
Dissemination of Information with Fair Load

Distribution in Self-Organizing Grids

Agostino Forestiero, Carlo Mastroianni, and Giandomenico Spezzano

Institute of High Performance Computing and Networking
ICAR-CNR, Rende(CS), Italy

{forestiero,mastroianni,spezzano}@icar.cnr.it

Abstract. This paper presents an ant-inspired algorithm for building a
self-organizing information system of a Grid. Ant-inspired mobile agents
travel the Grid through P2P (peer-to-peer) interconnections and dis-
seminate “descriptors”, i.e., metadata information about available Grid
resources. Descriptors are reorganized and spatially sorted over the Grid,
thus facilitating resource management and discovery. Moreover, agents
distribute descriptors so as to respect the different capabilities of Grid
hosts: hosts with higher storage capacity are assigned a larger number
of descriptors than low capacity hosts. The effectiveness of the presented
algorithm is assessed by event-driven simulation which proves that the
simple operations performed by mobile agents successfully achieve both
descriptor reorganization and fair load distribution.

1 Introduction

Owing to the inherent scalability and robustness of P2P algorithms, several P2P
approaches have recently been proposed for resource organization and discovery
in distributed environments and specifically in Grids [1]. The main goal of these
approaches is to allow users to locate Grid resources, either hardware or software,
which have the required characteristics. This is reduced to the problem of finding
resource descriptors, which are metadata documents through which it is possible
to obtain information and access the resources. Descriptors are usually indexed
through bit strings, or keys that can have a semantic meaning (for example, each
bit may indicate if the resource focuses on a specific topic or provides a specific
functionality) or can be obtained through a hash function. In the latter case,
the hash function is often “locality preserving” [2], which assures that resources
having similar characteristics are associated to similar descriptor keys.

In this paper, we present an approach for the construction of a P2P-based
Grid information system, which is inspired by the behavior of some species of
ants that cluster items within their environment [3] [4]. The devised algorithm
is able to disseminate and reorder descriptors in order to facilitate and speed up
discovery operations. Replication and relocation of descriptors are achieved by
means of simple pick and drop operations performed by ant-like mobile agents.
These agents probabilistically copy and relocate descriptors with a tendency to
remove a descriptor that differs significantly from other descriptors in current



2 Agostino Forestiero, Carlo Mastroianni, Giandomenico Spezzano

network neighborhood and place it where it is more similar to its neighbors.
These operations allow the possible initial equilibrium (if descriptors having
different keys are uniformly distributed among hosts) to be broken, and then
reinforce the spatial separation and ordering of descriptors.

The ant algorithm is an improved version of the algorithm published in [5].
The enhancement presented here takes into account the storage capacity of hosts,
and aims to cope with the problem of fairly distributing descriptors among hosts,
which is a critical issue for the efficient operation of P2P systems. To achieve
this objective, enhanced pick and drop operations are defined so as to facilitate
the pick operations in hosts with low storage capacity and the drop operations
in hosts with high storage capacity.

In summary, the presented algorithm concurrently achieves multiple objec-
tives: (i) it replicates and disseminates descriptors; (ii) it spatially sorts them, so
that descriptors with similar indexes are placed in neighbor hosts; (iii) it adapts
the distribution of descriptors to the storage capabilities of different hosts. More-
over, thanks to the self-organizing nature of the ant-based approach, agent oper-
ations spontaneously adapt to the ever changing environment, for example to the
joins and departs of Grid hosts and to the changing characteristics of resources.
In this paper, we present the results of an event-based simulation analysis, which
shows that the algorithm successfully achieves the mentioned objectives.

2 Reorganization and Fair Distribution of Descriptors

As a peer connects to the network, with a given probability it generates a mo-
bile agent that will travel the Grid through P2P interconnections and offer its
contribution to the reorganization of descriptors. Whenever an agent arrives at
a new host, it operates as follows: (i) if the agent does not carry any descriptor,
it evaluates the pick probability function for every descriptor stored in this host,
so as to decide whether or not to pick this descriptor; (ii) if the agent carries
some descriptors, it evaluates the drop probability function for each carried de-
scriptor, so as to decide whether or not to drop it in the current host. The pick

and drop operations are driven by the corresponding probability functions that
are defined and discussed in the following.

