Parallel Fast Fourier Transform Libraries

Benson Muite with help and support of many others!

benson.muite@ut.ee
http://kodu.ut.ee/~benson
http://parallel.computer

X 2 . V. y

nnnnnnnnnnnnnnnnnnnnnn

20 February 2017

benson.muite@ut.ee
http://kodu.ut.ee/~benson
http://parallel.computer
http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

A Disclaimer

@ Work presented is not all my own

@ Views stated may not be shared by all those who have
contributed

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

@ Benchmarking of high performance computers

Linpack

Scientific computing and procurement - the Poisson
equation

Stream

Conjugate Gradients - HPCG

Multigrid - HPGMG

FFT

Fast Fourier Transform libraries

Klein Gordon equation as a benchmark

Demo

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Benchmarking of high performance computers

@ Partly a sport

@ Indicate opportunities for algorithm implementation
optimization

@ Indicate opportunities for improved algorithm choice

@ Method of providing guidance on performance and in
finding errors

@ Allows for reasonable comparisons between very different
platforms

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Benchmarking of high performance computers

@ Benchmarks usually driven by aspects that limit problem
solving effectiveness

@ Not all will be equally important for you

@ What would be a minimal set of benchmarks that would be
useful for a wide variety of centers to run?

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

The stream benchmark

@ Main observation is that memory bandwidth is limiting
factor for performance rather than floating point operations
@ Examine performance of systems when doing vector

products
A=A+BxC

@ Three floating point operations per memory access

@ Micro benchmark for single processor, but for many parallel
computations, it is more relevant than communication
between nodes

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Graph 500

@ http://www.graph500.0org/
@ Random access benchmark — breadth first search
@ Computer network is main limitation

http://www.graph500.org/
http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Linpack benchmark

@ Solve dense system of linear equations

Ax=0>b
@ Main kernel is dense matrix multiply from doing LU
decomposition
LU=A
Ux=c
Lc=b>b

@ Tuning and parallelization strategies can require a long
time to get this right, even though dense matrix multiply us
easier to tune

@ Gives Top 500 list

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Theoretical peak performance - max flops

@ Small microbenchmark
@ Repeatedly compute

a=at+cx*b

@ All elements stored in registers, so no memory access
limitations

@ Take advantage of fused multiply add floating point
instruction

@ Easy to tune and port this to different architectures

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

HPCG

@ High performance conjugate gradient
@ Suppose we need to solve a linear system of equations

Ax=D>b

A

is typically sparse

@ Solving using exact method as used in Linpack can have
very high memory requirements

@ Can also require many more floating point operations than
other methods that might give “good enough” results

@ Use iterative methods where dominant component is
sparse matrix vector multiply

@ As an example decompose the matrix

A=D+R

, Where D is a matrix system that is easy to solve

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Conjugate Gradient Iteration

@ Why does Conjugate Gradient Iteration work?
@ Start with a simpler case, gradient descent!

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Steepest Descent for Linear Systems of Equations

@ Solving Ax = b is equivalent to minimizing xTAx —xTb for
symmetric and positive definite matrix A
@ the algorithm is

@ choose xg so thatrg = Axg—b
e FORKk=1,2, ..

rlrg
r]Ar

Xk1 = X — Qg
ki1 = AXpp1 —b

ENDFOR

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Conjugate Gradient Method

@ Solving Ax = b is equivalent to minimizing X" Ax — x7b for symmetric and positive definite matrix A

@ Theorem Let A be a symmetric positive definite matrix of size nx n. Then after n conjugate direction
searches in the n dimensional space, we obtain rp, =0.

@ The algorithm
@ choose xg sothatpo =rg =Axg—b
e FORk=1,2,..n
. rirg
P/ Apk
Xk 1 = Xk + 0Pk
ki1 = Fk — acApg
T
_ Tkt Tht
By = HriiHt
r
Pk+1 = Fie1 + BrPk

ENDFOR

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

High Performance Conjugate Gradient

@ https:
//software.sandia.gov/hpcg/html/index.html

@ Solve a sparse matrix system Ax = b using a prescribed
iterative method

@ Several mathematical techniques used to improve
convergence of conjugate gradient method

@ Main algorithmic components remain the same

@ Method is sub optimal with respect to asymptotic operation
count

@ Method may allow for comparison of factors on machines
other than floating point operations

