trunfio, DIMES, University of Calabria, Via P. Bucci 41C, 87036 Rende, Cosenza, Italy.
†E-mail: trunfio@dimes.unical.it

Copyright © 2014 John Wiley & Sons, Ltd.

P. TRUNFIO

are not active. The popularity of the approach, other than on its performance, depends also on the

fact that it can be effectively implemented in a real peer-to-peer system. In fact, there are libraries

providing methods to easily switch off or schedule a PC wake-up directly from a program, includ-

ing a peer-to-peer client application. This is a point of strength that highly motivated the adoption

of the sleep-and-wake approach in the present work.

A problem of the sleep-and-wake approach is that, because hosts play also the role of file

providers, temporarily turning off a subset of them lowers the probability for a user of finding a file

of interest at a given time. A way to solve this problem is resubmitting the query on a periodical

basis, but this introduces excessive overhead to the network if the period is too short or causes late

responses if the period is too long. Alternatively, a centralized index of current peers availability

could be maintained, but this would negate the decentralized nature of peer-to-peer networks.

To take the most of the sleep-and-wait approach while limiting its inherent drawbacks, this paper

proposes a peer-to-peer file sharing model organized in two logical layers. The lower layer is com-

posed of a set of peer nodes, each one providing a set of files to be shared. The upper layer is

composed of a set of super-peer nodes, organized to form a distributed hash table (DHT), whose

purpose is indexing the peers and the files at the lower layer. Hence, in addition to file indexing,

the DHT is used in the proposed model for keeping a fully decentralized index of peers, of their

current availability status (where sleeping peers are considered unavailable), and of the next time

when they are expected to return available. Each peer autonomously takes decisions about its sleep–

wake cycles. In particular, it is followed the principle that the time passed in normal mode by a peer

depends on the number of files it provides. This design choice is based on the observation that the

higher the number of files shared by a peer Pi , the higher the probability that Pi owns a file match-

ing a query submitted to the network. Therefore, keeping powered on for a longer time the peers

sharing a higher number of files, it is increased the chance that a file can be found and retrieved with

no additional delay compared with a network in which all peers are always powered on.

The search for an existing file returns a reference to the providing peer, which can be either avail-

able or not. In case the providing peer is unavailable, its expected availability time is also returned to

the requestor, thus allowing to postpone the file download until the availability time is reached. The

system has been evaluated through simulations, by using a custom discrete-event network simula-

tor. The experimental results show that more than 50% of energy can be saved using the proposed

approach, while preserving the overall quality of service perceived by the user. Regarding this last

aspect, the simulation results show that more than 80% of file downloads start with no additional

delay compared with a network in which all peers are always powered on, while in the remaining

cases the download is postponed for a limited amount of time.

In summary, the main contributions of this paper are

� the definition of a two-layer model for improving the energy efficiency of file sharing peer-

to-peer networks, in which a DHT keeps a fully decentralized index of files, peers, and their

availability status;

� the definition of an energy-saving (ES) algorithm in which every peer autonomously takes

decisions about its sleep–wake cycles, following the principle that the higher the number of

files owned, the lower the sleep duration;

� the definition of a file search and retrieval (FSR) algorithm that allows peers to search and

retrieve files over the peer-to-peer network taking into account the availability/unavailability

status of the file providers; and

� an experimental analysis of the proposed framework for assessing its behavior and for

evaluating its performance.

The remainder of the paper is structured as follows. Section 2 discusses related work. Section 3

presents the two-layer system model. Sections 4 and 5 describe the ES and FSR algorithms, respec-

tively. Section 6 presents an experimental evaluation of the system. Finally, Section 7 concludes

the paper.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

IMPROVING THE ENERGY EFFICIENCY OF PEER-TO-PEER NETWORKS

2. RELATED WORK

A recent comprehensive survey by Malatras, Peng, and Hirsbrunner [3] has thoroughly stud-

ied existing research works on energy-efficient peer-to-peer systems, classifying them under

six categories, according to the approach they follow in reducing energy consumption: proxy-

ing, task allocation optimization, message reduction, location-based, sleep-and-wake, and overlay

structure optimization.

The proxying approach is based on the use, by peer-to-peer hosts, of proxies to delegate some

of their activities, such as file downloading. Using proxies, peer-to-peer hosts do not need to stay

constantly online, this way reducing the overall energy consumption. Examples of proxy-based

approaches are the system proposed by Anastasi et al. [4] for reducing the energy consumption of

hosts running the BitTorrent application [5] and the system by Purushothaman et al. [6] for Gnutella

networks [7].

Task allocation optimization is based on the observation that significant energy savings can be

achieved in a peer-to-peer network by carefully scheduling the allocation of tasks to peers, that is,

deciding on which peer will satisfy the request of another peer. One example is the work by Enokido

et al. [8, 9], who proposed a model for peer-to-peer data transfers in which computation time and

power consumption are minimized by optimizing the allocation of file requests.

Message reduction aims at minimizing the number of messages exchanged through the peer-to-

peer network with the goal of lowering processing and transmission times, thus reducing energy

consumption. One example of energy-saving peer-to-peer system based on this approach is the work

by Kelenyi and Nurminen [10], who adopted a selective message dropping mechanism for reducing

the number of messages exchanged in a Kademlia network.

The location-based approach exploits positioning information about nodes to make peer-to-peer

overlays more closely matching the underlying physical connections with the goal of reducing mul-

tihop transmissions and consequently the overall energy consumption. This approach is particularly

effective in mobile peer-to-peer networks, as proven by the research works proposed by Joseph

et al [11], Park and Valduriez [12], and Tung and Lin [13].

The sleep-and-wake approach aims at reducing the overall energy consumption of a peer-to-peer

network by letting peers cyclically switch between normal and sleep states. The critical point of this

approach is deciding when peers should be in a normal or sleep state, in order to avoid excessive

degradation of system performance. Several systems fall in this category, including the ones by

Lefebvre and Feeley [14], Blackburn and Christensen [15], Lee et al. [16], Gurun et al. [17], Sucevic

et al. [18], Jourjon et al. [19], Andrew et al. [20], and Hlavacs et al. [21].

