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Appraising SPARK on Large-Scale Social Media
Analysis

Loris Belcastro, Fabrizio Marozzo�, Domenico Talia, and Paolo Trunfio

DIMES, University of Calabria, Italy,
[lbelcastro, fmarozzo, talia, trunfio]@dimes.unical.it

Abstract. Software systems for social media analysis provide algorithms
and tools for extracting useful knowledge from user-generated social
media data. ParSoDA (Parallel Social Data Analytics) is a Java library for
developing parallel data analysis applications based on the extraction of
useful knowledge from social media data. This library aims at reducing the
programming skills necessary to implement scalable social data analysis
applications. This work describes how the ParSoDA library has been
extended to execute applications on Apache Spark. Using a cluster of
12 workers, the Spark version of the library reduces the execution time
of two case study applications exploiting social media data up to 42%,
compared to the Hadoop version of the library.

Keywords: Social Data analysis, Scalability, Spark, Cloud computing, Parallel
library, Big Data.

1 Introduction

Every day, huge volumes of data are generated by users of social networks like
Facebook, Twitter, Instagram and Flickr. Social media analysis aims at extracting
useful knowledge from this big amount of data [3]. Social media analysis tools
and algorithms have been used for the analysis of collective sentiments [15],
for understanding the behavior of groups of people [6][5] or the dynamics of
public opinion [2]. The use of parallel and distributed data analysis techniques
and frameworks (e.g. MapReduce [10]) is essential to cope with the size and
complexity of social media data. However, it is hard for many users to use such
frameworks, mainly due to the programming skills necessary to implement the
desired data analysis methods on top of them [18].

ParSoDA (Parallel Social Data Analytics) is a Java library for building parallel
social media analysis applications, designed for simplifying the programming
task necessary to implement these class of applications on parallel computing
systems. To reach this goal, ParSoDA includes functions that are widely used for
processing and analyzing data gathered from social media for finding different
types of information (e.g., user mobility, user sentiments, topics trends). ParSoDA
defines a general framework for a social data analysis application that includes



a number of steps (data acquisition, filtering, mapping, partitioning, reduction,
analysis, and visualization), and provides a predefined (but extensible) set of
functions for each step. Thus, an application developed with ParSoDA is expressed
by a concise code that specifies the functions invoked at each step. The library
includes algorithms that are widely used on social media data for extracting
different types of information. In a previous work [4], we presented the main
features of ParSoDA and described how it can be used to execute parallel social
data analysis on a Cloud system exploiting Apache Hadoop [19]. In this work
we describe how the ParSoDA library has been extended to execute applications
on Apache Spark [22]. Spark is one of the most popular framework for Big Data
processing. Differently from Hadoop, in which intermediate data are always stored
in distributed file systems, Spark stores data in main memory and processes it
repeatedly so as to obtain better performance for some classes of applications
(e.g., iterative machine learning algorithms and queries on data [20]).

We experimentally evaluated the scalability of the Spark version of ParSoDA
proposed in this paper, compared to the previous Hadoop version of the library
that has been presented in [4]. The experimental evaluation is based on two case
study applications on social media data published in Flickr and Twitter. The
first application aims at discovering sequential patterns from user movements, so
as to find the common routes followed by users. The second application discovers
the frequent sets of places visited by users. The ParSoDA library performance
has been evaluated carrying out the data analysis applications both on a Hadoop
and a Spark cluster deployed on the Microsoft Azure cloud platform. On a cluster
using 12 workers, the Spark version of ParSoDA reduced the execution time up
to 42% compared to the Hadoop version of the library.

The remainder of the paper is organized as follows. Section 2 discusses related
work. Section 3 describes the ParSoDA library and the proposed integration with
Spark. Section 4 presents the experimental evaluation of two case studies. Finally,
Section 5 concludes the paper.

2 Related work

Many professionals and researches are working on the design and implementation
of tools and algorithms for extracting useful information from data gathered from
social networks. In most cases the amount of data to be analyzed is so big that
high performance computers, such as many and multi-core systems, Clouds, and
multi-clusters, paired with parallel and distributed algorithms, are used by data
analysts to reduce response time to a reasonable value [3].

Several research activities consider not only data analysis, but also providing
solutions for building social data applications, with the aim of helping scientists to
develop the different steps that compose social data mining applications without
the need to implement common operations from scratch.