@ Still not fully reflective of supercomputer performance

@ Detailed set of rules as to what performance tuning
changes are allowed

@ Does not allow for algorithmic improvements

@ One study indicates a very strong correlation with stream
benchmark

https://software.sandia.gov/hpcg/html/index.html
https://software.sandia.gov/hpcg/html/index.html
http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Multigrid

@ lteration usually works well on high frequency errors
@ Low frequency errors will take a long time to be eliminated

@ To speed this up, solve an problem on a small grid, then
add scales to the grid to improve the approximation

@ Choice of discretization is also important in efficiency of
this method

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

High Performance Geometric Multigrid

@ https://www.hpgmg.org/

@ Solve a sparse matrix system Ax = b using an iterative
method

@ Method can be optimal with respect to asymptotic
operation count

@ Method may allow for comparison of factors on machines
other than floating point operations

@ Does not allow for algorithmic improvements

https://www.hpgmg.org/
http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Other benchmarks

@ NAS Parallel Benchmarks https:
//Www.nas.nasa.gov/publications/npb.html
@ HPCC Challenge suite
http://icl:csl. utk..edu/hpece/

@ Example procurement benchmarks
https://asc.llnl.gov/CORAL-benchmarks/

https://www.nas.nasa.gov/publications/npb.html
https://www.nas.nasa.gov/publications/npb.html
http://icl.cs.utk.edu/hpcc/
https://asc.llnl.gov/CORAL-benchmarks/
http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Scientific computing

@ Solution of problems from science and engineering

@ Typically rely on numerical linear algebra
@ One of early drivers of high performance computing

@ For a long time, floating point operations limited what could
be simulated

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Differential equations as models for physical
processes

@ Models first encountered by applied mathematicians,
engineers and physicists

Heat equation

Schrédinger equation

Wave equation

Poisson equation

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

The Heat Equation

@ Used to model diffusion of heat, species,

e 1D
du_
ot 9x2
e 2D
u_ P o
ot dx2 9y?
e 3D

Jul a2u+ d%u N d%u
ot dx2 Jdy2 9z

@ Not always a good model, since it has infinite speed of
propagation

@ Strong coupling of all points in domain make it
computationally intensive to solve in parallel

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Linear Schrédinger Equation

@ Used to model quantum mechanical phenomena and often
appears in simplified wave propagation models

e 1D
8u d02u
81‘ ~ox2
e 2D
au 82u+&
CITI oy?
e 3D

;ou 82u+82u+82u
"9t T oxz dy2 0z°2
@ Looks like a heat equation with imaginary time

@ Strong coupling of all points in domain make it
computationally intensive to solve in parallel

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

The Wave Equation

@ Used to model propagation of sound, light

e 1D
Pu_ o
o2~ ox2
e 2D
?u d%u N 9%u
o2 Ix2 Jy?
@ 3D

SO NROZ | #OE U
92 " ox2 9y2 a9z
@ Has finite speed of propagation
@ Finite signal propagation speed sometimes useful in
parallelization since there is no coupling between grid
points that are far apart, hence smaller communication
requirements
@ If propagation speed is very fast, communication
requirements still important

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

The Poisson Equation

@ Used to model static deflection of a drumhead
e 1D 2,
f(x)= E
e 2D
fx.y) = Zau o5y
: 0x2 dy?
e 3D
e A d%u A d%u N d%u
i ox2 dy2 0z
@ No time dependence, but also arises in time discretizations

of time dependent partial differential equations

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Main role of computation

@ Provide approximate solutions since exact ones typically
not available

@ High performance computing typically allows solution of
more accurate models or ensemble exploratory simulation

@ Has historically been seen as “science enabler” not real
science

@ This becomes problematic when software development
time becomes a large part of a project

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Typical scientific computing workflow

@ Obtain model

@ Find an approximation of this model suitable for computer
simulation - best choice is problem and computer
architecture specific

@ Simulate the model

@ Make sense of results from simulation - IO and
visualization are key for this, but traditionally neglected