Finally, overlay structure optimization aims at improving the energy efficiency of a peer-to-peer

network by either controlling its topology during construction or maintenance or introducing new

layers to the overlay. An example of the first type is the work by Leung and Kwok [22], where

topology control is used for improving the energy efficiency of wireless file sharing peer-to-peer

networks. An example of the second type is the double-layered system by Han et al. [23], which is

more closely related to the model proposed in this paper and thus will be shortly reviewed later in

this section.

According with the taxonomy proposed in [3], the model proposed in this paper falls in the last

two categories, namely sleep-and-wake and overlay structure optimization. In fact, from one hand,

the proposed model allows peers to switch between normal and sleep states to save energy; from the

other hand, it introduces an additional layer to the peer-to-peer overlay for maintaining a distributed

index of peers’ availability. In what follows, some related systems belonging either to the sleep-and-

wake or the overlay structure optimization categories are shortly reviewed.

One of the first theoretical works on the sleep-and-wake approach was proposed by Lefebvre

and Feeley [14]. The authors argued that idle nodes should be turned off or placed in low-power

hibernation to reduce energy consumption. They further argued that a peer-to-peer storage system

should distinguish between powered off idle nodes and permanently departed ones, in order to avoid

the significant data-copy cost of re-replicating data stored on idle nodes. The key to this distinction

is to place an upper bound on the amount of time that nodes are allowed to sleep. Given the system’s

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

P. TRUNFIO

replication factor, a theoretical model allows calculating an upper bound on the time an idle node

can sleep without affecting the durability of the data stored in the system.

Following the same approach, Blackburn and Christensen [15] proposed a ‘green’ version of the

BitTorrent protocol by introducing the concept of sleeping peers, which are considered temporar-

ily unavailable to other BitTorrent nodes. A sleeping peer can wake up when contacted by other

members of the BitTorrent network, in which case an active Transmission Control Protocol (TCP)

connection to the latter is reestablished. Simulation results showed that green BitTorrent could con-

sume less than 25% of the energy as standard BitTorrent (where all clients are always fully powered

on) with a limited penalty in increased download time. Similar in aim and focus, the work by Lee

et al. [16] introduces modifications in the BitTorrent protocol to enable idle peers to go into sleeping

mode in order to reduce their energy consumption.

The sleep-and-wake approach is also the basis of the work by Gurun et al. [17], which proposes a

scheduling approach to promote energy conservation in mobile peer-to-peer networks. Using actual

energy measurements, the work derives the energy consumption of different types of operations

in a peer-to-peer overlay. Based on these results, the authors introduced the concept of idle time.

According to their approach, an energy-aware peer-to-peer protocol running on a mobile peer lets

the peer go in sleep mode and thus preserve energy for the duration of the idle time period. When the

peer wakes up, it can handle all buffered output requests and respond to incoming messages from

other peers. The paper reports simulation results that indicate significant energy savings, obtained

at the cost of some delay in message forwarding.

Among the systems based on overlay structure optimization, the work most related to the model

proposed in this paper is the one by Han et al. [23]. It is a double-layered wireless peer-to-peer

system in which files are searched mainly through the peers in the upper layer, called super peers,

which are selected among those with the highest residual energy. Three energy-efficient routing

schemes are used within the system. The first routing scheme tries to utilize the energy of the peers

on the routes more evenly. The second scheme chooses a route with the ‘strongest’ peer among

the peers each of which is the ‘weakest’ peer on a route. The third scheme selects a route with the

second scheme among the routes with the smallest number of hops.

Table I summarizes the main features of related work in comparison with the system proposed in

this paper (last row in the table). For each system, the table indicates (i) the energy-saving technique

used; (ii) whether or not the system focuses on mobile networks; and (iii) whether or not it is based

on a structured overlay (e.g., a DHT). As shown in the table, the proposed system is the only wired

peer-to-peer network combining the scalability of a structured overlay with the effectiveness of the

Table I. Comparison with related systems.

System Strategy Mobile Structured

Anastasi et al. [4] Proxying No No
Andrew et al. [20] Sleep-and-wake No No
Blackburn and Christensen [15] Sleep-and-wake No No
Enokido et al. [8, 9] Task allocation optimization No No
Gurun et al. [17] Sleep-and-wake Yes Yes
Han et al. [23] Overlay structure optimization Yes No
Hlavacs et al. [21] Sleep-and-wake No No
Joseph et. al [11] Location-based Yes Yes
Jourjon et al. [19] Sleep-and-wake No No
Kelenyi and Nurminen [10] Message reduction No Yes
Lefebvre and Feeley [14] Sleep-and-wake No No
Lee et al. [16] Sleep-and-wake No No
Leung and Kwok [22] Topology control Yes No
Park and Valduriez [12] Location-based Yes No
Purushothaman et al. [6] Proxying No No
Sucevic et al. [18] Sleep-and-wake No No
Tung and Lin [13] Location-based Yes No
Proposed system Sleep-and-wake +

Overlay structure optimization No Yes

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

IMPROVING THE ENERGY EFFICIENCY OF PEER-TO-PEER NETWORKS

sleep-and-wake approach. In addition, thanks to its two-layer approach, it is also one of the few

systems employing overlay structure optimization to improve the energy efficiency of a peer-to-

peer network. The double-layer approach is shared with the system proposed by Han et al. [23], as

described earlier. There are, however, three main differences with Han’s system: (i) the reference

scenario assumed in the proposed system is a wired peer-to-peer network, thus the residual energy

of peers is not a concern; (ii) the proposed system relies on a sleep-and-wake strategy to achieve

energy efficiency, rather than on energy-efficient routing schemes; and (iii) the upper layer of the

proposed system forms a DHT overlay, which ensures logarithmic time complexity of file search

operations, as demonstrated in Section 5.1.

3. DESIGN PRINCIPLES AND SYSTEM MODEL

The guiding principles that have been followed in the design of the system are (i) let peers

autonomously decide on their availability status, to avoid the need for centralized coordination; (ii)

keep a fully decentralized index of files, peers, and their availability status, to avoid single points of

failures; and (iii) ensure scalable performance in file search operations.

The decision-making autonomy of peers is ensured by the ES algorithm, which let peers decide

about their sleep–wake cycles based exclusively on local information (the number of files owned),

as described in Section 4.

