

Performance Improvement of MapReduce Applications using Flame-MR

Jorge Veiga, Roberto R. Expósito, Guillermo L. Taboada, Juan Touriño

{jorge.veiga, rreye, taboada, juan}@udc.es

2nd NESUS Winter School & PhD Symposium 2017 Vibo Valentia, Italy February 22th, 2017

Introduction

Flame-MR Design

Performance Results

Conclusions & Future Work

1 Introduction

2 Flame-MR Design

3 Performance Results

Introduction

Flame-MR Design

Performance Results

Conclusions & Future Work

1 Introduction

2 Flame-MR Design

3 Performance Results

Introduction

Flame-MR Design

Performance Results

- Big Data has been adopted by many organizations
- Hadoop is one of the most used frameworks
- Limited performance
 - Redundant memory copies
 - Disk overhead
- Existing alternatives must rewrite applications

Introduction

Flame-MR Design

- Performance Results
- Conclusions & Future Work

- Big Data has been adopted by many organizations
- Hadoop is one of the most used frameworks
- Limited performance
 - Redundant memory copies
 - Disk overhead
- Existing alternatives must rewrite applications

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction

Flame-MR Design

Performance Results

Conclusions & Future Work

Our proposal: Flame-MR

- Completely new event-drivent architecture
- Transparent performance improvement of Hadoop applications
- In-memory computing
- Overlapping of data movement and computation

Introduction

Flame-MR Design

Performance Results

Conclusions & Future Work

1 Introduction

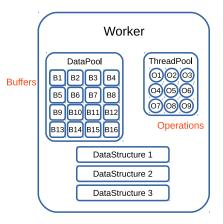
2 Flame-MR Design

3 Performance Results

Introduction

Flame-MR Design

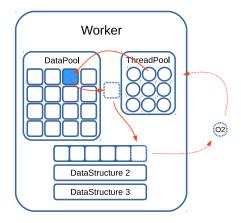
Performance Results


Conclusions & Future Work

- Event-driven architecture
- Efficient memory management
- In-memory sort and merge algorithms
- Support for iterative workloads
- Full compatibility with Hadoop

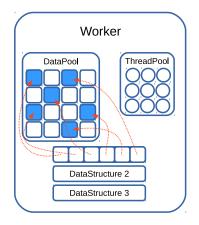
Introduction

Flame-MR Design


Performance Results

Introductio

Flame-MR Design


Performanc Results

Introduction

Flame-MR Design

Performanc Results

Introduction

Flame-MR Design

Performance Results

Conclusions & Future Work

- Event-driven architecture
- Efficient memory management
- In-memory sort and merge algorithms
- Support for iterative workloads
- Full compatibility with Hadoop

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introduction

Flame-MR Design

Performance Results

Conclusions & Future Work

- Event-driven architecture
- Efficient memory management
- In-memory sort and merge algorithms
- Support for iterative workloads
- Full compatibility with Hadoop

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introduction

Flame-MR Design

Performance Results

Conclusions & Future Work

- Event-driven architecture
- Efficient memory management
- In-memory sort and merge algorithms
- Support for iterative workloads
- Full compatibility with Hadoop

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introduction

Flame-MR Design

Performance Results

Conclusions & Future Work

- Event-driven architecture
- Efficient memory management
- In-memory sort and merge algorithms
- Support for iterative workloads
- Full compatibility with Hadoop

Introduction

Flame-MR Design

Performance Results

Conclusions & Future Work

1 Introduction

2 Flame-MR Design

3 Performance Results

Introduction

Flame-MR Design

Performance Results

Conclusions & Future Work

Testbed configuration

- Evaluations conducted on Amazon EC2
 - 33 i2.4×large instances
 - Interconnected via GbE
 - Instance characteristics
 - 2 \times 8-core Intel Xeon E5-2670 v2 2.6 GHz
 - 122 GB RAM
 - 4 × 800 GB SSD
- Experiments automated by the Big Data Evaluator tool (BDEv)
 - Configuration of the frameworks
 - Generation of input datasets
 - Collection of results
 - Available at http://bdev.des.udc.es

Introduction

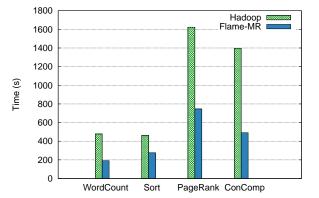
Flame-MR Design

Performance Results

Conclusions & Future Work

Frameworks

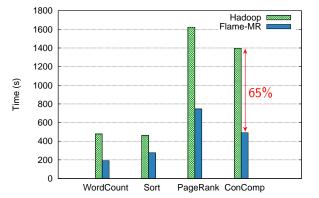
- Hadoop 2.7.2
- Flame-MR 1.0


Benchmarks

Benchmark	Characterization	Input data size
WordCount	CPU bound	500 GB
Sort	I/O bound	500 GB
Connected Components	Iterative (5 iter.)	40 GB
PageRank	Iterative (5 iter.)	40 GB

Introduction

Flame-MR Design


Performance Results

Introduction

Flame-MR Design

Performance Results

Introduction

Flame-MR Design

Performance Results

Conclusions & Future Work

1 Introduction

2 Flame-MR Design

3 Performance Results

Flame-MR Design

Performance Results

Conclusions & Future Work

Conclusions & Future Work

Conclusions

- Flame-MR improves transparently the performance of Hadoop
- Results show high performance improvements
 - Up to 65%
- Publicly available at http://flamemr.des.udc.es

Future work

- Development of new features
 - Automatic load balancing
- Evaluation of Flame-MR using real-world use cases

Flame-MR Design

Performance Results

Conclusions & Future Work

Conclusions & Future Work

Conclusions

- Flame-MR improves transparently the performance of Hadoop
- Results show high performance improvements
 - Up to 65%
- Publicly available at http://flamemr.des.udc.es

Future work

- Development of new features
 - Automatic load balancing
- Evaluation of Flame-MR using real-world use cases

Acknowledgments

Funded by the Ministry of Economy and Competitiveness of Spain (Projects TIN2013-42148-P and TIN2016-75845-P) UNIÓN EUROPEA "Una manera de hacer Europa"

▲ロト ▲団ト ▲ヨト ▲ヨト 三国 - のへで

Performance Improvement of MapReduce Applications using Flame-MR

Jorge Veiga, Roberto R. Expósito, Guillermo L. Taboada, Juan Touriño

{jorge.veiga, rreye, taboada, juan}@udc.es

2nd NESUS Winter School & PhD Symposium 2017 Vibo Valentia, Italy February 22th, 2017