@ Hope for benchmark information that reflects this workflow

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Aim to simulate this,

o https://www.flickr.com/photos/kitware/2293740417/in/pool-paraview/

@ Visualization around Formula 1 Race Car by Renato N.
Elias, Rio de Janeiro, Brazil

https://www.flickr.com/photos/kitware/2293740417/in/pool-paraview/
http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

o https://www.flickr.com/photos/kitware/2294528826/in/pool-paraview/

@ Visualization around Formula 1 Race Car by Renato N.
Elias, Rio de Janeiro, Brazil

https://www.flickr.com/photos/kitware/2294528826/in/pool-paraview/
http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Maybe even this

@ https://youtu.be/FT1J919KTkw
@ https://youtu.be/MsDgw8_cb90
@ https://youtu.be/Su8gzC4HHVs

https://youtu.be/FTlJ9l9KTkw
https://youtu.be/MsDgw8_cb90
https://youtu.be/Su8qzC4HHVs
http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

The Heat Equation: Numerical Solution Methods

@ Finite Difference
@ Finite Volume

@ Finite Element
@ Spectral

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Finite Difference Method

@ Approximate derivatives by difference quotients
@ Simple method to derive and implement

@ Convergence rates tend not to be great

@ Difficult to use for complicated geometries

@ Tends to scale well since communication requirements are
low

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Finite Difference Method for Heat Equation

@ Up = 8BUxx
@ Using backward Euler time stepping:

n-+1 n n+1 _ o n+1 n-+1
Bl U Bl 20T+ Uy

5t (6x)2

@ Using forward Euler time stepping (strong stability
restrictions):
u* - ul 207+ ul

st (6x)2

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Finite Difference Method for Heat Equation

@ Simple method to derive and implement

@ Hardest part for implicit schemes is solution of resulting
linear system of equations

@ Explicit schemes typically have stability restrictions or can
always be unstable

@ Convergence rates tend not to be great —to get an
accurate solution, a large number of grid points are needed

@ Difficult to use for complicated geometries

@ Tends to scale well since communication requirements are
low

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Finite Volume Method for Heat Equation

ou __ d%u ou _ du _ dv
om_ﬂ?orﬁ_vanda—t._ﬁ -
@ Consider a cell averaged integral, then use implicit

midpoint rule
f;:iﬂ Uydx = f;jiﬂ vdx

P
U1 — U= in’“ vdx

n-+1 n n+1 n n+1 n n+1 n
il ST e LY 1 Y S IR AR Sx
2 4

Xjt1 — (Xi+1q
inI+ utdx_fX/H- VXdX

X
fx,-l+1 uidx = Vigt =V

n+1 n+1 n n n+1 n n+1 n
Uiy +u; "t U u; 6X = Vit +Vi VT Y

i+1 i i
26t 2

@ Several ways of approximating the integrals. The one
above is a little unusual, most finite volume schemes use
left sided or right sided approximations.

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Finite Volume Method for Heat Equation

@ For implicit schemes, hardest part is solving the system of
equations that results

@ Explicit schemes parallelize very well, however a large
number of grid points are usually needed to get accurate
results

@ Automated construction of simple finite volume schemes is
possible, making them popular in packages

@ No convergence theory for high order finite volume
schemes

@ Tricky to do complicated geometries accurately

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Finite Element Method for Heat Equation

ou __ d4u
B — ox2

@ Assume u(x,t) ~ u(x,t) =Y, ¢i(x)Ti(t), where ¢;(x) is zero
for x > x;11 and x < x;_1.

@ A simple choice is y is the triangle hat function, x;, 1 — x for
X € [Xi,Xir1] and x — xj_1 for x € [x;_1, Xi]

@ Now need to find T;(t), which will be evaluated using finite
differences.

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Finite Element Method for Heat Equation

@ Consider multiplying the heat equation by a polynomial, ¢
that is only non zero over a few grid points, then integrate

by parts,
Xit1 QU g 1y — [Xit1 92U .
inl: G 9idx = inI: oxe 9idX
Xig1 OU Iy Xit1 9l 99;
fol: W‘P’dx — 3 X,‘I: ox 9)(I dx

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Finite Element Method for Heat Equation

@ Then use implicit midpoint rule

fx:+1 3”¢,dx ;(:+11 %%dx

Xji—1 Ot
Xi 11 u"“—& (Xt o™\ 99;
A ¢idx =— [, 5 ax -+ ox) ax X

1 [2s-a i
i 1] l
2 + ¢/’X/+1+ I ¢/|Xl1 26X
__1 1 ounti
a2 2 ax

_ 1|1 (e
2|2 ax

au"

) 201
N Xit1 ax

e
99
Xi—1 o

} 20X

X1

] 20X

Xit1

au"

+z9x

Xi—1

Xi—1

@ Since ¢ are known before hand, can re-write this as matrix
vector products, so need to solve a linear system at each

time step.