Decentralization is achieved by employing a DHT as indexing technology. Differently from other

peer-to-peer systems based on a DHT, the proposed system is organized in two logical layers. This

allows the nodes that are not part of the higher level to be switched off without affecting the overall

indexing of files, which is the key for saving energy while preserving the system functionality. In

addition, the proposed system extends standard DHTs by introducing an additional data structure,

the availability table (AT), to keep decentralized information about the availability status of all the

nodes in the network.

The use of a DHT as indexing technology also ensures scalable performance in file search

operations. In fact, the FSR algorithm allows peers to find the files of interest with logarithmic

performance bounds, as demonstrated in Section 5.1.

3.1. The two-layer model

The proposed system organizes the peer-to-peer network in two logical layers. The lower layer is

composed of a set of peer nodes, each one providing a set of files to be shared. The upper layer

is composed of a set of super-peer nodes, organized in a DHT-based overlay, whose purpose is

indexing the peers and files at the lower layer.

Every peer, file, and super-peer is identified by an integer i in the range Œ0::2m-1�, where m is

the number of bits used to represent the identifiers.‡ For every i , the following assumptions hold:

there is at most one peer with id i (denoted Pi); there is at most one super peer with id i (denoted

Si); there can be 0, 1, or multiple files with id i (all of them denoted Fi). Files with the same id are

identical to each other; that is, they are multiple copies of the same data.

For the sake of explanation, Chord [24] is used for the super-peer layer, even though any other

similar DHT-based system (e.g., Pastry [25], Tapestry [26], and Kademlia [27]) could be used

instead. Following the Chord model, super peers are organized into a virtual circle with 2m posi-

tions, where each super peer occupies the position corresponding to its identifier (i.e., Si lies at

position i of the circle).

Every super peer maintains a finger table (F T) and a key table (KT). The F T points to super

peers at exponentially increasing distance, and allows locating the super peer responsible for any

file identifier (or key) in O.logn/ hops, where n is the number of super peers in the network. A

super-peer Si is responsible for a file Fj if Si D successor.Fj); that is, Si is the first node that can

‡As usual in many peer-to-peer systems, it is assumed that identifiers are generated by applying a consistent hash function
to a native identifier of each resource, so that identifiers are uniformly distributed across the range.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

P. TRUNFIO

be found on the Chord circle clockwise from position j . The KT keeps association between each

key the super peer is responsible for and the identifiers of all the peers providing files identified by

that key.

Other than for indexing files, the DHT is used in this model also for indexing peers, as it is

assumed that peers are not part of the Chord overlay. To this purpose, each super peer includes an

additional data structure, called Availability Table (AT), which stores the availability time (described

below) of every peer the super peer is responsible for. Following the principle used for indexing

files, a super-peer Si is responsible for a peer Pj if Si D successor.Pj). For every Pi , notation

S.Pi / is adopted to indicate the super peer responsible for Pi . It is assumed that Pi knows S.Pi /;

that is, there is a bidirectional link between any super peer and the peers it is responsible for.

The availability time tj of a peer Pj is an integer number. A negative value of the availability

time (e.g., tj D 1) means that Pj is currently available; that is, it can immediately respond to file

download requests. Conversely, a positive value of tj indicates that Pj is currently unavailable and

that it will become available at time tj . In this second case, tj is measured using an appropriate time

unit (e.g., number of seconds from a reference date).

It is assumed that all the hosts that run a super-peer instance run also a peer instance. Based on

this assumption, hosts are classified either as core hosts or edge hosts. A core host runs one super

peer and one peer, while an edge host runs only one peer. Therefore, both core hosts and edge hosts

provide files to be shared, but only core hosts are necessary for indexing and discovery purposes. To

preserve the indexing and discovery infrastructure, core hosts are assumed to be always available,

while edge hosts can switch between normal and sleep power modes over the time to reduce energy

consumption, based on the ES algorithm that will be described in Section 4.

Figure 1. Example showing how files and peers are indexed by super peers.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

IMPROVING THE ENERGY EFFICIENCY OF PEER-TO-PEER NETWORKS

Figure 2. Relationship between availability status and power mode of a peer.

3.2. A small-scale network example

Figure 1 provides a small-scale network example showing how files and peers are indexed by super

peers in the proposed model. In this example, a 5-bit identifier space is used; therefore the identifiers

of peers, files, and super peers lie in the range Œ0::31�. The network includes three super peers and

seven peers; each peer locally stores a set of files.

The KT of a super-peer Si contains an entry for each file whose identifier lies in the range

assigned to Si . For example, S16 is responsible for the identifier range [5..16], because its prede-

cessor on the circle is S4. Therefore, all the existing files identified by a number in that range (F10,

F13, F14) have an entry in the KT of S16. Each KT entry contains the identifiers of all the peers

that locally store the corresponding file. For instance, from the first entry of S16’s KT , one knows

that file F10 can be provided by peers P13 and P15.

Similarly, the AT of a super-peer Si contains the availability time of each peer identified by a

number in the range assigned to Si . For example, because S29 is responsible for the identifier range

[17..29], all the peers in that range (P22 and P26) are listed in the AT of S29.

It is worth noticing that, according with the system model introduced earlier, the logical network

shown in Figure 1 is actually implemented as a system composed of three core hosts and four edge

hosts: each core host running one of the three super peers and one of the seven peers; each edge host

running one of the four remaining peers.

4. ENERGY-SAVING ALGORITHM

Following the sleep-and-wake approach, it is assumed that every peer running on an edge host

periodically passes from normal to sleep power mode and vice versa. When a peer is in normal

mode, it is available for download requests and works at normal power level (phigh). Conversely,

a peer in sleep mode is unavailable, but it works at reduced power level (plow), thus consuming a

limited amount of energy.

Figure 2 illustrates the relationship between the availability status of a peer and its power mode.

The standard duration of a sleep–wake cycle, indicated as Tcycle , is fixed and equal for all the peers.

On the contrary, the availability ratio (AR), that is, the amount of time a peer is available in a cycle

divided by Tcycle , changes from peer to peer. In particular, the principle followed in the proposed

model is that the AR of a peer Pi depends on the number of files owned by Pi , as specified by the

following equation:

AR D

8

<

:

ARmin if NF < NFmin

ARmax if NF > NFmax

ARmin C
.NF NFmin/.ARmax ARmin/

NFmax NFmin
otherwise

(1)

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

P. TRUNFIO

where NF is the number of files owned by Pi , 0 6 ARmin 6 ARmax 6 1, and 0 6 NFmin

< NFmax .

