A Cloud of Things Framework for Smart Home
Services based on Information Centric Networking

Marica Amadeo
and Antonella Molinaro
and Stefano Yuri Paratore
University Mediterranea of Reggio Calabria
DIIES Department, Reggio Calabria, Italy

Email: {marica.amadeo,antonella.molinaro,yuri.paratore } @unirc.it

Abstract—Today, the novel Cloud of Things (CoT) paradigm,
where Cloud and Internet of Things (IoT) technologies are
merged together, is foreseen as a promising enabler of many real-
life application scenarios, like the smart home. However, several
issues are still debated in the design of CoT systems, including
how to effectively manage the heterogeneity of IoT devices and
how to support robust and low-latency communications between
the cloud and the physical world. In this paper, we present a
novel CoT platform that solves such challenges in the smart home
domain by leveraging two groundbreaking concepts: Information
Centric Networking (ICN) and Fog Computing. The proposal,
called ICN-iSapiens, is a three-layered architecture where an
intermediate (Fog) layer, consisting of smart home servers (HSs),
is introduced between the physical world and the remote cloud,
to support real-time services and hide the heterogeneity of IoT
devices. Communication at the physical layer consists of name-
based ICN primitives, which facilitate the network configuration
and enable simple and effective interactions between HSs and IoT
devices. As proof of concept, an experimental testbed is presented
and some application examples are described to showcase the
advanced capabilities of ICN-iSapiens.

Index Terms—Information Centric Networking, Named Data
Networking, Internet of Things, Cloud of Things, Fog Computing

I. INTRODUCTION

In the last few years, the Internet of Things (10T) paradigm
rapidly gained ground, by picturing novel ubiquitous comput-
ing scenarios where small every-day objects turn into smart
things that measure, understand, and modify the environment.

In parallel, with the explosive growth of data traffic and the
surge demand of high-quality heterogeneous services, cloud
computing has been extended towards the concept of Fog Com-
puting, which offers virtualized resouces at the network edge
and provides low-latency, high-bandwidth content delivery [1].

Although cloud and IoT originally evolved as separate
research fields, they show many complementary aspects that
encourage their integration [2]. Indeed, IoT devices - usually
resource constrained - can benefit from the virtually unlimited
cloud/fog resources; while the cloud can use IoT to enlarge its
scope by dealing with advanced services in real life environ-
ments [3]. Integrating cloud and IoT and making the resulting
Cloud-of-Things (CoT) paradigm a reality is however not
straightforward. Several issues are still debated, mainly related

978-1-5090-4429-0/17/$31.00 (© 2017 IEEE

Albino Altomare
and Andrea Giordano
and Carlo Mastroianni
ICAR-CNR
Rende (CS), Italy
Email: {altomare,giordano,mastroianni} @icar.cnr.it

to the lack of standard protocols, architectures and interfaces
that can support the interconnection between heterogeneous
smart objects and the cloud.

In this paper, we focus on a representative CoT scenario,
the smart home, where devices like sensors and actuators
are used to remotely monitor and control the house and
its appliances for different purposes like energy, lighting,
and air conditioning management. Solutions for the smart
home are mainly based on proprietary protocols that pre-
vent interoperability, flexibility and extensibility requirements.
Standardization efforts are under way [4], but there is still not
a leading solution able to address the heterogeneity of devices
and guarantee secure, reliable and responsive communications.
Notwithstanding their differences, existing solutions usually
adopt the network layer the TCP/IP protocol suite (or modi-
fied versions for constrained devices like 6LoWPAN [5]), to
guarantee global connectivity in the Internet.