SOCLE [1] is a framework for expressing and optimizing data preparation in
social applications. It is composed by a general-purpose three-layers architecture,
an algebra, and a language to define operations for data preparation in social



applications. As an example, SOCLE provides operators to remove all unnecessary
information from data (data pruning), to add information by using external
sources (data enrichment), to transform data values (data normalization). The
authors examined the use of SOCLE for manipulating social data in two families
of social applications, recommendation and analytics, but no studies have been
performed to assess its scalability, and no details about framework requirements
have been provided.

Cuesta et al. [9] proposed a framework for easing Twitter data extraction
and analysis. In the proposed architecture the tweets, mined by the application
through the Twitter APIs, are cleaned and then stored in a MongoDB database [7].
In addition to basic database operations (i.e. selection, projection, insertion,
updating and deletion), the framework can be extended creating more complex
aggregation MapReduce tasks in Python. By default, the framework provides
researchers modules for executing sentiment analysis and generating reports.

SODATO (SOcial Data Analytics Tool) [12] is an on-line tool for helping
researches on social data. It utilizes the APIs provided by social networks (i.e.,
currently, it supports only Facebook and Twitter) for collecting data; then, it
provides a combination of web as well as console applications that run in batches
for preprocessing and aggregating data for analysis. At the end of the analytics
process, the results can be displayed using the integrated visualization module.
SODATO provides methods for several kinds of analysis, such as sentiments
analysis, keyword analysis, content performance analysis, social influencer analysis,
etc.

You et al. [21] presented a framework, running on Clouds, for developing
social data analysis applications for smarter cities, especially designed to support
smart mobility. In particular, the framework is composed by five components
(i.e., data collector, data preprocessor, data analyzer, data presenter, and data
storage) that cover the whole data analysis lifecycle. The framework supports
data collection from social networks (e.g., Twitter, Foursquare), by exploiting
their public APIs, and from other Internet sources (e.g. website, blog, files). A
component devoted to data preprocessing provides functions for data cleansing,
filtering and normalization. Afterwards, the data analyzer component provides
needed analysis methods (e.g. K-means, DBScan, and Self-organizing Map) to
make some data analysis.

The main differences between ParSoDA and the systems described above
(but the one by You et al. [21]), is that our system was specifically designed to
build Cloud-based data analytics applications. To this end, it provides scalability
mechanisms based on two of the most popular parallel processing frameworks
(Hadoop and Spark), which are fundamental to provide satisfactory services as
the amount of data to be managed grows.

3 The ParSoDA library

ParSoDA (Parallel Social Data Analytics) is a Java library that includes algo-
rithms that are widely used to process and analyze data gathered from social



networks for extracting different kinds of information (e.g., user mobility, user
sentiments, topic trends).

ParSoDA defines a general structure for a social data analysis application
that is formed by the following steps:

– Data acquisition: during this step, it is possible to run multiple crawlers
in parallel; the collected social media items are stored on a distributed file
system (HDFS [17]).

– Data filtering : this step filters the social media items according to a set of
filtering functions.

– Data mapping : this step transforms the information contained in each social
media item by applying a set of map functions.

– Data partitioning : during this step, data is partitioned into shards by a
primary key and then sorted by a secondary key.

– Data reduction: this step aggregates all the data contained in a shard according
to the provided reduce function.

– Data analysis: this step analyzes data using a given data analysis function
to extract the knowledge of interest.

– Data visualization: at this final step, a visualization function is applied on
the data analysis results to present them in the desired format.

For each of these steps ParSoDA provides a predefined set of functions. Users
are free to extend this set with their own functions. For example, for the data
acquisition step, ParSoDA provides crawling functions for gathering data from
some of the most popular social networks (Twitter and Flickr), while for the data
filtering step, ParSoDA provides functions for filtering geotagged items based on
their position, time of publication, and contained keywords.

Figure 1 presents the reference architectures describing how user applications
based on the ParSoDA library are executed on the Hadoop and Spark frameworks,
which allows implementing parallel and distributed applications with high level
of scalability for several data mining tasks [8] [22]. As shown in the figure, user
applications can make use of ParSoDA and other libraries. Applications can be
executed on a Hadoop or a Spark cluster, using YARN as resource manager and
HDFS as distributed file system.