Given its AR, a peer can calculate the point of a cycle where it must change its status from
available to unavailable. If tbeg in is the time at which the cycle begins, the time at which the peer

must become unavailable, tunavail , is given by the following equation:

tunavail D tbeg in C AR � Tcycle (2)

Figure 3 shows the ES algorithm, which implements the strategy outlined earlier (see also

Table II for the notation used in the algorithm). The algorithm is composed of two procedures:

power_management, which specifies the cyclic sleep–wake operations performed by every peer Pi

running on an edge host, and publish_availability_time, to publish the availability time of a peer on

a super-peer Si .

The power_management procedure works as follows. At the beginning of each sleep–wake cycle,

tbeg in is initialized (line 2), and the availability of Pi is published on the super peer responsible

for Pi (line 3). Then, the next instant of time at which Pi will become unavailable, tunavail , is

calculated through Equation 2 (line 4). As soon as the current time is equal to tunavail (line 5),

the peer calculates the next availability time tavail (line 6) and publishes it on its super peer (line

7). At this point, the unavailability of Pi begins. However, before trying to go in sleep mode, Pi

waits for an amount of time Tunavail_to_sleep (line 8). This wait is carried out to give enough time

Figure 3. Energy-saving (ES) algorithm.

Table II. Meaning of the symbols used in the ES algorithm (shown in Figure 3).

Symbol Meaning

AR Availability ratio of the peer
tcurrent Current time
tbegin Time at which the current cycle of the peer begins

tunavail Time at which the unavailability of the peer gets published
tavail Time at which the availability of the peer gets published
Tcycle Duration of a sleep–wake cycle

Tsleep_to_normal Amount of time for switching from sleep to normal mode

Tnormal_to_sleep Amount of time for switching from normal to sleep mode

Tmin_sleep Minimum duration of a sleep phase

Tunavail_to_sleep Amount of time between unavailability and attempt to go in sleep mode

Ndownloads Number of downloads currently being performed by the peer
Nuploads Number of uploads currently being performed by the peer

Npending_queries Number of queries submitted by the peer still waiting for response

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

IMPROVING THE ENERGY EFFICIENCY OF PEER-TO-PEER NETWORKS

for requesting a file transfer to Pi , to those peers that received Pi ’s id as file provider in a query

response just before that Pi published its unavailability. Before trying to sleep, Pi also waits until

the number of downloads, uploads, and pending queries is equal to 0 (line 9). After these waits, Pi

checks whether there is enough time to go in sleep mode, that is, if tcurrent is not greater than tavail

minus the amount of times to switch from sleep to normal and vice versa, and the minimum duration

of a sleep (line 10). If the condition holds, first Pi schedules a wake up at tavail Tsleep_to_normal

(line 11) and finally enters the sleep mode (line 12).

The publish_availability_time procedure is executed by a super-peer Si when it is asked to pub-

lish the availability time tj of a peer Pj it is responsible for. The availability time publication is

performed by assigning tj to the AT entry associated with Pj .

4.1. On the use of file popularity for availability ratio calculation

As discussed earlier in the section, the AR of a peer Pi depends linearly on the number of files

owned by Pi , unless such number is smaller or bigger than given thresholds. This choice is based

on the observation that, keeping powered on for a longer time the peers sharing a higher number

of files, it is increased the chance that a file can be found and retrieved with no additional delay

compared with a network in which all peers are always powered on. On the other hand, Equation 1

could be extended to take into account also other relevant parameters, such as the popularity of

the files owned by a peer. Considering also the popularity of files is likely to further improve the

system performance but would require two main issues to be addressed: (i) defining a scalable

algorithm to estimate the popularity of all the files owned by each peer in the network and (ii)

deciding which popularity-related parameter(s) should be used, and how AR should be related with

such parameter(s).

For the first issue, it should be considered that naïvely estimating the popularity of all the files

of a peer Pi has complexity O.f logn/, where f is the number of files owned by Pi , and n is the

number of super peers. In fact, for each file Fj owned by Pi , the DHT must be searched to find

the super-peer Sk responsible for Fj . Then, Sk can estimate the popularity of Fj by counting the

number of peers associated with Fj ’s entry in itsKT . According to [24], searching the DHT for Sk

requires O.logn/ hops and messages, which when multiplied for the f files owned by Pi results

in a complexity of O.f logn/, as stated earlier. Because this operation must be performed for each

peer, the overall complexity is O.p � Nf logn/, where p is the number of peers, and Nf is the average

number of files per peer. In a large-scale peer-to-peer network, this cost can be excessive, particu-

larly if the popularity must be reevaluated frequently because of fast changing content. Therefore,

a more scalable algorithm should be defined to efficiently estimate the popularity of all the files in

the network.

For the second issue, assuming to have the popularity values of all the files of a peer Pi , it should

be decided how to aggregate such values into one or more parameters to effectively summarize the

overall popularity of Pi ’s content. Several popularity-based parameters may be used for a peer Pi ,

for example, the sum of the popularity values of all the files in Pi , their mean and standard deviation,

or the top-k values. The choice of the most effective parameter(s) is likely to be greatly influenced

by the distribution function of the popularity values, which can change over time. In addition, as

mentioned earlier, it should be defined how to incorporate such parameter(s) into Equation 1, to

make AR a (multivariable) function of their values.

As a concluding remark, it would be worth investigating in a future work how the AR of a peer

could be adapted to reflect the popularity of the files owned by the peer, other than the number of

files owned. Fundamental, to achieve this goal, is the definition of practical solutions to the issues

discussed earlier.

5. FILE SEARCH AND RETRIEVAL ALGORITHM

After having introduced the ES algorithm, this section describes how files are searched and retrieved

in the proposed model taking into account the availability/unavailability status of the file providers.

Figure 4 shows the FSR algorithm, which is composed of the four procedures described in the

succeeding text.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

P. TRUNFIO

Figure 4. File search and retrieval (FSR) algorithm.

A peer Pi starts the FSR algorithm through the local execution of the search_and_retrieve pro-

cedure, which receives the id of the file Fj to be searched and retrieved. As the first operation, Pi

asks its reference super peer, S.Pi /, to find the successor of file Fj ; the result, Sk , is the super peer

responsible for Fj (line 1). Then, Pi asks Sk to find a peer providing file Fj ; the result is a pair

hPp; tpi, where Pp is the providing peer, and tp is the time when Pp will return available (line 2).