In addition, a revolutionary networking model called In-
formation Centric Networking (ICN) has recently attracted
the attention of the research community working on data
dissemination in different future Internet domains, including
the smart home [6]. ICN does not use IP addresses for sending
packets between sources and destinations, but forwards mes-
sages directly on names that carry application semantics. This
clearly simplifies data retrieval and network configuration,
since ICN does not need mechanisms (e.g., DNS) to resolve
application-level names into network-layer addresses: a name
can be directly used at the network layer for content/service
retrieval [7] [8]. In a few words, ICN well matches the
information-centric pattern of many smart home applications
(e.g., temperature or energy monitoring), which care about
what data to retrieve (or service to request) instead of which
node to connect to. Examples of clean-slate ICN smart home
systems with real testbeds can be already found in literature
[9], [10], [11]. However, large-scale deployments are currently
infeasible, since the global connectivity is IP-based.

It is our convincement that the CoT paradigm can help to
fill this gap, by guaranteeing full reachability to information
produced in ICN smart homes and, in addition, by offering
advanced and efficient computing services. Our target in this
paper is to integrate ICN and CoT concepts in a common

framework for smart homes which capitalizes the benefits of
both paradigms. Our proposal, called ICN-iSapiens, consists
of the following innovative features:

1. According to the Fog Computing paradigm, ICN-iSapiens
is organized as a three-layered architecture: an intermediate
layer, consisting of smart home server(s) (HSs), is introduced
between the physical world and the remote cloud. Each HS
can execute locally complex tasks and control the home appli-
ances, thus moving a large part of the (real-time) computation
as close as possible to the end devices (EDs).

2. The physical layer of ICN-iSapiens consists of ICN-
enabled EDs composing the smart home network. EDs act
as home data producers or little service providers, they are
configured with meaningful, human-readable ICN names that
“reproduce” their high-level functionalities. The HS retrieves
data and requests services through ICN primitives.

3. To support heterogeneity, flexibility and extendibility, the
HS hides the details of ICN EDs through a virtual name-based
representation and hosts a multi-agent software application to
monitor and control the EDs.

As proof of concept of the envisioned architecture, an
experimental testbed is presented where ICN EDs interact
with the HS by leveraging an extended version of the CCN-
Lite software [12]; a Java-based agent platform is deployed in
the HS to manage home services and communicate with the
remote cloud.

The rest of the paper is organized as follows. Section II
surveys existing literature on CoT and ICN and motivates our
work; Section III describes the ICN-iSapiens framework, while
Section IV presents the implemented testbed. Section V shows
some application examples. Finally, Section VI concludes the

paper.
II. BACKGROUND AND MOTIVATION
A. The Cloud of Things vision

The complexity and variety of IoT applications and the large
number of heterogeneous elements involved makes IoT data
analysis and operation planning a very difficult task.

Cloud computing can solve many problems related to IoT
data storage, computation, optimization and presentation. A
currently used CoT approach involves two layers: a physical
layer and a remote (cloud) layer. The physical layer sends
IoT data to the remote server(s), which process, analyse and
store them by guaranteeing availability to multiple consumers.
Remote servers can also compute a suitable operation plan and
send the result to each device at the physical layer. This ap-
proach, however, can experiment some drawbacks when there
are constraints on responsivity time, that is, when a system
needs to react fast to critical events that may overwhelm its
integrity and functionality. Communication lag and remote
processing can cause delays that a system simply cannot
bear [13]. To overcome this issue, recent works embrace
the Fog Computing paradigm [1], where cloud services are
provided between EDs and traditional remote data centers,
at the network edge. Moving the computation as close as
possible to the physical resources implies (i) reduced network

congestion and latency, since big data transfers are avoided,
(ii) elimination of bottlenecks resulting from centralized com-
puting, (iii) improved security as data stays at the network
edge and the exposure to malicious attacks is limited.