The pick probability function, as well as the drop probability function dis-
cussed later, is defined starting from the similarity function f(d̄, R) reported in
formula (1). This function measures the average similarity of a given descriptor
d with all the descriptors d located in the visibility region R. The visibility region
includes all the hosts that are reachable from the current host with one hop. In
formula (1), Nd is the overall number of descriptors maintained in the region R,
and H(d, d̄) is the Hamming distance between d and d. B is the number of bits
that are contained in descriptor keys. The parameter α defines the similarity
scale [6]; here it is set to B/2, which is half the value of the maximum Hamming
distance between binary vectors having B bits. The value of f(d̄, R) assumes
values ranging between -1 and 1, but negative values are truncated to 0.



Dissemination of Information with Fair Load Distribution 3

f(d̄, R) =
1

Nd

·
∑

dǫR

(1 −
H(d, d̄)

α
) (1)

The probability of picking a descriptor d from the current host must satisfy
two basic requirements:

(i) it must be inversely proportional to the average similarity f(d̄, R), thus
obtaining the effect of averting a descriptor from co-located dissimilar descrip-
tors. As soon as the possible initial equilibrium is broken (i.e., descriptors having
different keys begin to be accumulated in different Grid regions), a further reor-
ganization of descriptors is increasingly driven, because the probability of picking
a dissimilar descriptor increases.

(ii) it must be inversely proportional to the storage capacity of the current
host. This assures that in steady conditions high capacity hosts store more de-
scriptors than low capacity hosts, thus respecting the different characteristics
of the hosts in a Grid. To cope with this requirement, each host must estimate
the average capacity of a Grid host or, more specifically, the average amount of
storage space that is offered by a host to store resource descriptors. Estimation
is achieved through an exchange of messages with neighbor hosts. Each host
assigns a reference value of 1 to the estimated average value and assigns itself a
storage index that is proportional to the amount of storage space that this host
offers to the network. For example, a host assigns itself a capacity index equal
to 5 if it offers an amount of storage space that is 5 times the estimated average
storage space offered by a generic host.

The pick probability function Ppick, reported in formula (2), is evaluated
by an agent for each descriptor d̄ stored in the local host, to probabilistically
decide whether or not to pick this descriptor. The value of Ppick is obtained as
the product of two factors. The first factor is inversely proportional to f(d̄, R),
the average similarity of the descriptor under consideration with all the other
descriptors stored in the visibility region R. The second factor takes into account
the capacity of the current peer Lpeer, and the average capacity of a generic
peer L, which is set to 1 as discussed before. The formula assures that it is more
probable to pick a descriptor if it is an outlier in the local region and/or if the
local host has less storage capacity then the estimated average.

Ppick =

(

kp

kp + f(d̄, R)

)2

·





kpl

kpl +
Lpeer−L

L





2

(2)

In the Ppick formula, the parameters kp and kpl can be tuned to modulate
the relative impact of the two factors. In particular, the parameter kp assumes
a value between 0 and 1 and can be used to tune the degree of similarity among
descriptors. In fact, the first factor of the pick probability function approaches 1
when f(d̄, R) is much lower than kp (meaning that d is extremely dissimilar from
the other descriptors) and 0 when f(d̄, R) is much larger than kp (meaning that
d is very similar to others descriptors). Here kp is set to 0.1, as in [3]. Conversely,
the value of kpl assumes a value greater than 1, to assure that the denominator



4 Agostino Forestiero, Carlo Mastroianni, Giandomenico Spezzano

of the second factor is greater than 0. In the case that the value of Ppick value
exceeds 1, it is truncated to 1, which corresponds to having a 100% probability
of picking a very dissimilar descriptor and/or of picking a descriptor from a host
with very low capacity.

The pick operation can be performed with two different modes, copy and
move. If the copy mode is used the agent, when executing a pick operation,
leaves the descriptor on the current host, generates a replica of it, and carries
the new descriptor until it drops it into another host. Conversely, with the move

mode, an agent picks the descriptor and removes it from the current host. Each
agent first operates in the copy mode, than it switches to the move mode, in
order to prevent an excessive proliferation of replicas, which would hinder the
correct spatial sorting of descriptors. This mechanism is better described in [5].