Pp is null if Sk could not find any peer providing Fj . If Pp is not null (line 3), two cases are possi-

ble: i/ tp > 0, which means that Pp is not currently available; in this case, Pi waits until the current

time is equal to tp , before downloading Fj from Pp (lines 4–7); i i/ tp is negative, which means
that Pp is currently available; in this case, Pi can download Fj from Pp without any delay (line 7).

The find_provider procedure is executed by a super-peer Si when it is asked to find a peer provid-

ing a file Fj it is responsible for. First, Si accesses the local key table, KT , to obtain all the peers,
Pp , that provide Fj (line 1). If Pp is not an empty set, then the best peer Pp is taken from Pp and

returned to the caller in pair with the time when Pp will be available (lines 2–4). Otherwise, a pair

of null values is returned (line 6).

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

IMPROVING THE ENERGY EFFICIENCY OF PEER-TO-PEER NETWORKS

The best_provider procedure of a super-peer Si selects the peer with the lowest availability time

from a set of file providers Pp . Basically, the procedure retrieves the availability time of each Pj

in Pp by asking S.Pj / and stores in a set Pmin all the peers having the lowest availability time,

called tmin. The value of tmin will be equal to 1 if the nodes with the lowest availability time are

currently available. At the end, one random peer from Pmin is returned in pair with tmin.

Finally, the find_availability_time procedure is executed by a super-peer Si when it is asked to

find the availability time tj of a peer Pj it is responsible for. This is performed by returning the

value of the AT entry associated with Pj .

5.1. Complexity analysis

The section concludes with an analysis of message and time complexity of the FSR algorithm. To

this end, let Pi be the querying node, Fj the file to be retrieved, m the number of peers that provide

Fj , Pp the providing peer returned to Pi , and n the number of super peers.

In order to analyze the message complexity, assume that the FSR algorithm is divided into two

main phases:

(1) The reference super peer of Pi , S.Pi /, performs one DHT lookup to find the super-peer Sk

responsible for Fj (see search_and_retrieve, line 1). The lookup is performed by invoking the

successor(Fj) operation provided by the DHT, which requiresO.logn/ hops and messages to

other nodes, as proven in [24].

(2) Super-peer Sk finds Pp and returns it to Pi (search_and_retrieve, line 2). The search for Pp is

carried out by invoking find_provider(Fj), which requires O.m logn/ messages to complete.

In fact, find_provider first gets from its KT the identifiers of all the peers, Pp , providing Fj

(find_provider, line 1). Then, it finds the best provider in Pp , by invoking best_provider(Pp)

(find_provider, line 3). In turn, best_provider performs one DHT lookup for each Pj 2 Pp

(best_provider, lines 3–4). Because the size of Pp is m and each lookup produces O.logn/

messages, the number of messages exchanged during the second phase is O.m logn/.

Given the number of messages exchanged during the two phases—O.logn/ and O.m logn/,

respectively—the total number of messages generated by the FSR algorithm is O.m logn/.

The time complexity can be analyzed taking into account that the total time to perform a lookup

is proportional to the number of hops, or messages, needed to complete the lookup [24]. That being

so, the time complexity can be conveniently evaluated by assuming the FSR algorithm divided into

the two phases described earlier:

(1) For the first phase, the asymptotic time complexity equals the asymptotic message complexity,

O.logn/, of the single lookup performed by the search_and_retrieve procedure (line 1).

(2) For the second phase, it must be taken into account that the m DHT lookups performed by

best_provider (one lookup for each Pj 2 Pp , see lines 3–4) are independent from each other

and can be executed concurrently, taking care only to atomically update Pmin and tmin (lines

6–11). Therefore, also the asymptotic time complexity of the second phase equals that of a

single lookup, that is, O.logn/.

Considering the whole of the two phases, it can be concluded that the asymptotic time complexity

of the FSR algorithm is O.logn/.

6. PERFORMANCE EVALUATION

As discussed in the previous section, the search for an existing file returns a reference to a providing

peer that can be either available or unavailable. In case the providing peer is unavailable, the file

download is postponed until the next availability time of that peer is reached. Therefore, energy

saving is achieved at the cost of an average increase of the amount of time needed to begin the

download of the file of interest.

The goal of this section is to evaluate the amount of energy saved by the proposed model and the

delay it causes to file retrieval. To this end, the total energy consumed by the network over a period of

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

P. TRUNFIO

observation, Etot , and the average delay to retrieve a file,Davg , will be evaluated. As an additional

performance parameter, the average percentage of sleeping peers, Lavg , will also be considered.

For comparison purpose, the values of Etot , Davg , and Lavg will be measured in two different

cases: (i) the edge hosts periodically go in sleep mode by executing the ES algorithm (case referred

to as ‘ES’) and (ii) the edge hosts do not execute the ES algorithm, thus remaining always in normal

mode (‘NOES’ case).

6.1. Experimental methodology

A custom discrete-event simulator has been implemented to carry out the performance evaluation.

The simulator works in three phases:

(1) A two-layer peer-to-peer network composed of Nhosts hosts is created, Ncore_hosts of which

are randomly selected to play the role of core hosts.

(2) Nf iles are assigned to the peers on the basis of the popularity of each file and the number of

files that can be owned by each peer.

(3) The simulation begins with each peer performing both client-side activities (query submission

and file downloading) and server-side activities (query processing and file uploading).

Each simulation terminates when the clock reaches a value Tsim, which represents the simula-

tion length. At the end, the performance parameters Etot , Davg , and Lavg are calculated by the

following equations:

Etot D

Tsim
X

tD1

Nhosts
X

iD1

pi .t/ ��t (3)

where �t is the time resolution of the simulator (1 s), and pi .t/ is the power consumed by the i -th

host at time t , which is equal to plow if the host is in sleep mode at time t and phigh otherwise.

Davg D
1

Nqueries

Nqueries
X

iD1

tdown.i/ tsub.i/ (4)

where Nqueries is the number of queries processed during the simulation, tsub.i/ is the submission

time of the i -th query looking for a file Fj , and tdown.i/ is the instant of time when Fj starts to be

transferred from the file provider to the requestor.