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Finite Element Method for Heat Equation

@ Several other ways of approximating the integrals, can
extend to multiple dimensions.

@ Weak formulation allows for solution of equations where
second derivative is not naturally defined

@ Large mathematical community developing convergence
theory for these methods

@ Well suited to complicated geometries

@ Rather difficult to implement compared to other schemes
because of integrals that need to be computed

@ Used in many codes, but typically codes are hand written
to obtain high efficiency

@ For implicit time discretizations, solving the linear system
of equations that results can be most time consuming part

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Fourier Spectral Method for Heat Equation

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Fourier Series: Separation of Variables 1

ay

E_y
@ _ 4
y

elny+a i | et+b
eInyea _1 eteb
b
_ € ¢
y = o2

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Fourier Series: Separation of Variables 2

u_ Pu
ot Ix?
@ Suppose u = X(x)T(t)
°
2
L) st
nE= s CONRN

@ Solving each of these separately and then using linearity
we get a general solution

ianexp(—cnt)sin(Cnx)+ Bnexp(—Cnt)cos(+/ Cnx)

n=0

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Fourier Series: Separation of Variables 3

@ How do we find a particular solution?

@ Suppose u(x,t=0) = f(x)

@ Suppose u(0,t) = u(2r,t) and ux(0,t) = ux(2m,t) then
recall

o

/znsin(nx)sin(mx) —
0 10 m#n’
T m=n

2
/0 cos(nx)cos(mx) = {0 R

/Ozﬂcos(nx)sin(mx) =0.

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Fourier Series: Separation of Variables 4

@ So if N
f(x) =Y ansin(nx)+ Bncos(nx).
n=0
@ then
- 27 f(x) sin(nx)dx
27 sin?(nx)dx
5 27 f(x) cos(nx)dx
t 27 cos2(nx)dx
@ and

Z exp(—n?t) [asin(nx) 4 Bncos(nx)]

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Fourier Series: Separation of Variables 5

@ The Fast Fourier Transform allows one to find good
approximations to o, and B, when the solution is found at
a finite number of evenly spaced grid points

@ By rescaling, can consider intervals other than [0,27)

@ Fourier transform also works on infinite intervals, but
require function to decay to the same constant value at £+

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Complex Fourier Series

@ By using Euler’s formula, one can get a simpler expression
for a Fourier series where sine and cosine are combined

e u=Yr _vaexp(inx) xe][0,2m)

Im‘

; e'?=cos g +ising

sin ¢

9
Ofcos ¢ 1 I.{:

Source: http://en.wikipedia.org/wiki/File:Euler%27s_formula.svg

http://en.wikipedia.org/wiki/File:Euler%27s_formula.svg
http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

A Computational Algorithm for Computing An

Approximate Fourier Transform 1

@ Analytic method of computing Fourier transform can be
tedious

@ Can use quadrature to numerically evaluate Fourier
transforms — O(n?) operations

@ Gauss and then Cooley and Tukey found O(nlog n)
algorithm

@ Key observation is to use factorization and recursion

@ Modern computers use variants of this idea that are more
suitable for computer hardware where moving data is more
expensive than floating point operations

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

A Computational Algorithm for Computing An

Approximate Fourier Transform 2

Example pseudo code to compute a radix 2 out of place DFT where x has length that is a power of 2
1: procedure X, 1 (ditfft2(x,N,s))

2: DFT of (Xg, Xs, X2, ;. X(N—1)s)

3: ifN=1 then

4 trivial size-1 DFT of base case
5: Xo I

6: else

7/ DFT of (Xg, Xos: X4s:)

8 Xo,..Nj21 ¢ ditft2(x,N/2,25)
9

DFT of (Xs, Xs 1251 Xs 455 ++-)