After picking some descriptors, an agent must decide whether or not to drop
them in the hosts through which it passes. For each carried descriptor d̄, the
agent evaluates the drop probability function Pdrop, which as opposed to the pick
probability, must be: (i) directly proportional to the similarity function f(d̄, R),
i.e., to the average similarity of d̄ with the descriptors maintained in the visibility
region; (ii) directly proportional to the storage capacity of the current host. Pdrop

is defined in formula (3), which satisfies the two mentioned requirements. In (3),
the parameter kd is set to a higher value than kp, specifically to 0.5, in order
to limit the frequency of drop operations. This is useful to let the agents carry
descriptors to appropriate Grid regions, without dropping them too early. In the
same fashion as kpl in formula (2), kdl must be given a value higher than 1.

Pdrop =

(

f(d̄, R)

kd + f(d̄, R)

)2

·





kdl

kdl +
L−Lpeer

Lpeer





2

(3)

3 Performance Evaluation

The performance of the ant algorithm was evaluated with an event-based simu-
lator. A Grid network having a number of hosts Np equal to 2500 is considered.
Hosts are linked through P2P interconnections, and each host is connected to 4
peers on average. The topology of the network is built using the scale-free algo-
rithm defined by Albert and Barabasi [7], which incorporates the characteristic
of preferential attachment (the more connected a node is, the more likely it is
to receive new links) that was proved to exist widely in real networks.

Peers can go down and reconnect. The average connection time of a peer is
generated according to a Gamma probability function, with an average value set
to 100,000 seconds. To maintain a stable number of agents, the lifecycle of agents
is correlated to the lifecycle of peers. When joining the Grid, a host generates
an agent with a probability Pgen, and sets the life-time of this agent to its own
average connection time. This setting assures that the overall number of agents
is nearly equal to the number of peers times Pgen. In our experiments, Pgen is set
to 0.5, therefore the number of agents is about half the number of peers. Every



Dissemination of Information with Fair Load Distribution 5

time a peer disconnects from the Grid, it discards the descriptors previously
deposited by agents, thus contributing to the removal of obsolete descriptors.
The average time Tmov between two successive agent movements is set to 60
s, whereas the maximum number of P2P hops that are performed in a single
agent movement is set to 3. The number of resources published by each host is
obtained with a Gamma stochastic function with an average value equal to 15.
Resource descriptors are indexed with bit keys having B bits. Descriptor keys
are obtained through the application of a locality preserving hash function [2].
This guarantees that similar keys are given to descriptors of similar resources.

The effectiveness of the ant algorithm is evaluated through the spatial ho-

mogeneity function H . Specifically, for each peer p, the average homogeneity Hp

of the descriptors located in the visibility region of p, Rp, is calculated. This is
obtained, as shown in formula (4), by averaging the Hamming distance between
every couple of descriptors in Rp and then subtracting the obtained value from
B, which is the maximum Hamming distance. Thereafter, the value of Hp is
averaged over the whole Grid, as formalized in formula (5).

Hp = B − AV G{d1,d2ǫRp}(H(d1, d2)) (4)

H =
1

Np

·
∑

pǫGrid

Hp (5)

The objective is to increase the homogeneity function as much as possible,
because it would mean that similar descriptors are actually mapped and ag-
gregated into neighbor hosts, and therefore an effective sorting of descriptors is
achieved. In [5], several performance results concerning the basic version of the
algorithm are discussed. The present work, however, focuses on the ability of the
enhanced version of the algorithm of achieving a satisfactory load distribution
among hosts that have different storage capabilities.

In the literature, the storage capacity of hosts is often assumed to be dis-
tributed according to some statistical distribution, for example, the Pareto distri-
bution. Here we assume a simpler distribution, which facilitates a more accurate
and assessable analysis of our algorithm. Specifically, Grid hosts are divided into
two classes: low capacity and high capacity hosts. They can correspond to ordi-
nary personal computers and high capacity servers, respectively. It is assumed
that half the load of the system is equally shared among the hosts of each class,
and we vary the percentage of hosts that belong to the two classes. The fol-
lowing notation is adopted: the pattern {H : L} means that H% (L%) of the
hosts are high (low) capacity ones, and that the load of each host is obtained
by sharing half the overall capacity of the system among the hosts of each class.
Following this notation, we analyzed the behavior of the algorithm with patterns
{10 : 90}, {20 : 80}, {30 : 70}, {40 : 60}, and {50 : 50}. Of course, the last case
corresponds to a scenario, used for comparison purposes, in which all the hosts
have approximately the same capacity.