Fig. 1. Reference architecture



Figure 2 provides details on how applications are executed on a Hadoop or a
Spark cluster. The cluster is formed by one or more master nodes, and multiple
slave nodes. Once a user application is submitted to the cluster, its steps are
executed according to their order (i.e., data acquisition, data filtering, etc.).

On a Hadoop cluster (see Figure 2(a)), some steps are inherently MapReduce-
based, namely: data filtering, data mapping, data partitioning and data reduction.
This means that all the functions used to perform these steps are executed within
a MapReduce job that runs on a set of slave nodes. Specifically: the data
filtering and data mapping steps are wrapped within Hadoop Map tasks; the data
partitioning step corresponds to Hadoop Split and Sort tasks; the data reduction
step is executed as a Hadoop Reduce task. The remaining steps (data acquisition,
data analysis, and data visualization) are not necessarily MapReduce-based. This
means that the functions associated to these steps could be executed in parallel
on multiple slave nodes, or alternatively they could be executed locally by the
master node(s). The latter case does not imply that execution is sequential,
because a master node could make use of some other parallel runtime (e.g., MPI).

On a Spark cluster (see Figure 2(b)), the main steps are executed within
two Spark stages that run on a set of worker nodes. A stage is a set of indepen-
dent tasks executing functions that do not need to perform data shuffling (e.g.,
transformation and action functions). Specifically: data filtering and mapping are
executed within the first stage (Stage 0 ), while data partitioning and reduction
are executed within the second stage (Stage 1 ). Concerning the remaining steps
(data acquisition, data analysis, and data visualization), the same considerations
made for Hadoop apply to Spark.

(a) Hadoop execution flow. (b) Spark execution flow.

Fig. 2. Hadoop and Spark execution flows.



4 Case studies

We ran experiments to evaluate the scalability of the Spark version of ParSoDA
proposed in this paper, in comparison with the previous Hadoop version of the
library that has been presented in [4]. The experimental evaluation is based on
two case studies based on the analysis of social media data published in Flickr
and Twitter. The first application aims at discovering sequential patterns from
user movements, so as to find the common routes followed by users. The second
one aims at discovering the frequent sets of places visited by users. The analysis
was carried out by analyzing 325 GB of social media data published in Flickr
and Twitter from November 2014 to July 2016 that refer to the center of Rome.

4.1 Application code

Listing 1.1 shows the code of the application for executing the sequential pattern
mining. First, an instance of the SocialDataApp class must be created (line 1 ).
Then a file containing the boundaries of the regions of interest (RomeRoIs.kml)
is distributed to the processing nodes (lines 2-3 ). Afterwards, the different steps
of the application are configured as described here:

1. Data collection. The names of two crawling classes (FlickrCrawler and Twit-
terCrawler) are defined in the cFunctions array (line 4 ). The parameters
used to configure the instances of the two crawling classes are defined in the
cParames array (line 5 ). The two arrays are then passed to the setCrawlers
method (line 6 ).

2. Data filtering. Two filtering classes are specified: IsGeotagged and IsInPlace
(line 7 ). The former filters data by keeping only geotagged items. The latter
filters out data that are not in the center of Rome, which is defined by its
geographical coordinates. The parameters of the two filtering functions are
specified in the fParams array (line 8 ). The names of the filtering classes
and associated parameters are then passed to the setFilters method (line 9 ).

3. Data mapping. The map class FindPoI (line 10 ), which does not require
parameters to be instantiated (line 11 ), is specified. The mapping function
defined in FindPoI assigns to each social media item the name of the place
it refers to. To do this, it refers to the boundaries specified in the file defined
at line 2. The name of the map class is then passed to the setMapFunctions
method (line 12 ).

4. Data partitioning. The id of the user who posted a social media item is used
as the groupKey (line 13 ), while the date and time when the social media
item was posted is used as the sortKey (line 14 ). The two keys are then
passed to the setPartitioningKeys method (line 15 ).

5. Data reduction. A reduce class, named ReduceByTrajectories (line 16 ), is
specified to aggregate all the social media items posted by a single user, into
a list of individual trajectories across places. The parameters of the reduce
class are specified in the rParams string (line 17 ). In particular, it receives
only a parameter t, which is the maximum time gap in hours that can be



taken for consecutive places in the same trajectory. The name of the reduce
class and its parameters are then passed to the setReduceFunction method
(line 18 ).