10 Xnj2,. N—1 + ditfft2(x+5,N/2,25)

11: Combine DFTs of two halves into full DFT
12: fork=0— N/2—1do

13: t— Xi

14: Xy = t-+exp(—2mik/N)Xje njo

15: Xiepny2 < t—exp(—2mik/N) Xy /2
16: end for

17: endif

18: end procedure

Sources: http://en.wikipedia.org/wiki/Cooley%$E2%80%93Tukey_FFT_algorithm,
http://cnx.org/content/ml6336/latest/

By NASA - 1

http://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm
http://cnx.org/content/m16336/latest/
http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

The Heat Equation: Finding Derivatives and

Timestepping

@ Let
u(x) =Y ik exp(ikx)
k
@ then
d"u TN h
— =Y (ik)" i exp(ikx).
@ Consider u; = uyx, which is approximated by
a0 G DA
Ttk = (k)i
Un—H o an] R
k ST k il (Ik)ZUZ—H
Ot - 8t(ik)?] = g
0;(1—1—1 e E’I?

[1—38t(ik)?]

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

The Heat Equation: Finding Derivatives and

Timestepping

@ Python demonstration

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

The Allen Cahn Equation: Implicit-Explicit Method

@ Consider us = euyy + U — u3, which is approximated by
backward Euler for the linear terms and forward Euler for
the nonlinear terms

au

at

an+1 —_n R
ot

= e(ik)20+0— uB

i s(ik)zu”A+1+uA”—(u”)3

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

The Allen Cahn Equation: Implicit-Explicit Method

@ Python demonstration

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Fast Fourier Transform Libraries

2DECOMP&FFT http://www.2decomp.org/

P3DFFT http://p3dfft.net/

PFFT https://www—user.tu-chemnitz.de/~mpip/
software.php#pfft

PARRAY/PKUFFT https:
//code.google.com/p/parray-programming/
AccFFT http://accfft.org

mpiFFT4py
https://github.com/spectralDNS/mpiFFT4py

@ FFTE http://www.ffte. jp/
@ Intel MKL cluster FFT https:

//software.intel.com/en-us/node/521991
FFTW http://fftw.org/

http://www.2decomp.org/
http://p3dfft.net/
https://www-user.tu-chemnitz.de/~mpip/software.php#pfft
https://www-user.tu-chemnitz.de/~mpip/software.php#pfft
https://code.google.com/p/parray-programming/
https://code.google.com/p/parray-programming/
http://accfft.org
https://github.com/spectralDNS/mpiFFT4py
http://www.ffte.jp/
https://software.intel.com/en-us/node/521991
https://software.intel.com/en-us/node/521991
http://fftw.org/
http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

The Real Cubic Klein-Gordon Equation

ug — Au+u=|ulPu

1 1 1 1
E(u,u) = /E\Ut!2+§|u!2+§ IVul? - 71 lu|*dx

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Videos by Brian Leu, Albert Liu, Michael Quell and

Parth Sheth

@ http://www—personal
@ http://www—personal
@ http://www—personal

@ https://www.youtube.

.umich.edu/~alberliu/
.umich.edu/~brianleu/

.umich.edu/~pssheth/

com/watch?v=nTA3zfgNfQg

http://www-personal.umich.edu/~alberliu/
http://www-personal.umich.edu/~brianleu/
http://www-personal.umich.edu/~pssheth/
https://www.youtube.com/watch?v=nTA3zfgNfQg
http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Scaling study on Mira

102
e e No output
x % Profiling with Tau
Ideal
w .
0
£
= b
S0t -
3 x
5 L]
3
£
o
© .
L]
100 L
10* 10° 10°

Number of Cores

@ Strong scaling on Mira for a 4096° discretization by Brian
Leu, Albert Liu, and Parth Sheth

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Scaling study on Stampede

104

e e 512a NO
512a 0
+ + 512a 00
103 512a Ideal ||
® s & 512 NO
512 0
. 512 00
512 Ideal
. 1024 NO
g 5 X a x % 10240
.. : 1024 00
e § + - 1024 Ideal
e ey o o 2048NO |]
e 2048 O
) + + 2048 00
2048 Ideal
10" 107 10° 10* 10°
Number of Cores

x
x

102} u

Computation Time (s)
-
L]
]
=]