The framework deployed in this paper adopts the Fog
Computing paradigm and introduces, between the physical
world and the remote cloud, a distributed intelligence layer
that executes almost all real-time control tasks [14], whereas
the remote cloud level remains in charge of non-real-time tasks
such as offline data analysis or presentation. IoT applications
can be deployed with decentralized control functions and the
assistance of the cloud to optimize their behaviour. Decentral-
ization is obtained using a distributed multi-agent system in
which IoT application execution is carried out through Agents’
cooperation at the network edge [15], [16]. The distributed
multi-agent system exploits swarm intelligence concepts [17]
[18] [19], ie., it is made up of a population of simple
Agents interacting locally with one another and with their
environment. Agents follow very simple rules and, although
there is no central control structure dictating how individual
Agents should behave, interactions among such Agents lead
to the emergence of “intelligent” global behaviour, unknown
to individual Agents.

B. Information Centric Networking

Today, there is a variety of ICN architectures implement-
ing name-based communications [20]; among them, Named
Data Networking (NDN) [21] is probably the most popular
approach with a large research community working in different
application fields, including the smart home. Compared to IP-
based systems, NDN networking looks easier and well suited
to IoT applications [7]:

Naming contents, services and functionalities. Content
names are hierarchical (sometimes user-friendly) and flexi-
ble, i.e., they can include a variable number of components
with unbounded lengths. Although traditionally NDN names
are related to content objects, they can be used to identify
also devices’ functionalities and services. For instance, in
[6], names describe sensing services, e.g., an Interest with
name /sensing/temperature/bedroom can be used to require the
temperature of the bedroom in a smart home.

Easy and robust information exchange. Communication
is receiver-driven; it consists of the exchange of two named
packets types, Interest and Data, used to request and transfer
the content, respectively. Once the namespace is defined and
each ED is configured with the names to use, Interests can be
sent to retrieve contents or request services, without the need
of other information, e.g., devices’ network and port addresses.

Strong security. Security mechanisms are embedded by the
producer in the Data packet, thus supporting authentication and
integrity directly at the network layer and allowing pervasive
in-network content replication. Various cryptographic mecha-
nisms can be supported, including lightweight approaches for
IoT messages.

Support of multi-party delivery. NDN does not require
complex configurations to support unicast or multicast com-

—f — REMOTE
=
S=5 CLOUD LAYER
— =l

P INTERMEDIATE
wome [FOG LAYER
SERVER
PHYSICAL
ICN END Q [—— LAYER
DEVICES Q z Q

Fig. 1: ICN-iSapiens: actors and cloud/fog/physical layers.

munications: Interests are usually broadcasted over the wire-
less medium, thus all the nodes working on the advertised
name prefix are natively involved in the communication. This
facilitates one-to-one and one-to-many (the so-called multi-
source) interactions at the same time [22].

C. Information-centric smart homes

So far, different aspects of NDN-based smart home systems
have been investigated. Security issues are analysed in [10]
where a preliminary lighting control system is designed. NDN
names address all the system components and access control
to fixtures is performed via authorization policies. Similarly,
in [11], a secure building management system is presented,
the focus is on data sensor acquisition with encryption-based
access control. A home energy management platform to ex-
change environment sensing and power data is discussed in
[9]; in [23] a lighting system is integrated with occupancy
detectors and daylight sensors for fully automated operations.
All the aforementioned works consider local deployments with
well-specific services and no interactions with the cloud or
other remote entities over the Internet.

In [22], remote interactions with the smart home are ob-
tained by integrating NDN with the European Telecommu-
nications Standards Institute (ETSI) M2M architecture. The
proposal guarantees worldwide connectivity, but it does not
integrate with cloud applications, which could realize effective
smart home services.

In this paper, we deploy a general-purpose smart home sys-
tem where NDN interacts with cloud/fog computing to benefit
of high-quality, flexible services and global reachability. We
focus on architectural aspects to provide the general picture
of the system and describe some representative applications
implemented in our testbed.

ITI. THE ICN-ISAPIENS FRAMEWORK
As shown in Fig. 1, ICN-iSapiens is organized into three
hierarchical layers which will be detailed in the following.
A. The Physical ICN Layer

At the bottom of the framework, there is the ICN Physical
Layer. It includes all the EDs, which deploy sensing and

automation tasks in the smart home. They are usually single-
function resource constrained devices, like temperature or
motion sensors, or light actuators. EDs interact with the HS!
through the exchange of NDN Interest and Data packets. The
main features of this layer are briefly summarized in the
following.