6. Data analysis. A data analysis class, named PrefixSpan, is specified (line 19 ).
The class implements PrefixSpan [16], a scalable frequent sequence mining
algorithm, built for Spark and included in the Spark Machine Learning
library (MLlib), which takes as input a collection of sequences and mines
frequent sequences. The parameters of data analysis class are specified in
the aParams string (line 20 ). The name of the data analysis class and its
parameters are then passed to the setAnalysisFunction method (line 21 ). In
the Hadoop version of the application presented in [4], as data analysis class
we used MGFSM [14], a scalable frequent sequence mining algorithm built
for MapReduce.

7. Data visualization. The SortResults class is specified to perform the data
visualization function (line 22 ). A configuration string vParams, containing
the parameters of the data visualization class, is specified at line 23. The class
receives two parameters: the key used to sort results (the sequence support)
and the sort direction (descending order). The name of the data visualization
class and its parameters are then passed to the setVisualizationFunction
method (line 24 ).

Finally, the execution of the application is obtained by invoking the execute
method (line 25 ).

1 SocialDataApp app = new SocialDataApp("SPM - City of Rome");

2 String[] cFiles = {"RomeRoIs.kml"};

3 app.setDistributedCacheFiles(cacheFiles);

4 String[] cFunctions = {"FlickrCrawler","TwitterCrawler"};

5 String[] cParams = {"-lat 12.492 -lng 41.890 -radius 10 -startDate

2016-07-31 -endDate 2014-11-01","-lat 12.492 -lng 41.890 -radius 10 -

startDate 2016-07-31 -endDate 2014-11-01"};

6 app.setCrawlers(cFunctions,cParams);

7 String[] fFunctions = {"IsGeotagged","IsInPlace"};

8 String[] fParams = {"true","-lat 12.492 -lng 41.890 -radius 10"};

9 app.setFilters(fFunctions, fParams);

10 String[] mFunctions = {"FindPoI"};

11 String[] mParams = null;

12 app.setMapFunctions(mFunctions, mParams);

13 String groupKey = "USER.USERID";

14 String sortKey = "DATETIME";

15 app.setPartitioningKeys(groupKey,sortKey);

16 String rFunction = "ReduceByTrajectories";

17 String rParams = "-t 5";

18 app.setReduceFunction(rFunction,rParams);

19 String aFunction = "PrefixSpan";

20 String aParams = "-maxPatternLength 5 -minSupport 0.01";

21 app.setAnalysisFunction(aFunction,aParams);

22 String vFunction = "SortBy";

23 String vParams = "-k support -d DESC";



24 app.setVisualizationFunction(vFunction,vParams);

25 app.execute();

Listing 1.1. An example of sequential pattern mining (SPM) application on Flickr
and Twitter data from the City of Rome, written using the ParSoDA library.

The code for executing the frequent itemset analysis differs from that described
above only for the used data analysis algorithm (lines 19-21 ). In particular, for
extracting frequent sets of places from social media data, a parallel implementation
of FP-Growth [11] called PFP [13], has been used both in the Spark- and in the
Hadoop-version of the application.

4.2 Applications results

A set of 24 popular places in the center of Rome have been considered to run
the sequential pattern mining task and the frequent itemset discovery task, both
implemented as ParSoDA applications. In the following, we discuss some of the
most interesting results that have been obtained. Table 1 shows the top 5 places
visited in Rome, with the corresponding support in the data. The Colosseum is
the most visited place, followed by the St. Peter’s Basilica.

Table 1. Top 5 places
visited in Rome

Place Support

Colosseum 21.7%

St Peter’s Basilica 13.9%

Trastevere 8.7%

Pantheon 6.5%

Trevi Fountain 5.3%

Table 2. Top 5 frequent sets of places visited in Rome

Set of places Support

Pantheon, St. Peter’s Basilica, Colosseum 5.3%

Trevi Fountain, St. Peter’s Basilica, Colosseum 4.5%

Roman Forum, St. Peter’s Basilica, Colosseum 4.4%

Vatican Museums, St. Peter’s Basilica, Colosseum 4.4%

Trevi Fountain, Pantheon, Colosseum 4.0%

Table 2 shows the most frequent itemsets of length 3 that have been discovered
by the PFP algorithm. Set {Pantheon, St. Peter’s Basilica, Colosseum} is the
most frequent set of places visited by social users in Rome, with a support of
5.3%. Combining the information contained in Tables 1 and 2, an interesting
result is that Trastevere, a popular district of Rome, is the third most visited
place, but it is not present in any frequent itemset. This could happen because
Trastevere is visited by people during the evening, for having a dinner in one of
its many restaurants or pubs, but it is not part of common tourist routes during
the daylight.