+
+

10t}

@ Strong scaling on Stampede by Jerome Vienne

By NASA

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Scaling study on Vedur

10° Testing Kg on vedur

with output
no output
ideal

I

pvpng

time (s)

1l L L L L
10 32 64 96 128 256
n cores

@ Strong scaling on Vedur by Oleg Batrasev

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Scaling study on Neser

10° :
L) e o 2ndNO
0 +|x x 2ndO
+ + 2nd OO
¢ o ¢ 2ndCP
— ; 2nd Ideal
7-E7 .
E ¢ ¢
c L]
S 10° +
5
5
g
o
(]
101 L L
10° 10! 10° 10°

Number of Cores

@ Strong scaling on Neser by Samar Aseeri

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Numerical Scheme

o
un+1 _2un+unf1 _Aun+1 _~_2un+unf1
ot2 4
un+1+2un+un 1 SN
4 - |U ‘ u

o u"~u(ndt,x,y,Zz)
@ Time stepping takes place in Fourier space

@ Solution of linear system of equations is easy in Fourier
space, though can also be done by iterative methods in
real space

@ Two FFTs per time step

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Scaling with Cores

10° :
— Aquila
— Beacon
e—e Hector
) v—v Hornet
10%F &—4 Jugueen
> << Marenostrum
' »—» MonteRosa
'E ~— Neser
S 10!} — Shaheen
E ~—— Stampede
a _—
5
109
v
10! ;
10° 10! 10° 10° 10* 10° 10°

Number of Cores

@ Scaling results showing computation time for 30 time steps
as a function of the number of processor cores. A
discretization of 5123 points was used.

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Scaling with Cores

10°

:
+— Aquila
— Beacon
e Hector
v-v Hornet
a4 Juqueen
<-4 Marenostrum [{
»—» MonteRosa

102

+— Neser
— Shaheen
+— Stampede
— Titan
= Vedur
¢4 Vvsc2

10t

Computation Time (s)

10°

10 -1 L L L L L
10° 10* 10? 10° 10* 10° 10°

Bandwidth (Gb/s)

@ Scaling results showing computation time for 30 time steps
as a function of total on chip bandwidth defined as the
maximum theoretical bandwidth from RAM on a node
multlplled by the number of nodes used. A discretization of

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

A Runtime Estimation Model

@ di, db, d3 system and implementation dependent constants

@ N number of grid points in each dimension, assumed to be
the same in all three dimensions

@ L, minimum network latency, B average bandwidth to a
core from RAM

@ p number of processes
@ Assume a hypercube network - speed optimal for FFT

o
dy x N+ db x [Nlog(N)]®

+2L,+ dslog(p)

Bexp

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

A Ranking

Rank Machine Time Cores Manufacturer Node Total
Name (s) used and Model Type Cores
1 Hornet 0.319 12,288 Cray XC40 2x12 core Intel Xeon 94,656
2.5 GHz E5-2680v3
2 Juqueen 0.350 262,144 IBM 16 core 1.6 GHz 458,752
Blue Gene/Q Power PC A2
3 Stampede 0.581 8,162 Dell 2x8 core Intel Xeon 462,462
Power Edge 2.7 GHz E5-2680
4 Shaheen 1.66 16,384 IBM 4 core 0.85 GHz 65,536
Blue Gene/P PowerPC 450
5 MareNostrum 4.00 64 IBM 2x8 core Intel Xeon 48,384
1] DataPlex 2.6 GHz E5-2670
6 Hector 7.66 1024 Cray XE6 2x16 core AMD Opteron 90,112
2.3 GHz 6276 16C
7 VSC2 9.03 1024 Megware 2x8 core AMD Opteron 21,024
2.2 GHz 6132HE
8 Beacon 9.13 256 Appro 2x8 core Intel Xeon 768
2.6 GHz E5-2670
9 Monte Rosa 11.9 1,024 Cray XE6 2x16 core AMD Opteron 47,872
2.1 GHz 6272
10 Titan 17.0 256 Cray XK7 16 core AMD Opteron 299,008
2.2 GHz 6274
1 Vedur 18.6 1,024 HP ProLiant 2x16 core AMD Opteron 2,560
DL165 G7 2.3 GHz 6276
12 Aquila 224 256 ClusterVision 2x4 core Intel Xeon 800
2.8 GHz E5462
13 Neser 118.7 128 IBM System 2x4 core Intel Xeon 1,024
X3550 2.5 GHz E5420