Lavg D
1

Tsim

Tsim
X

tD1

Nsleeping_hosts.t/

Nhosts

� 100 (5)

where Nsleeping_hosts.t/ is the number of hosts in sleep mode at time t .

For the purpose of the present analysis, it is assumed that no hosts join and leave the network

over time. In addition, network formation and maintenance are not addressed, as these aspects are

beyond the scope of the present work.

6.2. Simulation parameters

Table III reports the input parameters used for the simulations. The network has a number of hosts

ranging from 1000 to 10,000, the 15% of which configured to play the role of core hosts, according

with available statistics about the composition of two-layer peer-to-peer networks (e.g., Gnutella

0.6 [28]). The number of distinct files is proportional to the number of hosts. According with many

works in the literature (e.g., [29–31]), it is assumed that the file popularity follows a Zipf distribution,

where FPmax is the number of instances of the most popular file, FPmin is the number of instances

of the least popular file, and FPskew is the skew factor of the distribution. The same distribution

also applies to the number of files owned by the peers, where no peers own less than FOmin files,

and FOskew is the skew factor.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

IMPROVING THE ENERGY EFFICIENCY OF PEER-TO-PEER NETWORKS

The simulator models query submissions as Poisson processes: the interarrival times of the sub-

mission events generated by any peer are independent and obey an exponential distribution with a

given query submission rate (QSR). It is assumed that the QSR of a peer reaches its maximum,

QSRmax , at a given time of the day, denoted Tpeak , and distributes around the maximum following

a Gaussian with standard deviationQSRstdev (Figure 5). The value used forQSRmax corresponds

to the average value reported in [32]. The value of Tpeak assigned to a peer is a random real number

uniformly distributed in the range [0..24[h. This aims at reproducing the behavior of a wide-area

peer-to-peer network in which peers, being located in countries with different time zones, reach their

maximum client-side activity at different hours.

The duration of a sleep–wake cycle, Tcycle , is equal to 600 s. The amounts of time to switch from

sleep to normal mode (Tsleep_to_normal) and vice versa (Tnormal_to_sleep) are taken from [33]. The

Table III. Simulation parameters.

Parameter Meaning Values

Nhosts Total number of hosts (equal to the number of peers) 1000–10,000
Ncore_hosts Number of core hosts (each one running one peer and one super peer) 0:15 �Nhosts
Nf iles Number of distinct files in the network 30 �Nhosts
FPmax Maximum file popularity (the most popular file is owned by FPmax peers) 0:1 �Nhosts
FPmin Minimum file popularity (the least popular file is owned by FPmin peers) 1
FPskew Skew factor of the file popularity (Zipf-distributed) 1.2
FOmin Minimum number of files owned (no peers own less than FOmin files) 1
FOskew Skew factor of the number of files owned (Zipf-distributed) 1.2
QSRmax Maximum value of the query submission rate (queries/min.) 1.2
QSRstdev Standard deviation of the query submission rate (Gaussian-distributed) 0.5
Tcycle Duration of a sleep–wake cycle 600 s

Tsleep_to_normal Amount of time for switching from sleep to normal mode 4 s

Tnormal_to_sleep Amount of time for switching from normal to sleep mode 9 s

Tmin_sleep Minimum duration of a sleep phase 120 s

Tunavail_to_sleep Amount of time between unavailability and attempt to go in sleep 8 s

Tsub_to_resp Average amount of time between query submission and response reception 6 s

Tinit_transfer Average amount of time to initialize a file transfer 4 s

Ttransfer Average duration of a file transfer 100 s

Tsim Duration of a simulation run 86,400 s
phigh Power consumed by a host in normal mode 120 W

plow Power consumed by a host in sleep mode 5 W
ARmin Minimum availability ratio 0.25
ARmax Maximum availability ratio 0.75
NFmin Number of files owned under which the AR of a peer is equal to ARmin {2, 5}
NFmax Number of files owned over which the AR of a peer is equal to ARmax {20, 50}

Figure 5. Query submission rate (QSR) of a peer as a function of the time of day.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

P. TRUNFIO

minimum duration of a sleep, Tmin_sleep , is set to 120 s (according to [14], usual values for this

parameter range between 100 an 200 s). The table also reports the average values of the amount

of time between query submission and response reception (Tsub_to_resp), of the amount of time to

initialize a file transfer (Tinit_transfer), and of the duration of a file transfer (Ttransfer).

According with [34], the power consumed by a host in normal mode, phigh, and that consumed in

sleep mode, plow , are assumed to be 120 and 5 W, respectively. The table finally reports the values

of parameters ARmin, ARmax , NFmin, and NFmax , which are used in Equation 1 to calculate the

AR of a peer.

6.3. Simulation results

In the first set of experiments, it has been evaluated how the shape of the AR function impacts

on the performance of the system. To this end, fixed ARmin and ARmax , respectively, to 0.25 and

0.75, four combinations of values for NFmin and NFmax have been considered: (i) NFmin D 2

and NFmax D 20; (ii) NFmin D 5 and NFmax D 20; (iii) NFmin D 2 and NFmax D 50; and

(iv) NFmin D 5 and NFmax D 50. Figure 6 shows how the AR function, as defined by Equation 1,

appears using the four pairs of values ŒNFmin; NFmax� considered.

One can notice that the higher NFmin, the higher the number of hosts with AR D ARmin. In

contrast, the higher NFmax , the lower the number of hosts with AR D ARmax . As a result, one

can expect that by choosing higher values for NFmin and NFmax , a lower AR is obtained, and

therefore, longer periods are passed by edge hosts in sleep mode. To test this hypothesis, a network

with Nhost D 5000 has been simulated using the four ŒNFmin; NFmax� combinations listed earlier.

The results are presented in Figure 7.

Figure 6. Availability ratio (AR) of a peer as a function of the number of files (NF) owned, with ARmin D
0:25, ARmax D 0:75, and the following ŒNFmin;NFmax � pairs of values: (a) [2; 20]; (b) [5; 20]; (c) [2;

50]; and (d) [5; 50].

Figure 7. Simulation results on a network withNhost D 5000, using four ŒNFmin;NFmax � combinations:
(a) total energy consumed by the network (Etot); (b) average delay to retrieve a file (Davg); and (c) average

percentage of sleeping peers (Lavg).