The sequential pattern analysis has been carried out for discovering the most
frequent routes in Rome. In this experiment, it has been set a maximum time
duration (gap) to move from a place to another of 5 hours. This means that if
the time distance between two contiguous places in sequence is greater than 5
hours, they will belong to different sequences.

Figure 3(a) shows the top five visited places in Rome that have been found
by the PFP algorithm. Figures 3(b), 3(c), 3(d) show respectively the top five



interesting patterns of length 3, 4, and 5, which have been found by the PrefixSpan
algorithm. More detailed information about the most frequent patterns and the
corresponding supports are reported in Table 3. Considering the sequential
patterns of length 2, the sequence {Colosseum → St. Peter’s Basilica} is the
most frequent route among places in Rome, followed by 9.07% of users. The
sequence {Colosseum → Roman Forum → St. Peter’s Basilica} is the most
frequent route of length 3, which is followed by 4.4% of users. Finally, the
sequence {Colosseum → Trevi Fountain → Pantheon → St. Peter’s Basilica} is
the most frequent route of length 4 with a quite low support of 0.64%.

(a) Top 5 places of interest in Rome. (b) Top 5 sequential patterns of length 2.

(c) Top 5 sequential patterns of length 3. (d) Top 5 sequential patterns of length 4.

Fig. 3. Sequential pattern mining application.

4.3 Scalability evaluation

As mentioned before, we experimentally evaluated the scalability of the Spark
version of ParSoDA proposed in this paper, compared to the previous Hadoop
version of the library. The scalability was evaluated running the data analysis
applications on the Microsoft Azure cloud. Specifically, we used one cluster
equipped with 2 head nodes (each one having four 2.2 GHz CPU cores and 14
GB of memory), and 12 worker nodes (each one equipped with four 2.2 GHz
CPU cores and 14 GB of memory). Here we present the results obtained with



Table 3. Top 5 sequential patterns of length 2, 3 and 4 across places in Rome

Sequential pattern Support

Colosseum → St. Peter’s Basilica 9.07%
St. Peter’s Basilica → Colosseum 7.72%
Colosseum → Roman Forum 5.28%
Colosseum → Pantheon 4.44%
Colosseum → Trevi Fountain 4.19%

Colosseum → Roman Forum → St. Peter’s Basilica 4.4%
Vatican Museums → St. Peter’s Basilica → Colosseum 3.9%
Colosseum → Trevi Fountain → St. Peter’s Basilica 3.7%
Colosseum → Roman Forum → Pantheon 3.6%
Colosseum → Pantheon → St. Peter’s Basilica 3.6%

Colosseum → Trevi Fountain → Pantheon → St. Peter’s Basilica 0.64%
Colosseum → Roman Forum → Trevi Fountain → San St. Peter’s Basilica 0.61%
Colosseum → Roman Forum → Piazza Venezia → Piazza di Spagna 0.58%
Colosseum → Roman Forum → Piazza Venezia → St. Peter’s Basilica 0.58%
Colosseum → Roman Forum → Pantheon → St. Peter’s Basilica 0.58%

the sequential pattern mining application. The performance obtained with the
frequent itemset applications are almost identical.

As shown in Figure 4(a), the turnaround time of the Hadoop-based application
decreases from about 54 minutes using two workers, to 10 minutes using 12 workers.
The turnaround time of the Spark-based application decreases from about 32
minutes using two workers, to 9 minutes using 12 workers. Thus, using the same
computing resources, the Spark version of ParSoDA results to be 8% (12 workers)
to 42% (2 workers) faster than the Hadoop version. In terms of speedup (see
Figure 4(b)), Hadoop obtains a speedup ranging from 1.98 using 4 workers, to
5.37 using 12 workers. On the other hand, the Spark version achieves a lower
relative speedup than Hadoop, as it passes from 1.74 using 2 workers, to 3.53
using 12 workers. This is due to the fact that the Spark version spends most of
the time to load data in memory and to distribute it across the worker nodes.
Thus, for such application, increasing the number of nodes beyond a certain
number seems not have significant benefits. However, the advantage of Spark
over Hadoop is significant in terms of absolute times reduction, as shown by the
results presented in Figure 4(a).