Public Domain, &

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

A Ranking

Rank Machine Time Total Interconnect 1D Chip Theoretical
Name (s) Cores FFT Bandwidth Peak
Library Gb/s TFLOP/s
1 Hornet 0.319 94,656 Cray FFTW 3 68 3,784
Aries
2 Juqueen 0.350 458,752 IBM 5D ESSL 42.6 5,872
torus
3 Stampede 0.581 462,462 FDR Intel MKL 51.2 2,210
infiniband
4 Shaheen 1.66 65,536 IBM 3D ESSL 13.6 222.8
torus
5 MareNostrum 4.00 48,384 FDR10 Intel MKL 51.2 1,017
] infiniband
6 Hector 7.66 90,112 Cray ACML 85 829.0
Gemini
7 VSC2 9.03 21,024 QDR FFTW 3 42.8 185.0
infiniband
8 Beacon 9.183 768 FDR Intel MKL 51.2 16.0
infiniband
9 Monte Rosa 11.9 47,872 Cray ACML 85 402.1
Gemini
10 Titan 17.0 299,008 Cray ACML 85 2,631
Gemini
11 Vedur 18.6 2,560 QDR FFTW 3 85 236
infiniband
12 Aquila 224 800 DDR FFTW 3 12.8 8.96
infiniband
13 Neser 118.7 1,024 Gigabit FFTW 3 10.7 10.2
ethernet

Public Domain, &

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

@ Extending to other Fourier transform libraries
@ Trying other linear solvers

@ Adding visualization

@ Trying other time stepping algorithms

@ Model problems from other areas

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Questions

@ Is a ranking based on one metric useful?

@ What would encourage people to optimize algorithms on
new computer architectures?

@ How should one benchmark input and output?

@ If run a fixed non-optimal benchmark, can one use this to
produce a predictive model for other programs?

@ If optimize a benchmark, do good results encourage code
development to make use of new hardware?

@ What benchmark results would enable you to build a small
cluster for your workflow?

@ How develop realistic communication network performance
models?

@ Would an HPC openbenchmarking.org be useful?

@ Would similar efforts for IO http://www.vidio.org/ be
useful?

openbenchmarking.org
http://www.vi4io.org/
http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Acknowledge

The authors thankfully acknowledge the computer resources, technical expertise and assistance provided by:

The Beacon Project at the University of Tennessee;

The UK'’s national high-performance computing service;

The Barcelona Supercomputing Center - Centro Nacional de Supercomputacion;
The Swiss National Supercomputing Centre (CSCS);

The Texas Advanced Computing Center (TACC) at The University of Texas at Austin;
The KAUST Supercomputer Laboratory at King Abdullah University of Science and Technology (KAUST);
The Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory;
The Aquila HPC service at the University of Bath;

The Vienna Scientific Cluster (VSC);

The PRACE research infrastructure resources in Germany at HLRS and FZ Jiilich;
The High Performance Computing Center of the University of Tartu;

Kraken at the National Institute for Computational Science;

Trestles at the San Diego Supercomputing Center;

the University of Michigan High Performance Computing Service FLUX;

Mira at the Argonne Leadership Computing Facility at Argonne National Laboratory;

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and

do not necessarily reflect the views of the funding bodies or the service providers.

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

Acknowledgments

@ D. Acevedo-Feliz, S. Andersson, W. Auzinger, A. Bauer, D.
DeMarle, L. Dorogin, D. Ketcheson, D. Keyes, R. Krasny, D.
Pekurovsky, M. Pippig, P. Rigge, S. Shende, M. Srinivasan,
E. Vainikko, M. Winkel, B. Wylie, H. Yi and R. Yokota

@ S. Aseeri, O. BatraSev, M. Icardi, B.Leu, A. Liu, N. Li, E.
Muller, B. Palen, M. Quell, H. Servat, P. Sheth, R. Speck,
M. Van Moer, J. Vienne,

@ The Blue Waters Undergraduate Petascale Education
Program administered by the Shodor foundation

@ The Division of Literature, Sciences and Arts at the
University of Michigan

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

References

@ To follow, will be posted separately

http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://commons.wikimedia.org/w/index.php?curid=1328034