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

IMPROVING THE ENERGY EFFICIENCY OF PEER-TO-PEER NETWORKS

Figure 8. Simulation results on a network with Nhost ranging from 1000 to 10,000: (a) total energy con-
sumed by the network (Etot); (b) average delay to retrieve a file (Davg); and (c) average percentage of

sleeping peers (Lavg).

The figure shows that the total energy consumed by the network decreases from 7.27 MJ with the

combination [2; 20] to 6.51 MJ with the combination [5; 50]. At the same time, the average delay

increases from 28.41 to 35.58 s, and the average percentage of sleeping peers increases from 51.67

to 57.17. As expected, the highest values of NFmin and NFmax lead to the highest value of Lavg ,

which in turn reduces Etot and increasesDavg .

A second set of simulations has been conducted to compare the ES and NOES cases in a network

with Nhosts ranging from 1000 to 10,000. For the ES case, NFmin D 5 and NFmin D 50 have

been chosen as the default combination, because it produces a significant energy saving with a slight

increase ofDavg . The results of the simulations are shown in Figure 8.

Figure 8(a) shows that, as expected, the total energy consumed by the network is proportional

to the number of hosts. In the NOES case, in which peers do not execute the ES algorithm, Etot

passes from 2.88 MJ with 1000 hosts to 28.8 MJ with 10,000 hosts. In the ES case,Etot passes from

1.36 MJ with 1000 hosts to 12.85 MJ with 10,000 hosts. Therefore, the amount of energy saved

using the ES algorithm ranges between 53% and 55% with all the network sizes.

With regard to the average delay to retrieve a file, Figure 8(b) shows that the difference between

the NOES and ES cases ranges between 24 and 30 s. In fact, in the NOES case,Davg is equal to 10 s

independently from the network size, while in the ES case, it passes from 39.7 s with 1000 hosts to

34.1 s with 10,000 hosts. The slightly higher value ofDavg registered with the smallest networks in

the ES case is due to the higher impact that each single sleeping provider produces on a small-scale

scenario.

Figure 8(c) shows that the average percentage of sleeping peers is almost independent from the

network size. In fact, in the ES case, it ranges from a minimum of 55.1% with 1000 hosts to a

maximum of 57.8% with 10,000 hosts. It is worth noticing that the percentage of sleeping peers is

calculated over the total number of hosts, including the core hosts. Considering the edge hosts only,

the number of sleeping peers in the ES case ranges from 64.8% to 68.0%. Of course, in the NOES

case, the percentage of sleeping peer is always equal to 0.

The results presented earlier show that the additional delay to retrieve a file in the ES case on

average is 24 to 30 s more than the NOES case. To better understand this result, the delay of each

single query§ in a network of 5000 hosts has been registered during 24 h of simulations. Figure 9

presents the results in the form of a cumulative distribution function. The x-axis represents time,

while the y-axis represents the percentage of queries with delay lower than the corresponding time

on the x-axis.

§According with the definition of Davg formalized by Equation 4, the delay of a query Q looking for a file Fj is
calculated as tdown-tsub , where tsub is the submission time of Q, and tdown is the instant of time when Fj starts
to be transferred from the provider to the requestor.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

P. TRUNFIO

Figure 9. Distribution of the delays registered in a network of 5000 hosts during 24 h.

Figure 10. Simulation trace showing the number of hosts in normal and sleep modes over time.

The simulation results show that with the ES strategy, about 84% of the queries have no additional

delay compared with the NOES case and that only 5% of the queries experience a delay greater than

180 s. These results demonstrate the good performance of the system also from a user’s perspective.

Finally, it has been evaluated whether the energetic configuration of the network, expressed by

the number of nodes in normal and sleep modes, is stable over time. The analysis of the simulation

traces confirmed this point. As an example, Figure 10 presents a simulation trace for a network with

Nhosts D 5000, showing the number of hosts in normal and sleep modes over 24 h.

At the beginning of the simulation, all the hosts are in normal mode. As soon as the edge hosts

start the execution of the ES algorithm, the number of hosts in normal mode decreases and the

number of hosts in sleep mode increases consequently. After a transient of about 10 min, the network

reaches a steady state, and the ratio between normal and sleeping nodes remains constant up to the

end of the simulation. At any time, a small fraction of the nodes are in a transition state (normal-

to-sleep or sleep-to-normal). In summary, the trace data show that the energetic configuration of the

network is maintained as the simulation proceeds, thus demonstrating the effectiveness of the ES

algorithm over time.

7. CONCLUSIONS

Achieving energy efficiency in distributed systems is a challenging task, as it involves design and

optimization of energy-aware algorithms, architectural models, and applications. This is particularly

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

IMPROVING THE ENERGY EFFICIENCY OF PEER-TO-PEER NETWORKS

true with peer-to-peer file sharing systems, given the necessity of obtaining significant energy

savings without affecting the performance perceived by a large set of users.

In this paper, the problem has been addressed by proposing an energy-efficient peer-to-peer file

sharing system organized in two logical layers. The lower layer is composed of a set of peers,

providing the files to be shared. The upper layer includes a set of super peers, organized to form

a DHT-based overlay, whose purpose is indexing files and peers, including their availability status.

Following a sleep-and-wake approach, energy saving is achieved by letting peers cyclically switch

between normal and sleep modes, where the time passed in normal mode by a peer depends on the

number of files it provides. Simulation results showed that more than 50% of energy can be saved

using the proposed model and that more than 80% of file downloads start with no delay compared

with a network with all peers always powered on.

There are some aspects that provide room for future work. First, as pointed out earlier in the

paper, it would be worth investigating how the availability ratio of a peer could be adapted to

reflect the popularity of the files owned by the peer, other than the number of files owned. Another

interesting topic for future research is finding a network configuration that minimizes energy con-

sumption, for example, by dynamically selecting the super peers among the peers having the highest

availability ratios.

REFERENCES

1. Schulze H, Mochalski K. The impact of peer-to-peer file sharing, voice over IP, Skype, Joost, instant messaging,

one-click hosting and media streaming such as YouTube on the Internet. IPOQUE Internet Study 2007.

2. Erman J, Mahanti A, Arlitt M, Williamson C. Identifying and discriminating between web and peer-to-peer traffic in

the network core. WWW 2007.