5 Conclusions

Social media analysis is an important research area aimed at extracting useful
information from the big amount of data gathered from social networks. To
cope with the size and complexity of social media data, the use of parallel and
distributed data analysis techniques is fundamental. ParSoDA is a Java library
that can be used for building parallel social data analysis applications. ParSoDA
defines a general structure for a social data analysis application that includes
a number of steps (data acquisition, filtering, mapping, partitioning, reduction,
analysis, and visualization), and provides a predefined (but extensible) set of
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Fig. 4. Turnaround time and relative speedup of the sequential pattern mining applica-
tion using Hadoop and Spark.

functions for each step. In a previous work [4], we described how ParSoDA can
be used to run parallel social data analysis on the cloud using Hadoop.

In the present work we presented an extension of ParSoDA to execute ap-
plications on Spark. We experimentally evaluated the scalability of the Spark
version of ParSoDA compared to the previous Hadoop version of the library. The
experimental evaluation is based on two case study applications on social media
data published in Flickr and Twitter. The ParSoDA library performance has
been evaluated carrying out the data analysis applications both on a Hadoop
and a Spark cluster deployed on the Microsoft Azure cloud platform. The results
obtained on a cluster with 12 workers, showed that the Spark version of ParSoDA
was able to reduce the execution time up to 42% compared to the Hadoop version
of the library.
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9. Cuesta, Á., Barrero, D.F., R-Moreno, M.D.: A framework for massive twitter data
extraction and analysis. Malaysian J. of Computer Science 27, 1 (2014)

10. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.
In: Proceedings of the 6th Conference on Symposium on Opearting Systems Design
& Implementation. pp. 10–10. OSDI’04, Berkeley, USA (2004)

11. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate
generation: A frequent-pattern tree approach. Data mining and knowledge discovery
8(1), 53–87 (2004)

12. Hussain, A., Vatrapu, R.: Social Data Analytics Tool (SODATO), pp. 368–372.
Springer International Publishing, Cham (2014)

13. Li, H., Wang, Y., Zhang, D., Zhang, M., Chang, E.Y.: Pfp: Parallel fp-growth for
query recommendation. In: Proceedings of the 2008 ACM Conference on Recom-
mender Systems. pp. 107–114. New York, NY, USA (2008)

14. Miliaraki, I., Berberich, K., Gemulla, R., Zoupanos, S.: Mind the gap: Large-scale
frequent sequence mining. In: Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data. pp. 797–808 (2013)

15. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Foundations and Trends
in Information Retrieval 2(12), 1–135 (2008)

16. Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., Hsu,
M.C.: Mining sequential patterns by pattern-growth: the prefixspan approach. IEEE
Transactions on Knowledge and Data Engineering 16(11), 1424–1440 (Nov 2004)

17. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file system.
In: Mass storage systems and technologies (MSST), 2010 IEEE 26th symposium
on. pp. 1–10. IEEE (2010)

18. Talia, D., Trunfio, P., Marozzo, F.: Data Analysis in the Cloud. Elsevier (October
2015)

19. White, T.: Hadoop: The Definitive Guide. O’Reilly Media, Inc., 1st edn. (2009)
20. Xin, R.S., Rosen, J., Zaharia, M., Franklin, M.J., Shenker, S., Stoica, I.: Shark: Sql

and rich analytics at scale. In: Proceedings of the 2013 ACM SIGMOD Conference
on Management of data. pp. 13–24. ACM (2013)

21. You, L., Motta, G., Sacco, D., Ma, T.: Social data analysis framework in cloud and
mobility analyzer for smarter cities. In: IEEE Int. Conference on Service Operations
and Logistics, and Informatics. pp. 96–101 (Oct 2014)

22. Zaharia, M., Xin, R.S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X.,
Rosen, J., Venkataraman, S., Franklin, M.J., et al.: Apache spark: A unified engine
for big data processing. Communications of the ACM 59(11), 56–65 (2016)

View publication statsView publication stats

https://www.researchgate.net/publication/322981782

	Appraising SPARK on Large-Scale Social Media Analysis