A set of simulation experiments were performed to assess the distribution of
load obtained with our algorithm. In these experiments, the number of bits B in



6 Agostino Forestiero, Carlo Mastroianni, Giandomenico Spezzano

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 500000 400000 300000 200000 100000 0
O

ve
ra

ll 
ho

m
og

en
ei

ty
 f

un
ct

io
n,

 H
Time(s)

{10 : 90}
{20 : 80}
{30 : 70}
{40 : 60}
{50 : 50}

Fig. 1. Overall homogeneity function vs. time, with different patterns of capacity dis-
tribution.

resource descriptor indexes is equal to 4. Figure 1 shows that the work of agents
makes the value of the spatial homogeneity function H increase from about B/2
to much higher values. After a transient phase, the value of H becomes stable: it
means that the system reaches an equilibrium state despite the fact that peers
go down and reconnect, agents die and others are generated, etcetera. In other
words, the algorithm adapts to the varying conditions of the network and is ro-
bust with respect to them. Figure 1 also shows that the trend of the homogeneity
function is similar for all the tested patterns of capacity distribution. Therefore,
the load distribution feature of the algorithm does not affect the accumulation
and reorganization of descriptors, which of course is a positive outcome.

 0

 20

 40

 60

 80

 100

 600000 400000 200000 0M
ea

n 
nu

m
be

r 
of

 d
es

cr
ip

to
rs

 p
er

 p
ee

r,
 N

d

Time(s)

High capacity hosts

{10 : 90}
{20 : 80}
{30 : 70}
{40 : 60}
{50 : 50}

 0

 10

 20

 30

 40

 50

 600000 400000 200000 0M
ea

n 
nu

m
be

r 
of

 d
es

cr
ip

to
rs

 p
er

 p
ee

r,
 N

d

Time(s)

Low capacity hosts

{10 : 90}
{20 : 80}
{30 : 70}
{40 : 60}
{50 : 50}

(a) (b)

Fig. 2. Average number of descriptors that are stored in high (a) and low (b) capacity
hosts, with different patterns of capacity distribution. The factors kpl and kdl of pick
and drop probability functions are both set to 3.

The effectiveness of the load distribution approach is confirmed by Figure 2,
which shows the average number of descriptors stored in high and low capacity
hosts, with different capacity distribution patterns. The factors kpl and kdl of the
pick and drop probability functions (see Section 2) are both set to 3. Figure 2(a)
shows that, as the percentage of high capacity hosts decreases, and consequently,



Dissemination of Information with Fair Load Distribution 7

the average capacity of such hosts increases (because half the system load is
divided among a lower number of hosts), these hosts are actually assigned a
larger number of descriptors. For example, the average number of descriptors
stored by high capacity hosts, in steady conditions, is about 100 with the pattern
{10 : 90}, whereas it is less than 60 with the pattern {40 : 60}. The opposite
effect is observed for low capacity hosts, as can be observed in Figure 2(b). Note
also that the trend corresponding to the pattern {50 : 50} is comparable in the
two figures, since high and low capacity hosts coincide in this case. Therefore,
the objective of assigning more descriptors to hosts that have better storage
capabilities, and at the same time of alleviating the load of ordinary hosts, is
successfully achieved.

We also calculated the variance and the coefficient of variation CV of the
number of descriptors stored by the high and low capacity hosts, to verify how
the load is distributed among the hosts of the same class. We found that the
the value of CV ranges from about 0.73 to about 0.82 for low capacity hosts
and from 0.82 to 0.98 for high capacity hosts. These results reveal that the
distribution of load within a class of hosts is not highly affected by the pattern
of capacity distribution. Moreover, the value of CV decreases as the number of
hosts of the class under consideration increases: therefore, the highest values of
CV are obtained with pattern {50 : 50} for high capacity hosts and with pattern
{10 : 90} for low capacity hosts.

