ON THE RELIABILITY OF QUEUEING SYTEMS

Edvinas Greičius, Saulius Minkevičius

Vilnius University and Institute of Mathematics and Informatics of VU

February 22, 2017

Greičius, Minkevičius (Vilnius University) ON THE RELIABILITY OF QUEUEING SYTE

• • • • • • • • • • • • •

Introduction

Greičius, Minkevičius (Vilnius University) ON THE RELIABILITY OF QUEUEING SYTE

크

イロト イヨト イヨト イヨ

- Main problem and motivation.
- In the structure and main definitions.
- Network reliability under conditions of heavy traffic.
- Oncluding remarks and future research.

Main problem and motivation

Main problem and motivation

A queue management system is used to control queues. Queues of people form in various situations and locations in a queue area. The process of queue formation and propagation is defined as queueing theory.

Network structure. Definition of arrival and service processes

Network structure. Definition of arrival and service processes

- G/GI/1 computer network consisting from *j* stations, indexed by j = 1, 2, ..., J.
- The basic components of the queueing network are arrival processes, service processes, and routing processes.
- "First in, first out" (FIFO) service discipline is assumed for all *J* stations.
- We assume that a station serves at its full capacity when the number of jobs waiting is equal to or exceeds the number of jobs theoretically capbable to process at the station.
- $\{Z_n^{(j)}, n \ge 1\}$ are *J* sequences of exogenous interarrival times, the random variable $Z_n^{(j)}$ is *n*-th interarrival time at station *k*,
- Segmentively, $\{S_n^{(j)}, n \ge 1\}$ are sequences of service times, where $S_n^{(j)}$ is the *n*-th service time at station *j*.

- **1** We define $\mu_j = (M[S_n^{(j)}])^{-1} > 0$ and $\lambda_j = (M[Z_n^{(j)}])^{-1} > 0, j = 1, 2, ..., k;$
- 2 Let $p_{ij} = P(\Phi_n^{(i)} = j) > 0; i, j = 1, 2, ..., k.$
- So This $k \times k$ matrix $P = (p_{ij})$ is called a *routing* matrix.
- If \$\Phi_n^{(i)} = j\$ (which occurs with probability \$p_{ij}\$), then the *n*-th customer served at station *i* is routed to station *j*.
- Solution $\Phi_n^{(i)} = 0$, the associated customer leaves the network.

Network structure of mixed-component Jackson queueing networks

Network structure of mixed-component Jackson queueing networks

To construct renewal processes generated by the interarrival and service times, we introduce the summary lenght of interarrival times:

$$z_j(l) = \sum_{m=1}^l z_m^{(j)}, l \ge 1, j = 1, 2, \dots, k.$$

- Summary lenght of service times is equal accordingly: $S_j(l) = \sum_{m=1}^{l} S_m^{(j)}, l \ge 1, j = 1, 2, ..., k.$
- Solution Let $A_j(t) = \max (l \ge 0 : z_j(l) \le t)$ and $x_j(t) = \max (l \ge 0 : S_j(l) \le t)$, (which indicates the room capacity of customers arrived and served at station *j* until time *t*)
- Obenote τ_j(t) as the total number of customers, who were departed from the *j*th station after service out of the network until time t.

5 We assume, that
$$P_j = 1 - \sum_{i=1}^{k} p_{ij}$$
, $p_j^t = 1 - \sum_{i=1}^{k} p_{ij}^t$,

Network structure of mixed-component Jackson aueueing networks

- At first, we divide the set of stations of the network into three sets:
 - 1) for i = 1, 2, ..., m and t > 0, where $A_i(t) = 0$ and $P_i = 0$;
 - 2) for j = m + 1, m + 2, ..., l and t > 0, where $A_i(t) > 0$ and $P_i = 0$;
 - 3) for j = l + 1, l + 2, ..., k and t > 0, where $A_i(t) > 0$ and $P_i > 0$.
- This is a definition of mixed-component Jackson queueing network.

Example of three-server model of mixed-component open queueing network

February 22, 2017 12 / 18

H 5

Network structure of mixed-component Jackson queueing networks

- **1** We assume, that $P_j = 1 \sum_{i=1}^{k} p_{ij}$, $p_j^t = 1 \sum_{i=1}^{k} p_{ij}^t$,
- 2 $\hat{y}_j(t) = A_j(t) x_j(t) \cdot P_j$, (the part of the customers which has been routed to the other station or left the network entirely).
- ◎ $k_j(t) = (k + 1) \cdot \sup_{0 \le s \le t} (x_j(s) \tau_j(t))$, (workload at each station)
- To construct customer serving process at the *j*-th station of the mixed-component open queueing network, we calculate the

workload capacity of each station: $\beta_j = 1 - \frac{\lambda_j + \sum_{i=1}^k \mu_i \cdot p_{ij}}{\mu_j}$ (less than zero means that the station is overloaded and the

queue of customers is constantly growing)

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

Network behavior under conditions of heavy traffic

Network behavior under conditions of heavy traffic

We suppose that the following ("Heavy traffic") conditions are fulfilled:

$$\lambda_j + \sum_{i=1}^k \mu_i \cdot \boldsymbol{p}_{ij} > \mu_j, \ j = 1, 2, \dots, k.$$
(1)

- The conditions guarantees that the queue and the virtual waiting time of a customer in the system is constantly growing.
- One of the results of the paper is the probability limit theorem for the virtual waiting time $W_j(t)$ of a customer at the *j*-th station of the mixed-component open queueing network in time *t*.

Network behavior under conditions of heavy traffic

If conditions (1) are satisfied, then

$$\lim_{n \to \infty} P\left(\frac{W_j(nt) - \beta_j \cdot n \cdot t}{\hat{\sigma}_j \cdot \sqrt{n}} < x\right) = \int_{-\infty}^x \exp(-y^2/2) dy,$$

$$0 \le t \le 1$$
 and $j = 1, 2, \ldots, k$.

(the virtual waiting time sequences of the customers form Wiener distribution).

Similar Finally, if $t \ge \max_{1 \le j \le k} \frac{k_j}{\hat{\beta}_j}$ and conditions (1) are fulfilled, the computer network becomes unreliable (all the stations in the network fail).

- Conditions (1) mean that the summary length of jobs, arriving at the node of the network, is larger than the service of jobs at the same node of the network.
- It is clear from this note that the length of jobs at the node of the network is constantly growing with probability one.
- Conditions (1) are fundamental the behaviour of the whole network and its evolution is not clear if they are not satisfied.

ON THE RELIABILITY OF QUEUEING SYTEMS

Edvinas Greičius, Saulius Minkevičius

Vilnius University and Institute of Mathematics and Informatics of VU

February 22, 2017

• • • • • • • • • • • • •