Naming design. Each ED is configured on a well-specific
hierarchical namespace that describes the resource(s) it of-
fers, i.e., sensing measurement(s), automation services. The
namespace follows the three-main-components user-friendly
structure deployed in [6]. Therefore, we identify (i) the task
type, sensing and action; (ii) the task subtype, e.g., energy,
temperature for sensing tasks, light, heating for actuation
tasks; (iii) one or more task attributes, e.g., the location of
the EDs, e.g., bedroom, kitchen.

Service models support. Pull and push based commu-
nications are implemented. Pull based delivery follows the
standard NDN packets exchange: the HS sends Interests to
obtain sensing data or to request actions. In both cases, Data
packets are retrieved that include the sensed information or
the result of the action execution, respectively.

Vice versa, push based delivery is implemented via Inferest
notifications, i.e., a special Interest packet where the last
component of the hierarchical name is used to carry the
information [24], [8]. This is a viable solution in presence
of IoT Data, which are usually short. In our design, the HS
is configured to accept Interest notifications from the EDs,
extract the content from the name field and send a Data packet
to acknowledge the reception.

Group-based communications. Thanks to the hierarchical
namespace, multi-source communications are also enabled,
where a single Interest is used to simultaneously query groups
of EDs sharing some part of the same namespace, e.g., the
Interest /sensing/temperature requests the temperature infor-
mation to every temperature sensor of the house.

B. The Intermediate Fog Layer

The Intermediate Fog Layer includes the HSs, which imple-
ment the application logics to monitor and control the house
according to (i) user preferences, (ii) inputs from stakeholders,
e.g., service providers and regulation entities, (iii) dynamic
context-related factors e.g., the energy market price. The HS
interacts with the EDs, via ICN, and with the remote cloud,
through standard Internet connectivity.

In addition to the software for NDN communications, each
HS hosts the multi-agent application and the virtual objects
abstraction to perform Fog services.

ICN virtual objects. Each ICN ED is represented at the
Intermediate Layer as a virtual object (VO), that is a high
level standardized description of the device’s functionalities.
VOs expose EDs by hiding their heterogeneity in terms of
technological and networking details, and make their resources
easily accessible to the Agents which, in turn, perform the
application logics.

'We assume the presence of one HS per smart home.

~
REMOTE Lo .
cLouD \@ioo i A
INTEREST/I (A \
> I] Galileo \
Ii'l BATHROOM % |

\

A KITCHEN ;e LIVING o> Galileo /
N % % ’
7

N Galileo
~

e - -

Fig. 2: ICN-iSapiens: testbed.

From a practical perspective, a ICN VO is a collection of
sensing and actuation named functionalities, and a collection
of standard methods used to monitor/control such function-
alities via ICN. VOs methods call in turn ICN primitives to
send named Interest and Data. Hierarchical ICN names well
support the VO abstraction: each VO functionality is identified
by a meaningful name that is directly used by ICN to interact
with the relative ED, without the need of setting-up TCP/IP
communications. This clearly simplifies the VO design.

Agents behaviour. Agents use VOs methods to pull mon-
itoring and action tasks, and to be asynchronously notified
about some events, i.e., when a resource value changes.
Moreover, they may subscribe to complex events defined by
boolean rules over groups of functionalities.

To access information through the VO abstraction, VOs
and Agents must be co-located in the same HS. Therefore,
instead of transferring data to a central processing unit, ICN-
iSapiens transfers processes (Agents) towards the EDs. As a
consequence, less data needs to be transferred towards remote
hosts; local access and computation are fostered in order to
achieve good performance (i.e., low latency, real-time services)
and scalability (i.e., Fog nodes are geographically distributed,
in contrast to centralized Cloud).

