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Main problem and motivation
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Main problem and motivation

1 A queue management system is used to control queues. Queues
of people form in various situations and locations in a queue area.
The process of queue formation and propagation is defined as
queueing theory.
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Network structure. Definition of arrival and service
processes
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Network structure. Definition of arrival and service
processes

1 G/GI/1 computer network consisting from j stations, indexed by
j = 1,2, . . . , J.

2 The basic components of the queueing network are arrival processes,
service processes, and routing processes.

3 “First in, first out” (FIFO) service discipline is assumed for all J stations.
4 We assume that a station serves at its full capacity when the number of

jobs waiting is equal to or exceeds the number of jobs theoretically
capbable to process at the station.

5 {Z (j)
n , n ≥ 1} are J sequences of exogenous interarrival times, the

random variable Z (j)
n is n-th interarrival time at station k ,

6 Respectively,{S(j)
n , n ≥ 1} are sequences of service times, where S(j)

n is
the n-th service time at station j .
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Network structure

1 We define µj = (M[S(j)
n ])−1 > 0 and λj = (M[Z (j)

n ])−1 > 0, j = 1,2, . . . , k ;

2 Let pij = P(Φ
(i)
n = j) > 0; i , j = 1,2, . . . , k .

3 This k × k matrix P = (pij ) is called a routing matrix.

4 If Φ
(i)
n = j (which occurs with probability pij ), then the n-th customer

served at station i is routed to station j .
5 When Φ

(i)
n = 0, the associated customer leaves the network.
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Network structure of mixed-component Jackson
queueing networks
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Network structure of mixed-component Jackson
queueing networks

1 To construct renewal processes generated by the interarrival and
service times, we introduce the summary lenght of interarrival
times:

zj(l) =
l∑

m=1
z(j)

m , l ≥ 1, j = 1,2, . . . , k .

2 Summary lenght of service times is equal accordingly:

Sj(l) =
l∑

m=1
S(j)

m , l ≥ 1, j = 1,2, . . . , k .

3 Let Aj (t) = max
(
l ≥ 0 : zj (l) ≤ t

)
and xj (t) = max

(
l ≥ 0 : Sj (l) ≤ t

)
,

(which indicates the room capacity of customers arrived and served at
station j until time t)

4 Denote τj (t) as the total number of customers, who were departed from
the j th station after service out of the network until time t .

5 We assume, that Pj = 1−
∑k

i=1 pij ,pt
j = 1−

∑k
i=1 pt

ij ,
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Network structure of mixed-component Jackson
queueing networks

1 At first, we divide the set of stations of the network into three sets:
1) for j = 1,2, . . . ,m and t > 0, where Aj (t) = 0 and Pj = 0;
2) for j = m + 1,m + 2, . . . , l and t > 0, where Aj (t) > 0 and Pj = 0;
3) for j = l + 1, l + 2, . . . , k and t > 0, where Aj (t) > 0 and Pj > 0.

2 This is a definition of mixed-component Jackson queueing
network.
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Example of three-server model of mixed-component
open queueing network

1
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Network structure of mixed-component Jackson
queueing networks

1 We assume, that Pj = 1−
∑k

i=1 pij ,pt
j = 1−

∑k
i=1 pt

ij ,

2 ŷj(t) = Aj(t)− xj(t) · Pj , (the part of the customers which has been
routed to the other station or left the network entirely).

3 kj(t) = (k + 1) · sup
0≤s≤t

(xj(s)− τj(t)), (workload at each station)

4 To construct customer serving process at the j-th station of the
mixed-component open queueing network, we calculate the

workload capacity of each station: βj = 1−
λj +

k∑
i=1

µi · pij

µj
(less than zero means that the station is overloaded and the
queue of customers is constantly growing)
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Network behavior under conditions of heavy traffic
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Network behavior under conditions of heavy traffic

1 We suppose that the following (”Heavy traffic”) conditions are
fulfilled:

λj +
k∑

i=1

µi · pij > µj , j = 1,2, . . . , k . (1)

2 The conditions guarantees that the queue and the virtual waiting
time of a customer in the system is constantly growing.

3 One of the results of the paper is the probability limit theorem for
the virtual waiting time Wj(t) of a customer at the j-th station of
the mixed-component open queueing network in time t .
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Network behavior under conditions of heavy traffic

1 If conditions (1) are satisfied, then

lim
n→∞

P
(

Wj (nt)−βj ·n·t
σ̂j ·
√

n < x
)
=
∫ x
−∞ exp(−y2/2)dy ,

0 ≤ t ≤ 1 and j = 1,2, . . . , k .

(the virtual waiting time sequences of the customers form
Wiener distribution).

2 Finally, if t ≥ max
1≤j≤k

kj

β̂j
and conditions (1) are fulfilled, the

computer network becomes unreliable (all the stations in the
network fail).
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Concluding remarks and future research

1 Conditions (1) mean that the summary length of jobs, arriving at
the node of the network, is larger than the service of jobs at the
same node of the network.

2 It is clear from this note that the length of jobs at the node of the
network is constantly growing with probability one.

3 Conditions (1) are fundamental - the behaviour of the whole
network and its evolution is not clear if they are not satisfied.
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