 0

 20

 40

 60

 80

 100

 120

 600000 400000 200000 0M
ea

n 
nu

m
be

r 
of

 d
es

cr
ip

to
rs

 p
er

 p
ee

r,
 N

d

Time(s)

High capacity hosts

kpl = kdl = 2
kpl = kdl = 3
kpl = kdl = 4
kpl = kdl = 5
kpl = kdl = 6

 0

 10

 20

 30

 40

 50

 600000 400000 200000 0M
ea

n 
nu

m
be

r 
of

 d
es

cr
ip

to
rs

 p
er

 p
ee

r,
 N

d

Time(s)

Low capacity hosts

kpl = kdl = 2
kpl = kdl = 3
kpl = kdl = 4
kpl = kdl = 5
kpl = kdl = 6

(a) (b)

Fig. 3. Average number of descriptors that are stored in high (a) and low (b) ca-
pacity hosts, with different values of the factors kpl and kdl. The pattern of capacity
distribution is set to {10 : 90}.

It is also possible to regulate the fraction of load assigned to high and low
capacity hosts by tuning the values of the factors kpl and kdl. To analyze this
point, a set of experiments were made with the distribution pattern {10 : 90} and
different values of those factors. Figure 3 shows that the number of descriptors
stored in high (low) capacity hosts is inversely (directly) proportional to the
value of the factors kpl and kdl. For example, the average number of descriptors
stored in high capacity hosts, in steady conditions, is almost 120 if the factors



8 Agostino Forestiero, Carlo Mastroianni, Giandomenico Spezzano

are set to 2, while it decreases to much lower values for larger values of kpl and
kdl. Therefore these factors can be used to balance the load among high and low
capacity hosts, according to network and host requirements.

4 Conclusions

In this paper we introduced and evaluated an ant-inspired algorithm for building
a P2P information system of a Grid. Grid resources are described by metadata
documents, or “descriptors”, which are indexed by binary keys. Ant-inspired
mobile agents exploit probability functions to replicate descriptors, pick them
from some hosts and drop them into other hosts. The objective is to reorganize
descriptors and spatially sort them on the network. Moreover, descriptors are
distributed by agents respecting the different capabilities of Grid hosts. Simula-
tion analysis confirmed the effectiveness of the algorithm both in the spatially
sorting of descriptors and in the achievement of a fair distribution of load among
hosts having high and low storage capabilities. Indeed, hosts with higher stor-
age capacity are assigned more descriptors than low capacity hosts. Currently,
we are designing a discovery algorithm that exploits the characteristics of the
obtained information system. According to this algorithm, query messages may
be driven to hosts that have a large number of useful descriptors. Preliminary
results are confirming that the performance of discovery operations is indeed
improved thanks to the relocation and reorganization of information performed
by mobile agents.

References

1. Foster, I., Kesselman, C.: The Grid 2: Blueprint for a New Computing Infrastruc-
ture. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2003)

2. Cai, M., Frank, M., Chen, J., Szekely, P.: Maan: A multi-attribute addressable
network for grid information services. In: Proc. of GRID ’03, 4th International
Workshop on Grid Computing, Washington, DC, USA (2003)

3. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: from natural to arti-
ficial systems. Oxford University Press, New York, NY, USA (1999)

4. Forestiero, A., Mastroianni, C., Spezzano, G.: So-Grid: A self-organizing grid fea-
turing bio-inspired algorithms. ACM Transactions on Autonomous and Adaptive
Systems 3(2) (2008)

5. Forestiero, A., Mastroianni, C., Spezzano, G.: Antares: an ant-inspired P2P infor-
mation system for a self-structured grid. In: Proc. of Bionetics ’07, 2nd International
Conference on Bio-Inspired Models of Network, Information, and Computing Sys-
tems, Budapest, Hungary (2007)

6. Lumer, E.D., Faieta, B.: Diversity and adaptation in populations of clustering
ants. In: Proc. of SAB94, 3rd International Conference on Simulation of Adaptive
Behavior: from animals to animats, Cambridge, MA, USA (1994)

7. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439) (1999)