C. The Remote Cloud Layer

The Remote Layer includes a remote Cloud platform, which
addresses all those activities that cannot be executed by the
HSs, e.g., tasks requiring high computational resources or
long-term historical data. The data analysis executed by the
Cloud can be used for different purposes, including (i) to
optimize the Agents’ operations and their behaviour, (ii) to
support the demands of external consumer applications, e.g.,
collected data can be used by energy service companies for
reliable forecasting.

IV. TESTBED DEPLOYMENT

As proof of concept of the envisioned framework, we
built a demonstrator with low-cost off-the-shelf devices that
reproduce an ICN smart home network with CoT capabilities,
see Fig. 2.

Devices Features. The HS is implemented over a Raspberry
Pi device [25], which is a single-board computer equipped with

a SD memory card, an Ethernet interface, and a IEEE 802.11g
external interface for wireless communications with the EDs.
As operating system we selected Raspbian [26], a free distribu-
tion of Debian optimised for the Raspberry Pi hardware. EDs
are different kinds of sensors and actuators (e.g., temperature
and motion sensors, light actuators) attached to Intel Galileo
boards [27]. Galileo is the first 32-bit System-On-A-Chip
(SoC) microcontroller board designed to be hardware and
software pin-compatible with Arduino shields. Therefore, it is
a flexible and cost-effective solution, which can interact with
any variety of sensors/actuators and, at the same time, support
Linux-based operating systems. We use four Galileo boards
in our testbed, each one symbolically located in a different
room of the smart home (bedroom, kitchen, bathroom, living)
to monitor and control it. Each room can be partitioned in
two or more zones, each one identified by a number, e.g.,
both the bedroom and the kitchen have two zones, zonel and
zone2. Each Galileo is one-hop away from the HS and uses
IEEE 802.11g shields for wireless communications with it.
As operating system, we installed Yocto [28], an open-source
complete embedded Linux development environment. Finally,
a workstation is used to host the remote cloud applications. It
is connected to the campus network and communicates with
the HS through standard TCP/IP protocol.

ICN implementation. To enable ICN communications be-
tween the Raspberry Pi and the Galileo boards, the CCN-Lite
software [12] has been selected. It is a lightweight imple-
mentation of the CCNx/NDNx protocols that comes with the
fully permissive ISC license and deploys the standard (static)
content retrieval, based on the (single) Interest - (single) Data
exchange. The tiny code base has been extended to deal
with the real-time production of sensing data and automation
services from the EDs. Specifically, each Galileo runs a CCN-
Lite instance configured with a set of working name prefixes
(e.g., the Galileo in the bedroom works on the prefixes
/sensing/temperature/bedroom/{zonel,zone2}, /action/light/{-
on/offfincrease/decrease }/bedroom/{zonel,zone2}). When the
Galileo receives an Interest for a sensing or an automation
task, the name lookup is performed. If a matching is found,
it launches the correspondent sketch program that drives the
execution of the task from the ED(s). Finally, it includes the
result into a Data packet that is sent back to the Raspberry
Pi. Important modifications on CCN-Lite have been also
performed to support the features described in Section III-A
(i.e., Interest notification, multi-source delivery).

iSapiens core components implementation. The Rasp-
berry Pi hosts the iSapiens core components operating at the
Fog Layer, which consist of: (i) the Agent Server, a runtime
environment for Agents execution and (ii) the VO Container,
an entity that manages the VOs. Each VO is implemented
as a collection of VO functionalities, which can be defined
through the interface VOContainer.VirtualObjectFunctionality.
This latter includes a set of methods, which can be de-
fined to control and monitor the ICN EDs. For instance,
the check method returns sensing information, the acting
method executes an automation task, the addStreamListener

method returns asynchronous sensing notification. Agents use
such methods to access the ED resources in a homogeneous
fashion and exchange information between each other through
asynchronous messaging. In addition, by defining VOCon-
tainer.Rule objects, boolean rules can be finalized to allow
Agents subscribe to specific events (e.g., when the sensed
temperature is lower then a threshold, or when the energy
consumption reaches a predefined level), and perform complex
application logics.