3. Malatras A, Peng F, Hirsbrunner B. Energy-efficient peer-to-peer networking and overlays. In Handbook of Green

Information and Communication Systems, Obaidat MS, Anpalagan A, Woungang I (eds). Elsevier: Waltham, MA,

USA, 2013; 513–540.

4. Anastasi G, Giannetti I, Passarella A. A BitTorrent proxy for Green Internet file sharing: design and experimental

evaluation. Computer Communications 2010; 33(7):794–802.

5. Cohen B. Incentives build robustness in BitTorrent.Workshop on Economics in Peer-to-Peer Systems, Berkeley, CA,

USA, 2003.

6. Purushothaman P, Navada M, Subramaniyan R, Reardon C, George AD. Power-proxying on the NIC: a case study

with the Gnutella file-sharing protocol. LCN, Tampa, FL, USA, 2006; 519–520.

7. Ripeanu M, Iamnitchi A, Foster IT. Mapping the Gnutella network. IEEE Internet Computing 2002; 6(1):50–57.

8. Enokido T, Aikebaier A, Takizawa M. A model for reducing power consumption in peer-to-peer systems. IEEE

Systems Journal 2010; 4(2):221–229.

9. Enokido T, Suzuki K, Aikebaier A, Takizawa M. Laxity based algorithm for reducing power consumption in

distributed systems. CISIS, Krakow, Poland, 2010; 321–328.

10. Kelenyi I, Nurminen JK. Optimizing energy consumption of mobile nodes in heterogeneous Kademlia-based

distributed hash tables. NGMAST, Cardiff, UK, 2008; 70–75.

11. Joseph MS, Kumar M, Shen H, Das S. Energy efficient data retrieval and caching in mobile peer-to-peer networks.

PERCOMW, Kauai Island, HI, USA, 2005; 50–54.

12. Park K, Valduriez P. Energy efficient data access in mobile P2P networks. IEEE Transactions on Knowledge and

Data Engineering 2011; 23(11):1619–1634.

13. Tung Y-C, Lin KC-J. Location-assisted energy-efficient content search for mobile peer-to-peer networks. 7th

International Workshop on Mobile Peer-to-Peer Computing, Seattle, WA, USA, 2011; 477–482.

14. Lefebvre G, Feeley MJ. Energy efficient peer-to-peer storage. Technical Report (TR-2003-17), Dept. of Computer

Science, University of British Columbia, 2003.

15. Blackburn J, Christensen K. A simulation study of a new green BitTorrent. ICC, Dresden, Germany, 2009; 1–6.

16. Lee Y-J, Jeong J-H, Kim H-Y, Lee CH. Energy-saving set-top box enhancement in BitTorrent networks.

NOMS, Osaka, Japan, 2010; 809–812.

17. Gurun S, Nagpurkar P, Zhao BY. Energy consumption and conservation in mobile peer-to-peer systems.

MobiShare, Los Angeles, CA, USA, 2006; 18–23.

18. Sucevic A, Andrew LLH, Nguyen TTT. Powering down for energy efficient peer-to-peer file distribution. ACM

GreenMetrics, Seattle, WA, USA, 2009.

19. Jourjon G, Rakotoarivelo T, Ott M. Models for an energy-efficient P2P delivery service. PDP, Pisa, Italy, 2010;

348–355.

20. Andrew LLH, Sucevic A, Nguyen TTT. Balancing peer and server energy consumption in large peer-to-peer file

distribution systems. GreenCom, New York, NY, USA, 2011; 76–81.

21. Hlavacs H, Hummel KA, Weidlich R, Houyou AM, de Meer H. Modeling energy efficiency in distributed home

environments. International Journal of Communication Networks and Distributed Systems 2010; 4(2):161–182.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

P. TRUNFIO

22. Ka-Ho Leung A, Kwok Y-K. On localized application-driven topology control for energy-efficient wireless peer-to-

peer file sharing. IEEE Transactions on Mobile Computing 2008; 7(1):66–80.

23. Han J-S, Song J-W, Kim T-H, Yang S-B. Double-layered mobile P2P systems using energy-efficient routing schemes.

ATNAC, Adelaide, Australia, 2008; 122–127.

24. Stoica I, Morris R, Karger DR, Kaashoek MF, Balakrishnan H. Chord: a scalable peer-to-peer lookup service for

Internet applications. SIGCOMM, San Diego, CA, USA, 2001; 149–160.

25. Rowstron A, Druschel P. Pastry: scalable, decentralized object location, and routing for large-scale peer-to-peer

systems. Middleware, Heidelberg, Germany, 2001; 329–350.

26. Zhao BY, Huang L, Stribling J, Rhea SC, Joseph AD, Kubiatowicz JD. Tapestry: a resilient global-scale overlay for

service deployment. IEEE Journal on Selected Areas in Communications 2004; 22(1):41–53.

27. Maymounkov P, Mazieres D. Kademlia: a peer-to-peer information system based on the XOR Metric. IPTPS,

Cambridge, MA, USA, 2002; 53–65.

28. Stutzbach D, Rejaie R. Capturing accurate snapshots of the Gnutella network. INFOCOM, Vol. 4, Miami, FL, USA,

2005; 2825–2830.

29. Jin H, Chen H. SemreX: efficient search in a semantic overlay for literature retrieval. Future Generation Computer

Systems 2008; 24(6):475–488.

30. Stutzbach D, Zhao S, Rejaie R. Characterizing files in the modern Gnutella network. Multimedia Systems 2007;

13(1):35–50.

31. Goh S-T, Kalnis P, Bakiras S, Tan KL. Real datasets for file-sharing peer-to-peer systems. DASFAA, Beijing, China,

2005; 201–213.

32. Lv Q, Ratnasamy S, Shenker S. Can heterogeneity make Gnutella scalable? IPTPS, Cambridge, MA, USA, 2002;

94–103.

33. Agarwal Y, Hodges S, Chandra R, Scott J., Bahl P, Gupta R. Somniloquy: augmenting network interfaces to reduce

PC energy usage. NSDI, Boston, MA, USA, 2009; 365–380.

34. Knezek G, Christensen RR, Tyler-Wood T, Lim O, Neaville WE. Going green with IT: a study of energy consumption

by Home and School Information Technology Systems in the College of Information at the University of North

Texas. iConference, Urbana-Champaign, IL, USA, 2010.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