ICN-VO Interface. Thanks to the use of ICN name-based
communication, the implementation of the interface between
the Physical Layer and the VO abstraction is extremely fa-
cilitated. Each physical device can be accessed by directly
using the name of its resources, without the need of recall
network addresses, port numbers or even layer-2 addresses.
The Raspberry Pi hosts a set of C programs (referred to
as ICN send/recv routines) that take as input ICN names
and allow to send Interests and extract information from
Data packets or from Interest notifications’. ICN send/recv
routines are invoked, controlled and manipulated from the
VOContainer.VirtualObjectFunctionality interface.

V. APPLICATIONS EXAMPLE

To better understand the behaviour of ICN-iSapiens from a
practical perspective, we describe two applications based on a
set of monitoring and controlling tasks deployed in the smart
home: (i) an energy-saving light management application, and
(ii) a smart door lock application.

As shown in Fig. 2, the smart home consists of four rooms,
each one instrumented by the following sensors for the light
management application: (i) sensors detecting when a person
enters or leaves a room, (ii) proximity sensors detecting the
presence of people in each zone of the room, (iii) illuminance
sensors. In addition, adjustable brightness lights are included
in each zone of each room. The smart door lock application
is based on a sensor, embedded on the main door, to detect
opening, closing and entrance events. An actuator instead man-
ages the opening and closing of the door. All the mentioned
devices work on a specific ICN namespace that identifies their
functionalities (see Table I, II for some name examples).

ICN VO design. Each VO abstracts and wraps a certain
number of sensors and/or actuators. In this example we define
a Virtual Light object, whose structure can be replicated
for each room of the house to create the Virtual Kitchen
Light, the Virtual Bedroom Light, etc. Table I shows the
functionalities exposed by the Virtual Kitchen Light, together
with the correspondent ICN names. Each functionality of the
virtual light object is parametric: the zone parameter specifies
which area of the room is referred. Similarly, a Virtual Home
Door object is defined, as shown in Table II.

Agents design. The target of the light management appli-
cation is to adjust the lights in each room on the basis of
people presence/movements and the current illuminance. This

2We extended the ccn-lite-peek utility, already available in the CCN-Lite
package, to allow the HS send Interests.

logic is implemented in the LightAgent. When the application
is active, the HS periodically sends Interest packets carrying
the relative names, e.g., an Interest with name sensing/il-
luminance/kitchen/zonel is issued to query the illuminance
sensor in the zonel of the kitchen. At the higher layer, the
Virtual Kitchen Light collects the sensed values and makes
them available to the LightAgent. A set of simple rules
are defined to support the application logic. For instance, a
switch-on operation is issued when the illuminance value is
lower than a target threshold set by the user, and the human
presence is detected. In this case, the VO acting method is
invoked and then the actual switch-on command is sent in an
Interest packet, e.g., with name action/light/on/kitchen/zonel.
Moreover, the light brightness is adjusted by considering the
number of people in the room and their position.

The target of the smart door lock application (executed by
the DoorAgent) is to manage the locking of the main door
by considering the number of people in the house at a given
time and also the owner preferences, e.g., he/she can order to
lock/unlock the door from his mobile phone, or command the
locking of the door at midnight.

In summary, there is a LightAgent per room and a unique
DoorAgent per home.

Agent deployment, interaction and acquaintance rela-
tionships So far, by referring to our testbed scenario, we
considered the special case of a single HS in the smart home,
therefore ICN EDs always communicate with the node where
all the VOs are deployed. However, in a more general case,
several HSs can be instantiated, e.g., consider a large villa, a
residence or an office building. In such a case, the application
design has to take into account that each VO and the EDs
enclosed by it must be located in the same HS. For instance,
in the case of a large villa, we can identify groups of rooms
and assign each group to a different HS. Figure 3 shows the
assignment to three HSs in the large villa topology. Agents
without connection with any physical part can be located
everywhere, even in a remote cloud node.

Room 1
Room 7 Room 9
Room |
hoom 10
Room 3 Room 8 e
Room 11
Rezmm é - Room 12,
Room Room 13|
Room 15|
Room 6 Room 14
e
AT AS

Fig. 3: Rooms assignment to HSs in a large villa topology.
Each different color identifies a different HS.

A system component called Deployer is in charge to load
the Agents upon the Agent Servers, to establish acquaintance
relationships among them and to start the application. Ac-
quaintance relationships are necessary to let Agents interact
with each other. For instance, consider a HeatingAgent, which
manages the heating system by considering the current sensed

TABLE I: Kitchen Virtual Light.

Functionality Type Description ICN Namespace
near people Sensing | number of people in the zone /sensing/people/kitchen/{zonel,zone2}
increase_light Action increase light brightness in the zone /action/light/increase/kitchen/{zonel,zone2 }
decrease_light | Action decrease light brightness in the zone /action/light/decrease/kitchen/{zone1l,zone2 }
light_off Action | set off light in the zone /action/light/off/kitchen/{zonel,zone2}
light_on Action | set on light in the zone /action/light/on/kitchen/{zonel,zone2}
illuminance Sensing | illuminance in the zone /sensing/illuminance/kitchen/{zonel,zone2}
TABLE II: Virtual Home Door.
Functionality Type Description ICN Namespace
locking status Sensing | Boolean (true if the door is closed, false if the door is open) sensing/door/locking{true, false}
entrance status | Sensing | Integer (Counting the number of people inside the house. The | sensing/door/entrance{true, false}
counter increases when a person enters the house, decreases
when a person leaves)
open Acting Open the door acting/door/open
close Acting | Close the door acting/door/close

temperature and the number of people in the house. When
all the people leave and the door is locked, the HeatingAgent
should turn off the system.

After loading each Agent in the proper location, the De-
ployer sends acquaintance messages to the HeatingAgent in
order to let it know the DoorAgent. Afterwards, the HeatingA-
gent sends an acquaintance message to the DoorAgent in order
to be known by it. Once the deployment phase is completed,
the application execution can start. When each person leaves
the house, the DoorAgent locks the door and sends a message
to the HeatingAgent, which will turn off the heating system.

VI. CONCLUSION

In this paper, a novel CoT platform for Fog-enhanced smart
home services, called ICN-iSapiens, has been defined. The
proposal leverages the innovative Fog Computing and ICN
paradigms to deploy smart monitoring and control applications
in an efficient and effective fashion.

VII. ACKNOWLEDGEMENT

This work was partially funded under grant
PONO3PE_00050_2 DOMUS “Cooperative Energy Brokerage
Services”, MIUR.

REFERENCES

[1] F. Bonomi et al., “Fog computing and its role in the internet of things,”
in MCC workshop on Mobile cloud computing. ACM, 2012, pp. 13-16.

[2] A. Botta et al., “Integration of Cloud Computing and Internet of Things:
a Survey,” Future Generation Computer Systems, vol. 56, 2016.

[3] R. Petrolo, V. Loscri, and N. Mitton, “Towards a smart city based on
cloud of things, a survey on the smart city vision and paradigms,”
Transactions on Emerging Telecommunications Technologies, 2015.

[4] A. Kamilaris, A. Pitsillides, and V. Trifa, “The smart home meets
the web of things,” International Journal of Ad Hoc and Ubiquitous
Computing, vol. 7, no. 3, pp. 145-154, 2011.

[5] Z. Shelby and C. Bormann, “6LoWPAN: the Wireless Embedded
Internet,” 2009.

[6] M. Amadeo, C. Campolo, A. Iera, and A. Molinaro, “Information
Centric Networking in IoT scenarios: The case of a smart home,” in
IEEE ICC, 2015, pp. 648-653.

[71 W. Shang et al., “Named Data Networking of Things,” in IEEE IoTDI.
2016, pp. 117-128.

[8]

[9]

[10]

(11]

[12]
[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]
[21]

[22]

(23]
[24]
[25]
[26]
(27]

(28]

M. Amadeo et al., “Information-Centric Networking for the Internet of
Things: Challenges and Opportunities,” IEEE Network, vol. 30, no. 2,
pp. 92-100, 2016.

J. Zhang, Q. Li, and E. M. Schooler, “iHEMS: an information-centric ap-
proach to secure home energy management,” in IEEE SmartGridComm,
2012.

J. Burke, P. Gasti, N. Nathan, and G. Tsudik, “Securing Instrumented
Environments over Content-Centric Networking: the Case of Lighting
Control and NDN,” in Computer Communications Workshops (INFO-
COM WKSHPS), 2013 IEEE Conference on. 1EEE, 2013, pp. 394-398.
W. Shang et al., “Securing Building Management Systems Using Named
Data Networking,” IEEE Network, vol. 28, no. 3, pp. 50-56, 2014.
“Cen-lite,” http://www.ccn-lite.net/, (Accessed 2016.10.7).

A. Giordano, G. Spezzano, A. Vinci, G. Garofalo, and P. Piro, “A
cyber-physical system for distributed real-time control of urban drainage
networks in smart cities,” in International Conference on Internet and
Distributed Computing Systems. Springer, 2014, pp. 87-98.

A. Giordano, G. Spezzano, and A. Vinci, “Rainbow: an intelligent
platform for large-scale networked cyber-physical systems.” UBICITEC,
vol. 2014, pp. 70-85, 2014.

J. Lin, S. Sedigh, and A. Miller, “Modeling cyber-physical systems with
semantic agents,” in IJEEE COMPSACW). 2010, pp. 13-18.

N. Bicocchi, M. Mamei, and F. Zambonelli, “Self-organizing virtual
macro sensors,” ACM Transactions on Autonomous and Adaptive Sys-
tems (TAAS), vol. 7, no. 1, p. 2, 2012.

E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm intelligence: from
natural to artificial systems. Oxford university press, 1999, no. 1.

J. Kennedy, J. F. Kennedy, R. C. Eberhart, and Y. Shi, Swarm intelli-
gence. Morgan Kaufmann, 2001.

F. Cicirelli, A. Forestiero, A. Giordano, and C. Mastroianni, ‘“Transpar-
ent and efficient parallelization of swarm algorithms,” ACM Transactions
on Autonomous and Adaptive Systems, vol. 11, no. 2, June 2016.

B. Ahlgren et al., “A Survey of Information-Centric Networking,”
Communications Magazine, IEEE, vol. 50, no. 7, pp. 26-36, 2012.

L. Zhang, et al., “Named Data Networking,” ACM SIGCOMM Computer
Communication Review, vol. 44, no. 3, pp. 66-73, 2014.

M. Amadeo, O. Briante, C. Campolo, A. Molinaro, and G. Ruggeri,
“Information-centric networking for M2M communications: Design and
deployment,” Computer Communications, vol. 8§9-90, 2016.

U. De Silva et al., “Named Data Networking Based Smart Home
Lighting,” in ACM SIGCOMM 2016 Conference, 2016, pp. 573-574.
J. Burke, P. Gasti, N. Nathan, and G. Tsudik, “Secure sensing over
named data networking,” in Network Computing and Applications
(NCA), IEEE, 2014, pp. 175-180.

“Raspberry pi,” http://www.raspberrypi.org/, (Accessed 2016.10.7).
“Raspbian free operating system,” http://www.raspbian.org/, (Accessed
2016.10.7).

“Intel Galileo board,” http://ark.intel.com/products/78919/
Intel-Galileo-Board, (Accessed 2016.10.7).

“Yocto project,” https://www.yoctoproject.org, (Accessed 2016.10.7).

